Loogle!
Result
Found 41 declarations mentioning Filter.Tendsto and MeasureTheory.eLpNorm.
- MeasureTheory.Lp.eLpNorm_lim_le_liminf_eLpNorm 📋 Mathlib.MeasureTheory.Function.LpSpace.Complete
{α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [SeminormedAddGroup E] {f : ℕ → α → E} (hf : ∀ (n : ℕ), MeasureTheory.AEStronglyMeasurable (f n) μ) (f_lim : α → E) (h_lim : ∀ᵐ (x : α) ∂μ, Filter.Tendsto (fun n => f n x) Filter.atTop (nhds (f_lim x))) : MeasureTheory.eLpNorm f_lim p μ ≤ Filter.liminf (fun n => MeasureTheory.eLpNorm (f n) p μ) Filter.atTop - MeasureTheory.Lp.eLpNorm_le_of_ae_tendsto 📋 Mathlib.MeasureTheory.Function.LpSpace.Complete
{α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} [SeminormedAddGroup E] {ι : Type u_3} {u : Filter ι} [u.NeBot] [u.IsCountablyGenerated] {f : ι → α → E} {g : α → E} {C : ENNReal} (bound : ∀ᶠ (n : ι) in u, MeasureTheory.eLpNorm (f n) p μ ≤ C) (hf : ∀ (n : ι), MeasureTheory.AEStronglyMeasurable (f n) μ) (h_tendsto : ∀ᵐ (x : α) ∂μ, Filter.Tendsto (fun x_1 => f x_1 x) u (nhds (g x))) : MeasureTheory.eLpNorm g p μ ≤ C - MeasureTheory.Lp.eLpNorm_exponent_top_lim_le_liminf_eLpNorm_exponent_top 📋 Mathlib.MeasureTheory.Function.LpSpace.Complete
{α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [SeminormedAddGroup E] {ι : Type u_3} [Nonempty ι] [Countable ι] [LinearOrder ι] {f : ι → α → E} {f_lim : α → E} (h_lim : ∀ᵐ (x : α) ∂μ, Filter.Tendsto (fun n => f n x) Filter.atTop (nhds (f_lim x))) : MeasureTheory.eLpNorm f_lim ⊤ μ ≤ Filter.liminf (fun n => MeasureTheory.eLpNorm (f n) ⊤ μ) Filter.atTop - MeasureTheory.Lp.eLpNorm_exponent_top_lim_eq_essSup_liminf 📋 Mathlib.MeasureTheory.Function.LpSpace.Complete
{α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [SeminormedAddGroup E] {ι : Type u_3} [Nonempty ι] [LinearOrder ι] {f : ι → α → E} {f_lim : α → E} (h_lim : ∀ᵐ (x : α) ∂μ, Filter.Tendsto (fun n => f n x) Filter.atTop (nhds (f_lim x))) : MeasureTheory.eLpNorm f_lim ⊤ μ = essSup (fun x => Filter.liminf (fun m => ‖f m x‖ₑ) Filter.atTop) μ - MeasureTheory.Lp.ae_tendsto_of_cauchy_eLpNorm 📋 Mathlib.MeasureTheory.Function.LpSpace.Complete
{α : Type u_1} {m : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {E : Type u_3} [NormedAddCommGroup E] [CompleteSpace E] {f : ℕ → α → E} (hf : ∀ (n : ℕ), MeasureTheory.AEStronglyMeasurable (f n) μ) (hp : 1 ≤ p) {B : ℕ → ENNReal} (hB : ∑' (i : ℕ), B i ≠ ⊤) (h_cau : ∀ (N n m_1 : ℕ), N ≤ n → N ≤ m_1 → MeasureTheory.eLpNorm (f n - f m_1) p μ < B N) : ∀ᵐ (x : α) ∂μ, ∃ l, Filter.Tendsto (fun n => f n x) Filter.atTop (nhds l) - MeasureTheory.Lp.memLp_of_cauchy_tendsto 📋 Mathlib.MeasureTheory.Function.LpSpace.Complete
{α : Type u_1} {m : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {E : Type u_3} [NormedAddCommGroup E] (hp : 1 ≤ p) {f : ℕ → α → E} (hf : ∀ (n : ℕ), MeasureTheory.MemLp (f n) p μ) (f_lim : α → E) (h_lim_meas : MeasureTheory.AEStronglyMeasurable f_lim μ) (h_tendsto : Filter.Tendsto (fun n => MeasureTheory.eLpNorm (f n - f_lim) p μ) Filter.atTop (nhds 0)) : MeasureTheory.MemLp f_lim p μ - MeasureTheory.Lp.cauchy_tendsto_of_tendsto 📋 Mathlib.MeasureTheory.Function.LpSpace.Complete
