Loogle!
Result
Found 56 declarations mentioning MulEquiv and Equiv.symm. Of these, 44 have a name containing "symm".
- MulEquiv.symm.eq_1 π Mathlib.Algebra.Group.Equiv.Defs
{M : Type u_9} {N : Type u_10} [Mul M] [Mul N] (h : M β* N) : h.symm = { toEquiv := h.symm, map_mul' := β― } - MulEquiv.toEquiv_symm π Mathlib.Algebra.Group.Equiv.Defs
{M : Type u_4} {N : Type u_5} [Mul M] [Mul N] (f : M β* N) : βf.symm = (βf).symm - MulEquiv.coe_toEquiv_symm π Mathlib.Algebra.Group.Equiv.Defs
{M : Type u_4} {N : Type u_5} [Mul M] [Mul N] (f : M β* N) : β(βf).symm = βf.symm - MulEquiv.symm_mk π Mathlib.Algebra.Group.Equiv.Defs
{M : Type u_4} {N : Type u_5} [Mul M] [Mul N] (f : M β N) (h : β (x y : M), f.toFun (x * y) = f.toFun x * f.toFun y) : { toEquiv := f, map_mul' := h }.symm = { toEquiv := f.symm, map_mul' := β― } - MulEquiv.symm_map_mul π Mathlib.Algebra.Group.Equiv.Defs
{M : Type u_9} {N : Type u_10} [Mul M] [Mul N] (h : M β* N) (x y : N) : h.symm (x * y) = h.symm x * h.symm y - MulEquiv.symmEquiv_symm_apply_apply π Mathlib.Algebra.Group.Equiv.Defs
(P : Type u_9) (Q : Type u_10) [Mul P] [Mul Q] (h : Q β* P) (aβ : P) : ((MulEquiv.symmEquiv P Q).symm h) aβ = h.symm aβ - MulEquiv.symmEquiv_symm_apply_symm_apply π Mathlib.Algebra.Group.Equiv.Defs
(P : Type u_9) (Q : Type u_10) [Mul P] [Mul Q] (h : Q β* P) (aβ : Q) : ((MulEquiv.symmEquiv P Q).symm h).symm aβ = h aβ - AddEquiv.toMultiplicativeLeft_symm_apply_apply π Mathlib.Algebra.Group.Equiv.TypeTags
{G : Type u_2} {H : Type u_3} [AddZeroClass G] [MulOneClass H] (f : Multiplicative G β* H) (a : G) : (AddEquiv.toMultiplicativeLeft.symm f) a = (MonoidHom.toAdditiveRight f.toMonoidHom) a - AddEquiv.toMultiplicativeRight_symm_apply_apply π Mathlib.Algebra.Group.Equiv.TypeTags
{G : Type u_2} {H : Type u_3} [MulOneClass G] [AddZeroClass H] (f : G β* Multiplicative H) (a : Additive G) : (AddEquiv.toMultiplicativeRight.symm f) a = (MonoidHom.toAdditiveLeft f.toMonoidHom) a - AddEquiv.toMultiplicative_symm_apply_apply π Mathlib.Algebra.Group.Equiv.TypeTags
{G : Type u_2} {H : Type u_3} [AddZeroClass G] [AddZeroClass H] (f : Multiplicative G β* Multiplicative H) (a : G) : (AddEquiv.toMultiplicative.symm f) a = (AddMonoidHom.toMultiplicative.symm f.toMonoidHom) a - MulEquiv.toAdditive_symm_apply_apply π Mathlib.Algebra.Group.Equiv.TypeTags
{G : Type u_2} {H : Type u_3} [MulOneClass G] [MulOneClass H] (f : Additive G β+ Additive H) (a : G) : (MulEquiv.toAdditive.symm f) a = (MonoidHom.toAdditive.symm f.toAddMonoidHom) a - AddEquiv.toMultiplicativeRight_symm_apply_symm_apply π Mathlib.Algebra.Group.Equiv.TypeTags
{G : Type u_2} {H : Type u_3} [MulOneClass G] [AddZeroClass H] (f : G β* Multiplicative H) (a : H) : (AddEquiv.toMultiplicativeRight.symm f).symm a = (MonoidHom.toAdditiveRight f.symm.toMonoidHom) a - AddEquiv.toMultiplicativeLeft_symm_apply_symm_apply π Mathlib.Algebra.Group.Equiv.TypeTags
