Loogle!
Result
Found 2853 declarations mentioning Filter.Tendsto. Of these, 23 have a name containing "const" and "add".
- Filter.Tendsto.atBot_of_add_const 📋 Mathlib.Order.Filter.AtTopBot.Monoid
{α : Type u_1} {M : Type u_2} [AddCommMonoid M] [PartialOrder M] [IsOrderedCancelAddMonoid M] {l : Filter α} {f : α → M} (C : M) (hf : Filter.Tendsto (fun x => f x + C) l Filter.atBot) : Filter.Tendsto f l Filter.atBot - Filter.Tendsto.atBot_of_const_add 📋 Mathlib.Order.Filter.AtTopBot.Monoid
{α : Type u_1} {M : Type u_2} [AddCommMonoid M] [PartialOrder M] [IsOrderedCancelAddMonoid M] {l : Filter α} {f : α → M} (C : M) (hf : Filter.Tendsto (fun x => C + f x) l Filter.atBot) : Filter.Tendsto f l Filter.atBot - Filter.Tendsto.atTop_of_add_const 📋 Mathlib.Order.Filter.AtTopBot.Monoid
{α : Type u_1} {M : Type u_2} [AddCommMonoid M] [PartialOrder M] [IsOrderedCancelAddMonoid M] {l : Filter α} {f : α → M} (C : M) (hf : Filter.Tendsto (fun x => f x + C) l Filter.atTop) : Filter.Tendsto f l Filter.atTop - Filter.Tendsto.atTop_of_const_add 📋 Mathlib.Order.Filter.AtTopBot.Monoid
{α : Type u_1} {M : Type u_2} [AddCommMonoid M] [PartialOrder M] [IsOrderedCancelAddMonoid M] {l : Filter α} {f : α → M} (C : M) (hf : Filter.Tendsto (fun x => C + f x) l Filter.atTop) : Filter.Tendsto f l Filter.atTop - Filter.Tendsto.atBot_of_add_const_le 📋 Mathlib.Order.Filter.AtTopBot.Monoid
{α : Type u_1} {M : Type u_2} [AddCommMonoid M] [PartialOrder M] [IsOrderedCancelAddMonoid M] {l : Filter α} {f g : α → M} (hg : ∃ C, ∀ (x : α), C ≤ g x) (hfg : Filter.Tendsto (fun x => f x + g x) l Filter.atBot) : Filter.Tendsto f l Filter.atBot - Filter.Tendsto.atBot_of_const_le_add 📋 Mathlib.Order.Filter.AtTopBot.Monoid
{α : Type u_1} {M : Type u_2} [AddCommMonoid M] [PartialOrder M] [IsOrderedCancelAddMonoid M] {l : Filter α} {f g : α → M} (hf : ∃ C, ∀ (x : α), C ≤ f x) (hfg : Filter.Tendsto (fun x => f x + g x) l Filter.atBot) : Filter.Tendsto g l Filter.atBot - Filter.Tendsto.atTop_of_add_le_const 📋 Mathlib.Order.Filter.AtTopBot.Monoid
{α : Type u_1} {M : Type u_2} [AddCommMonoid M] [PartialOrder M] [IsOrderedCancelAddMonoid M] {l : Filter α} {f g : α → M} (hg : ∃ C, ∀ (x : α), g x ≤ C) (hfg : Filter.Tendsto (fun x => f x + g x) l Filter.atTop) : Filter.Tendsto f l Filter.atTop - Filter.Tendsto.atTop_of_le_const_add 📋 Mathlib.Order.Filter.AtTopBot.Monoid
{α : Type u_1} {M : Type u_2} [AddCommMonoid M] [PartialOrder M] [IsOrderedCancelAddMonoid M] {l : Filter α} {f g : α → M} (hf : ∃ C, ∀ (x : α), f x ≤ C) (hfg : Filter.Tendsto (fun x => f x + g x) l Filter.atTop) : Filter.Tendsto g l Filter.atTop - Filter.tendsto_atBot_add_const_left 📋 Mathlib.Order.Filter.AtTopBot.Group
{α : Type u_1} {G : Type u_2} [AddCommGroup G] [PartialOrder G] [IsOrderedAddMonoid G] (l : Filter α) {f : α → G} (C : G) (hf : Filter.Tendsto f l Filter.atBot) : Filter.Tendsto (fun x => C + f x) l Filter.atBot - Filter.tendsto_atBot_add_const_right 📋 Mathlib.Order.Filter.AtTopBot.Group
{α : Type u_1} {G : Type u_2} [AddCommGroup G] [PartialOrder G] [IsOrderedAddMonoid G] (l : Filter α) {f : α → G} (C : G) (hf : Filter.Tendsto f l Filter.atBot) : Filter.Tendsto (fun x => f x + C) l Filter.atBot - Filter.tendsto_atTop_add_const_left 📋 Mathlib.Order.Filter.AtTopBot.Group
{α : Type u_1} {G : Type u_2} [AddCommGroup G] [PartialOrder G] [IsOrderedAddMonoid G] (l : Filter α) {f : α → G} (C : G) (hf : Filter.Tendsto f l Filter.atTop) : Filter.Tendsto (fun x => C + f x) l Filter.atTop - Filter.tendsto_atTop_add_const_right 📋 Mathlib.Order.Filter.AtTopBot.Group