{α : Type u_1} {m : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {E : Type u_3} [NormedAddCommGroup E] {f : ℕ → α → E} (hf : ∀ (n : ℕ), MeasureTheory.AEStronglyMeasurable (f n) μ) (f_lim : α → E) {B : ℕ → ENNReal} (hB : ∑' (i : ℕ), B i ≠ ⊤) (h_cau : ∀ (N n m_1 : ℕ), N ≤ n → N ≤ m_1 → MeasureTheory.eLpNorm (f n - f m_1) p μ < B N) (h_lim : ∀ᵐ (x : α) ∂μ, Filter.Tendsto (fun n => f n x) Filter.atTop (nhds (f_lim x))) : Filter.Tendsto (fun n => MeasureTheory.eLpNorm (f n - f_lim) p μ) Filter.atTop (nhds 0) - MeasureTheory.Lp.cauchy_complete_eLpNorm 📋 Mathlib.MeasureTheory.Function.LpSpace.Complete
{α : Type u_1} {m : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {E : Type u_3} [NormedAddCommGroup E] [CompleteSpace E] (hp : 1 ≤ p) {f : ℕ → α → E} (hf : ∀ (n : ℕ), MeasureTheory.MemLp (f n) p μ) {B : ℕ → ENNReal} (hB : ∑' (i : ℕ), B i ≠ ⊤) (h_cau : ∀ (N n m_1 : ℕ), N ≤ n → N ≤ m_1 → MeasureTheory.eLpNorm (f n - f m_1) p μ < B N) : ∃ f_lim, MeasureTheory.MemLp f_lim p μ ∧ Filter.Tendsto (fun n => MeasureTheory.eLpNorm (f n - f_lim) p μ) Filter.atTop (nhds 0) - MeasureTheory.Lp.completeSpace_lp_of_cauchy_complete_eLpNorm 📋 Mathlib.MeasureTheory.Function.LpSpace.Complete
{α : Type u_1} {m : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {E : Type u_3} [NormedAddCommGroup E] [hp : Fact (1 ≤ p)] (H : ∀ (f : ℕ → α → E), (∀ (n : ℕ), MeasureTheory.MemLp (f n) p μ) → ∀ (B : ℕ → ENNReal), ∑' (i : ℕ), B i < ⊤ → (∀ (N n m_1 : ℕ), N ≤ n → N ≤ m_1 → MeasureTheory.eLpNorm (f n - f m_1) p μ < B N) → ∃ f_lim, MeasureTheory.MemLp f_lim p μ ∧ Filter.Tendsto (fun n => MeasureTheory.eLpNorm (f n - f_lim) p μ) Filter.atTop (nhds 0)) : CompleteSpace ↥(MeasureTheory.Lp E p μ) - MeasureTheory.Lp.tendsto_Lp_iff_tendsto_eLpNorm'' 📋 Mathlib.MeasureTheory.Function.LpSpace.Complete
{α : Type u_1} {m : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {E : Type u_3} [NormedAddCommGroup E] {ι : Type u_4} {fi : Filter ι} [Fact (1 ≤ p)] (f : ι → α → E) (f_ℒp : ∀ (n : ι), MeasureTheory.MemLp (f n) p μ) (f_lim : α → E) (f_lim_ℒp : MeasureTheory.MemLp f_lim p μ) : Filter.Tendsto (fun n => MeasureTheory.MemLp.toLp (f n) ⋯) fi (nhds (MeasureTheory.MemLp.toLp f_lim f_lim_ℒp)) ↔ Filter.Tendsto (fun n => MeasureTheory.eLpNorm (f n - f_lim) p μ) fi (nhds 0) - MeasureTheory.Lp.cauchySeq_Lp_iff_cauchySeq_eLpNorm 📋 Mathlib.MeasureTheory.Function.LpSpace.Complete
{α : Type u_1} {m : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {E : Type u_3} [NormedAddCommGroup E] {ι : Type u_4} [Nonempty ι] [SemilatticeSup ι] [hp : Fact (1 ≤ p)] (f : ι → ↥(MeasureTheory.Lp E p μ)) : CauchySeq f ↔ Filter.Tendsto (fun n => MeasureTheory.eLpNorm (↑↑(f n.1) - ↑↑(f n.2)) p μ) Filter.atTop (nhds 0) - MeasureTheory.Lp.tendsto_Lp_of_tendsto_eLpNorm 📋 Mathlib.MeasureTheory.Function.LpSpace.Complete