{G : Type u_2} {H : Type u_3} [AddZeroClass G] [MulOneClass H] (f : Multiplicative G β* H) (a : Additive H) : (AddEquiv.toMultiplicativeLeft.symm f).symm a = (MonoidHom.toAdditiveLeft f.symm.toMonoidHom) a - AddEquiv.toMultiplicative_symm_apply_symm_apply π Mathlib.Algebra.Group.Equiv.TypeTags
{G : Type u_2} {H : Type u_3} [AddZeroClass G] [AddZeroClass H] (f : Multiplicative G β* Multiplicative H) (a : H) : (AddEquiv.toMultiplicative.symm f).symm a = (AddMonoidHom.toMultiplicative.symm f.symm.toMonoidHom) a - MulEquiv.toAdditive_symm_apply_symm_apply π Mathlib.Algebra.Group.Equiv.TypeTags
{G : Type u_2} {H : Type u_3} [MulOneClass G] [MulOneClass H] (f : Additive G β+ Additive H) (a : H) : (MulEquiv.toAdditive.symm f).symm a = (MonoidHom.toAdditive.symm f.symm.toAddMonoidHom) a - MulEquiv.coe_prodAssoc_symm π Mathlib.Algebra.Group.Prod
{M : Type u_3} {N : Type u_4} {P : Type u_5} [MulOneClass M] [MulOneClass N] [MulOneClass P] : βMulEquiv.prodAssoc.symm = β(Equiv.prodAssoc M N P).symm - MulEquiv.symm_monoidHomCongrLeftEquiv π Mathlib.Algebra.Group.Equiv.Basic
{Mβ : Type u_5} {Mβ : Type u_6} {N : Type u_8} [MulOneClass Mβ] [MulOneClass Mβ] [Monoid N] (e : Mβ β* Mβ) : e.monoidHomCongrLeftEquiv.symm = e.symm.monoidHomCongrLeftEquiv - MulEquiv.symm_monoidHomCongrRightEquiv π Mathlib.Algebra.Group.Equiv.Basic
{M : Type u_4} {Nβ : Type u_9} {Nβ : Type u_10} [MulOneClass M] [Monoid Nβ] [Monoid Nβ] (e : Nβ β* Nβ) : e.monoidHomCongrRightEquiv.symm = e.symm.monoidHomCongrRightEquiv - MulEquiv.monoidHomCongrLeftEquiv_symm_apply π Mathlib.Algebra.Group.Equiv.Basic
{Mβ : Type u_5} {Mβ : Type u_6} {N : Type u_8} [MulOneClass Mβ] [MulOneClass Mβ] [Monoid N] (e : Mβ β* Mβ) (f : Mβ β* N) : e.monoidHomCongrLeftEquiv.symm f = f.comp e.toMonoidHom - MulEquiv.monoidHomCongrRightEquiv_symm_apply π Mathlib.Algebra.Group.Equiv.Basic
{M : Type u_4} {Nβ : Type u_9} {Nβ : Type u_10} [MulOneClass M] [Monoid Nβ] [Monoid Nβ] (e : Nβ β* Nβ) (hmn : M β* Nβ) : e.monoidHomCongrRightEquiv.symm hmn = e.symm.toMonoidHom.comp hmn - MonoidHom.postcompEquiv_symm_apply π Mathlib.Algebra.Group.Equiv.Basic
{Ξ± : Type u_19} {Ξ² : Type u_20} [Monoid Ξ±] [Monoid Ξ²] (e : Ξ± β* Ξ²) (Ξ³ : Type u_21) [Monoid Ξ³] (g : Ξ³ β* Ξ²) : (MonoidHom.postcompEquiv e Ξ³).symm g = e.symm.toMonoidHom.comp g - MonoidHom.precompEquiv_symm_apply π Mathlib.Algebra.Group.Equiv.Basic
{Ξ± : Type u_19} {Ξ² : Type u_20} [Monoid Ξ±] [Monoid Ξ²] (e : Ξ± β* Ξ²) (Ξ³ : Type u_21) [Monoid Ξ³] (g : Ξ± β* Ξ³) : (MonoidHom.precompEquiv e Ξ³).symm g = g.comp βe.symm - Equiv.permCongrHom_symm π Mathlib.Algebra.Group.End
{Ξ± : Type u_4} {Ξ² : Type u_5} (e : Ξ± β Ξ²) : e.permCongrHom.symm = e.symm.permCongrHom - Equiv.Perm.equivUnitsEnd_symm_apply_symm_apply π Mathlib.Algebra.Group.End
{Ξ± : Type u_4} (u : (Function.End Ξ±)Λ£) : β(Equiv.symm (Equiv.Perm.equivUnitsEnd.symm u)) = βuβ»ΒΉ - MulEquiv.op_symm_apply_apply π Mathlib.Algebra.Group.Equiv.Opposite