{α : Type u_1} {G : Type u_2} [AddCommGroup G] [PartialOrder G] [IsOrderedAddMonoid G] (l : Filter α) {f : α → G} (C : G) (hf : Filter.Tendsto f l Filter.atTop) : Filter.Tendsto (fun x => f x + C) l Filter.atTop - Filter.Tendsto.const_vadd 📋 Mathlib.Topology.Algebra.ConstMulAction
{M : Type u_1} {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [VAdd M α] [ContinuousConstVAdd M α] {f : β → α} {l : Filter β} {a : α} (hf : Filter.Tendsto f l (nhds a)) (c : M) : Filter.Tendsto (fun x => c +ᵥ f x) l (nhds (c +ᵥ a)) - tendsto_const_vadd_iff 📋 Mathlib.Topology.Algebra.ConstMulAction
{α : Type u_2} {β : Type u_3} {G : Type u_4} [TopologicalSpace α] [AddGroup G] [AddAction G α] [ContinuousConstVAdd G α] {f : β → α} {l : Filter β} {a : α} (c : G) : Filter.Tendsto (fun x => c +ᵥ f x) l (nhds (c +ᵥ a)) ↔ Filter.Tendsto f l (nhds a) - Filter.Tendsto.vadd_const 📋 Mathlib.Topology.Algebra.MulAction
{M : Type u_1} {X : Type u_2} {α : Type u_4} [TopologicalSpace M] [TopologicalSpace X] [VAdd M X] [ContinuousVAdd M X] {f : α → M} {l : Filter α} {c : M} (hf : Filter.Tendsto f l (nhds c)) (a : X) : Filter.Tendsto (fun x => f x +ᵥ a) l (nhds (c +ᵥ a)) - Filter.Tendsto.add_const 📋 Mathlib.Topology.Algebra.Monoid
{α : Type u_2} {M : Type u_3} [TopologicalSpace M] [Add M] [ContinuousAdd M] (b : M) {c : M} {f : α → M} {l : Filter α} (h : Filter.Tendsto (fun k => f k) l (nhds c)) : Filter.Tendsto (fun k => f k + b) l (nhds (c + b)) - Filter.Tendsto.const_add 📋 Mathlib.Topology.Algebra.Monoid
{α : Type u_2} {M : Type u_3} [TopologicalSpace M] [Add M] [ContinuousAdd M] (b : M) {c : M} {f : α → M} {l : Filter α} (h : Filter.Tendsto (fun k => f k) l (nhds c)) : Filter.Tendsto (fun k => b + f k) l (nhds (b + c)) - tendsto_add_const_cobounded 📋 Mathlib.Topology.Bornology.BoundedOperation
{R : Type u_1} [SeminormedAddCommGroup R] (x : R) : Filter.Tendsto (fun x_1 => x_1 + x) (Bornology.cobounded R) (Bornology.cobounded R) - tendsto_const_add_cobounded 📋 Mathlib.Topology.Bornology.BoundedOperation
{R : Type u_1} [SeminormedAddCommGroup R] (x : R) : Filter.Tendsto (fun x_1 => x + x_1) (Bornology.cobounded R) (Bornology.cobounded R) - Asymptotics.IsEquivalent.add_const_of_norm_tendsto_atTop 📋 Mathlib.Analysis.Asymptotics.AsymptoticEquivalent
{α : Type u_1} {β : Type u_2} [NormedAddCommGroup β] {u v : α → β} {l : Filter α} {c : β} (huv : Asymptotics.IsEquivalent l u v) (hv : Filter.Tendsto (norm ∘ v) l Filter.atTop) : Asymptotics.IsEquivalent l (fun x => u x + c) v - Asymptotics.IsEquivalent.const_add_of_norm_tendsto_atTop 📋 Mathlib.Analysis.Asymptotics.AsymptoticEquivalent
{α : Type u_1} {β : Type u_2} [NormedAddCommGroup β] {u v : α → β} {l : Filter α} {c : β} (huv : Asymptotics.IsEquivalent l u v) (hv : Filter.Tendsto (norm ∘ v) l Filter.atTop) : Asymptotics.IsEquivalent l (fun x => c + u x) v - Filter.Tendsto.const_vadd_asymptoticNhds 📋 Mathlib.Topology.Algebra.AsymptoticCone
{k : Type u_1} {V : Type u_2} {P : Type u_3} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [AddTorsor V P] [TopologicalSpace V] {α : Type u_4} {l : Filter α} {f : α → P} {v : V} (u : V) (hf : Filter.Tendsto f l (AffineSpace.asymptoticNhds k P v)) : Filter.Tendsto (fun x => u +ᵥ f x) l (AffineSpace.asymptoticNhds k P v) - Filter.Tendsto.asymptoticNhds_vadd_const 📋 Mathlib.Topology.Algebra.AsymptoticCone
{k : Type u_1} {V : Type u_2} {P : Type u_3} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [AddTorsor V P] [TopologicalSpace V] {α : Type u_4} {l : Filter α} {f : α → V} {v : V} (p : P) (hf : Filter.Tendsto f l (AffineSpace.asymptoticNhds k V v)) : Filter.Tendsto (fun x => f x +ᵥ p) l (AffineSpace.asymptoticNhds k P v)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 0ac13cd serving mathlib revision ff5ab5e