Loogle!
Result
Found 14 declarations mentioning ExteriorAlgebra.map.
- ExteriorAlgebra.map π Mathlib.LinearAlgebra.ExteriorAlgebra.Basic
{R : Type u1} [CommRing R] {M : Type u2} [AddCommGroup M] [Module R M] {N : Type u4} [AddCommGroup N] [Module R N] (f : M ββ[R] N) : ExteriorAlgebra R M ββ[R] ExteriorAlgebra R N - ExteriorAlgebra.map_id π Mathlib.LinearAlgebra.ExteriorAlgebra.Basic
{R : Type u1} [CommRing R] {M : Type u2} [AddCommGroup M] [Module R M] : ExteriorAlgebra.map LinearMap.id = AlgHom.id R (ExteriorAlgebra R M) - ExteriorAlgebra.map_surjective_iff π Mathlib.LinearAlgebra.ExteriorAlgebra.Basic
{R : Type u1} [CommRing R] {M : Type u2} [AddCommGroup M] [Module R M] {N : Type u4} [AddCommGroup N] [Module R N] {f : M ββ[R] N} : Function.Surjective β(ExteriorAlgebra.map f) β Function.Surjective βf - ExteriorAlgebra.map_injective π Mathlib.LinearAlgebra.ExteriorAlgebra.Basic
{R : Type u1} [CommRing R] {M : Type u2} [AddCommGroup M] [Module R M] {N : Type u4} [AddCommGroup N] [Module R N] {f : M ββ[R] N} (hf : β g, g ββ f = LinearMap.id) : Function.Injective β(ExteriorAlgebra.map f) - ExteriorAlgebra.map_comp_map π Mathlib.LinearAlgebra.ExteriorAlgebra.Basic
{R : Type u1} [CommRing R] {M : Type u2} [AddCommGroup M] [Module R M] {N : Type u4} {N' : Type u5} [AddCommGroup N] [Module R N] [AddCommGroup N'] [Module R N'] (f : M ββ[R] N) (g : N ββ[R] N') : (ExteriorAlgebra.map g).comp (ExteriorAlgebra.map f) = ExteriorAlgebra.map (g ββ f) - ExteriorAlgebra.map_injective_field π Mathlib.LinearAlgebra.ExteriorAlgebra.Basic
{K : Type u_1} {E : Type u_2} {F : Type u_3} [Field K] [AddCommGroup E] [Module K E] [AddCommGroup F] [Module K F] {f : E ββ[K] F} (hf : LinearMap.ker f = β₯) : Function.Injective β(ExteriorAlgebra.map f) - ExteriorAlgebra.map_comp_ΞΉMulti π Mathlib.LinearAlgebra.ExteriorAlgebra.Basic
{R : Type u1} [CommRing R] {M : Type u2} [AddCommGroup M] [Module R M] {N : Type u4} [AddCommGroup N] [Module R N] {n : β} (f : M ββ[R] N) : (ExteriorAlgebra.map f).toLinearMap.compAlternatingMap (ExteriorAlgebra.ΞΉMulti R n) = (ExteriorAlgebra.ΞΉMulti R n).compLinearMap f - ExteriorAlgebra.leftInverse_map_iff π Mathlib.LinearAlgebra.ExteriorAlgebra.Basic
{R : Type u1} [CommRing R] {M : Type u2} [AddCommGroup M] [Module R M] {N : Type u4} [AddCommGroup N] [Module R N] {f : M ββ[R] N} {g : N ββ[R] M} : Function.LeftInverse β(ExteriorAlgebra.map g) β(ExteriorAlgebra.map f) β Function.LeftInverse βg βf - ExteriorAlgebra.map_comp_ΞΉ π Mathlib.LinearAlgebra.ExteriorAlgebra.Basic
{R : Type u1} [CommRing R] {M : Type u2} [AddCommGroup M] [Module R M] {N : Type u4} [AddCommGroup N] [Module R N] (f : M ββ[R] N) : (ExteriorAlgebra.map f).toLinearMap ββ ExteriorAlgebra.ΞΉ R = ExteriorAlgebra.ΞΉ R ββ f - ExteriorAlgebra.ΞΉInv_comp_map π Mathlib.LinearAlgebra.ExteriorAlgebra.Basic
{R : Type u1} [CommRing R] {M : Type u2} [AddCommGroup M] [Module R M] {N : Type u4} [AddCommGroup N] [Module R N] (f : M ββ[R] N) : ExteriorAlgebra.ΞΉInv ββ (ExteriorAlgebra.map f).toLinearMap = f ββ ExteriorAlgebra.ΞΉInv - ExteriorAlgebra.map_apply_ΞΉMulti π Mathlib.LinearAlgebra.ExteriorAlgebra.Basic
{R : Type u1} [CommRing R] {M : Type u2} [AddCommGroup M] [Module R M] {N : Type u4} [AddCommGroup N] [Module R N] {n : β} (f : M ββ[R] N) (m : Fin n β M) : (ExteriorAlgebra.map f) ((ExteriorAlgebra.ΞΉMulti R n) m) = (ExteriorAlgebra.ΞΉMulti R n) (βf β m) - ExteriorAlgebra.map_apply_ΞΉ π Mathlib.LinearAlgebra.ExteriorAlgebra.Basic
{R : Type u1} [CommRing R] {M : Type u2} [AddCommGroup M] [Module R M] {N : Type u4} [AddCommGroup N] [Module R N] (f : M ββ[R] N) (m : M) : (ExteriorAlgebra.map f) ((ExteriorAlgebra.ΞΉ R) m) = (ExteriorAlgebra.ΞΉ R) (f m) - ExteriorAlgebra.toTrivSqZeroExt_comp_map π Mathlib.LinearAlgebra.ExteriorAlgebra.Basic
{R : Type u1} [CommRing R] {M : Type u2} [AddCommGroup M] [Module R M] {N : Type u4} [AddCommGroup N] [Module R N] [Module Rα΅α΅α΅ M] [IsCentralScalar R M] [Module Rα΅α΅α΅ N] [IsCentralScalar R N] (f : M ββ[R] N) : ExteriorAlgebra.toTrivSqZeroExt.comp (ExteriorAlgebra.map f) = (TrivSqZeroExt.map f).comp ExteriorAlgebra.toTrivSqZeroExt - ExteriorAlgebra.ΞΉ_range_map_map π Mathlib.LinearAlgebra.ExteriorAlgebra.Basic
{R : Type u1} [CommRing R] {M : Type u2} [AddCommGroup M] [Module R M] {N : Type u4} [AddCommGroup N] [Module R N] (f : M ββ[R] N) : Submodule.map (ExteriorAlgebra.map f).toLinearMap (LinearMap.range (ExteriorAlgebra.ΞΉ R)) = Submodule.map (ExteriorAlgebra.ΞΉ R) (LinearMap.range f)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65