{Ξ± : Type u_3} {Ξ² : Type u_4} [Mul Ξ±] [Mul Ξ²] (f : Ξ±α΅α΅α΅ β* Ξ²α΅α΅α΅) (aβ : Ξ±) : (MulEquiv.op.symm f) aβ = (MulOpposite.unop β βf β MulOpposite.op) aβ - MulEquiv.op_symm_apply_symm_apply π Mathlib.Algebra.Group.Equiv.Opposite
{Ξ± : Type u_3} {Ξ² : Type u_4} [Mul Ξ±] [Mul Ξ²] (f : Ξ±α΅α΅α΅ β* Ξ²α΅α΅α΅) (aβ : Ξ²) : (MulEquiv.op.symm f).symm aβ = (MulOpposite.unop β βf.symm β MulOpposite.op) aβ - MulEquiv.withZero_symm_apply_apply π Mathlib.Algebra.GroupWithZero.WithZero
{Ξ± : Type u_1} {Ξ² : Type u_2} [Group Ξ±] [Group Ξ²] (e : WithZero Ξ± β* WithZero Ξ²) (x : Ξ±) : (MulEquiv.withZero.symm e) x = WithZero.unzero β― - MulEquiv.withZero_symm_apply_symm_apply π Mathlib.Algebra.GroupWithZero.WithZero
{Ξ± : Type u_1} {Ξ² : Type u_2} [Group Ξ±] [Group Ξ²] (e : WithZero Ξ± β* WithZero Ξ²) (x : Ξ²) : (MulEquiv.withZero.symm e).symm x = WithZero.unzero β― - MulEquiv.submonoidMap_symm_apply π Mathlib.Algebra.Group.Submonoid.Operations
{M : Type u_1} {N : Type u_2} [MulOneClass M] [MulOneClass N] (e : M β* N) (S : Submonoid M) (g : β₯(Submonoid.map (βe) S)) : (e.submonoidMap S).symm g = β¨e.symm βg, β―β© - MulEquiv.subgroupMap_symm_apply π Mathlib.Algebra.Group.Subgroup.Map
{G : Type u_1} {G' : Type u_2} [Group G] [Group G'] (e : G β* G') (H : Subgroup G) (g : β₯(Subgroup.map (βe) H)) : (e.subgroupMap H).symm g = β¨e.symm βg, β―β© - FreeMonoid.freeMonoidCongr_symm_of π Mathlib.Algebra.FreeMonoid.Basic
{Ξ± : Type u_6} {Ξ² : Type u_7} (e : Ξ± β Ξ²) (b : Ξ²) : (FreeMonoid.freeMonoidCongr e.symm) (FreeMonoid.of b) = FreeMonoid.of (e.symm b) - FreeGroup.freeGroupCongr_symm π Mathlib.GroupTheory.FreeGroup.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} (e : Ξ± β Ξ²) : (FreeGroup.freeGroupCongr e).symm = FreeGroup.freeGroupCongr e.symm - OrderMonoidIso.withZero_symm_apply_symm_apply π Mathlib.Algebra.Order.Hom.MonoidWithZero
{G : Type u_6} {H : Type u_7} [Group G] [PartialOrder G] [Group H] [PartialOrder H] (e : WithZero G β*o WithZero H) (x : H) : (OrderMonoidIso.withZero.symm e).symm x = WithZero.unzero β― - Equiv.mulEquiv_symm_apply π Mathlib.Algebra.Group.TransferInstance
{Ξ± : Type u_2} {Ξ² : Type u_3} (e : Ξ± β Ξ²) [Mul Ξ²] (b : Ξ²) : (MulEquiv.symm e.mulEquiv) b = e.symm b - Unitization.val_unitsFstOne_mulEquiv_quasiregular_symm_apply_coe π Mathlib.Algebra.Algebra.Spectrum.Quasispectrum
(R : Type u_1) {A : Type u_2} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] (x : (PreQuasiregular A)Λ£) : ββ((Unitization.unitsFstOne_mulEquiv_quasiregular R).symm x) = 1 + β(PreQuasiregular.equiv.symm βx) - Unitization.val_inv_unitsFstOne_mulEquiv_quasiregular_symm_apply_coe π Mathlib.Algebra.Algebra.Spectrum.Quasispectrum
(R : Type u_1) {A : Type u_2} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] (x : (PreQuasiregular A)Λ£) : β(β((Unitization.unitsFstOne_mulEquiv_quasiregular R).symm x))β»ΒΉ = 1 + β(PreQuasiregular.equiv.symm βxβ»ΒΉ) - uliftZPowersHom_symm_apply π Mathlib.Algebra.Category.Grp.ForgetCorepresentable
(G : Type u) [Group G] (aβ : ULift.{u, 0} (Multiplicative β€) β* G) : (uliftZPowersHom G).symm aβ = aβ (MulEquiv.ulift.symm (Multiplicative.ofAdd 1)) - uliftPowersHom_symm_apply π Mathlib.Algebra.Category.MonCat.ForgetCorepresentable
(M : Type u) [Monoid M] (aβ : ULift.{u, 0} (Multiplicative β) β* M) : (uliftPowersHom M).symm aβ = aβ (MulEquiv.ulift.symm (Multiplicative.ofAdd 1)) - UniqueFactorizationMonoid.normalizedFactorsEquiv_symm_apply π Mathlib.RingTheory.UniqueFactorizationDomain.NormalizedFactors
{Ξ± : Type u_1} [CancelCommMonoidWithZero Ξ±] [NormalizationMonoid Ξ±] [UniqueFactorizationMonoid Ξ±] {Ξ² : Type u_2} [CancelCommMonoidWithZero Ξ²] [NormalizationMonoid Ξ²] [UniqueFactorizationMonoid Ξ²] {F : Type u_3} [EquivLike F Ξ± Ξ²] [MulEquivClass F Ξ± Ξ²] {f : F} (he : β (x : Ξ±), normalize (f x) = f (normalize x)) {a : Ξ±} {q : Ξ²} (hq : q β UniqueFactorizationMonoid.normalizedFactors (f a)) : β((UniqueFactorizationMonoid.normalizedFactorsEquiv he a).symm β¨q, hqβ©) = (βf).symm q - mkFactorOrderIsoOfFactorDvdEquiv_symm_apply_coe π Mathlib.RingTheory.ChainOfDivisors
{M : Type u_1} [CancelCommMonoidWithZero M] {N : Type u_2} [CancelCommMonoidWithZero N] [Subsingleton MΛ£] [Subsingleton NΛ£] {m : M} {n : N} {d : { l // l β£ m } β { l // l β£ n }} (hd : β (l l' : { l // l β£ m }), β(d l) β£ β(d l') β βl β£ βl') (l : β(Set.Iic (Associates.mk n))) : β((RelIso.symm (mkFactorOrderIsoOfFactorDvdEquiv hd)) l) = Associates.mk β(d.symm β¨associatesEquivOfUniqueUnits βl, β―β©) - Subgroup.IsComplement'.QuotientMulEquiv_symm_apply π Mathlib.GroupTheory.Complement
{G : Type u_1} [Group G] {H K : Subgroup G} [K.Normal] (h : H.IsComplement' K) (aβ : β₯H) : h.QuotientMulEquiv.symm aβ = (Subgroup.IsComplement.leftQuotientEquiv h).symm aβ - FreeGroupBasis.lift_symm_apply π Mathlib.GroupTheory.FreeGroup.IsFreeGroup
{ΞΉ : Type u_1} {G : Type u_3} {H : Type u_4} [Group G] [Group H] (b : FreeGroupBasis ΞΉ G) (aβ : G β* H) (aβΒΉ : ΞΉ) : b.lift.symm aβ aβΒΉ = aβ (b.repr.symm (FreeGroup.of aβΒΉ)) - PresentedGroup.equivPresentedGroup_symm_apply_of π Mathlib.GroupTheory.PresentedGroup
{Ξ± : Type u_1} {Ξ² : Type u_3} (x : Ξ²) (rels : Set (FreeGroup Ξ±)) (e : Ξ± β Ξ²) : (PresentedGroup.equivPresentedGroup rels e).symm (PresentedGroup.of x) = PresentedGroup.of (e.symm x) - HNNExtension.NormalWord.unitsSMulEquiv_symm_apply π Mathlib.GroupTheory.HNNExtension
{G : Type u_1} [Group G] {A B : Subgroup G} (Ο : β₯A β* β₯B) {d : HNNExtension.NormalWord.TransversalPair G A B} (w : HNNExtension.NormalWord d) : (HNNExtension.NormalWord.unitsSMulEquiv Ο).symm w = HNNExtension.NormalWord.unitsSMul Ο (-1) w
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision 519f454