{α : Type u_1} {m : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {E : Type u_3} [NormedAddCommGroup E] {ι : Type u_4} {fi : Filter ι} [Fact (1 ≤ p)] {f : ι → ↥(MeasureTheory.Lp E p μ)} (f_lim : α → E) (f_lim_ℒp : MeasureTheory.MemLp f_lim p μ) (h_tendsto : Filter.Tendsto (fun n => MeasureTheory.eLpNorm (↑↑(f n) - f_lim) p μ) fi (nhds 0)) : Filter.Tendsto f fi (nhds (MeasureTheory.MemLp.toLp f_lim f_lim_ℒp)) - MeasureTheory.Lp.tendsto_Lp_iff_tendsto_eLpNorm 📋 Mathlib.MeasureTheory.Function.LpSpace.Complete
{α : Type u_1} {m : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {E : Type u_3} [NormedAddCommGroup E] {ι : Type u_4} {fi : Filter ι} [Fact (1 ≤ p)] (f : ι → ↥(MeasureTheory.Lp E p μ)) (f_lim : α → E) (f_lim_ℒp : MeasureTheory.MemLp f_lim p μ) : Filter.Tendsto f fi (nhds (MeasureTheory.MemLp.toLp f_lim f_lim_ℒp)) ↔ Filter.Tendsto (fun n => MeasureTheory.eLpNorm (↑↑(f n) - f_lim) p μ) fi (nhds 0) - MeasureTheory.Lp.tendsto_Lp_iff_tendsto_eLpNorm' 📋 Mathlib.MeasureTheory.Function.LpSpace.Complete
{α : Type u_1} {m : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {E : Type u_3} [NormedAddCommGroup E] {ι : Type u_4} {fi : Filter ι} [Fact (1 ≤ p)] (f : ι → ↥(MeasureTheory.Lp E p μ)) (f_lim : ↥(MeasureTheory.Lp E p μ)) : Filter.Tendsto f fi (nhds f_lim) ↔ Filter.Tendsto (fun n => MeasureTheory.eLpNorm (↑↑(f n) - ↑↑f_lim) p μ) fi (nhds 0) - MeasureTheory.tendstoInMeasure_of_tendsto_eLpNorm_top 📋 Mathlib.MeasureTheory.Function.ConvergenceInMeasure
{α : Type u_1} {ι : Type u_2} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {E : Type u_5} [SeminormedAddGroup E] {f : ι → α → E} {g : α → E} {l : Filter ι} (hfg : Filter.Tendsto (fun n => MeasureTheory.eLpNorm (f n - g) ⊤ μ) l (nhds 0)) : MeasureTheory.TendstoInMeasure μ f l g - MeasureTheory.tendstoInMeasure_of_tendsto_eLpNorm_of_stronglyMeasurable 📋 Mathlib.MeasureTheory.Function.ConvergenceInMeasure
{α : Type u_1} {ι : Type u_2} {E : Type u_4} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {p : ENNReal} {f : ι → α → E} {g : α → E} [SeminormedAddCommGroup E] (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ⊤) (hf : ∀ (n : ι), MeasureTheory.StronglyMeasurable (f n)) (hg : MeasureTheory.StronglyMeasurable g) {l : Filter ι} (hfg : Filter.Tendsto (fun n => MeasureTheory.eLpNorm (f n - g) p μ) l (nhds 0)) : MeasureTheory.TendstoInMeasure μ f l g - MeasureTheory.tendstoInMeasure_of_tendsto_eLpNorm_of_ne_top 📋 Mathlib.MeasureTheory.Function.ConvergenceInMeasure
{α : Type u_1} {ι : Type u_2} {E : Type u_4} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {p : ENNReal} {f : ι → α → E} {g : α → E} [SeminormedAddCommGroup E] (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ⊤) (hf : ∀ (n : ι), MeasureTheory.AEStronglyMeasurable (f n) μ) (hg : MeasureTheory.AEStronglyMeasurable g μ) {l : Filter ι} (hfg : Filter.Tendsto (fun n => MeasureTheory.eLpNorm (f n - g) p μ) l (nhds 0)) : MeasureTheory.TendstoInMeasure μ f l g - MeasureTheory.tendstoInMeasure_of_tendsto_eLpNorm 📋 Mathlib.MeasureTheory.Function.ConvergenceInMeasure
{α : Type u_1} {ι : Type u_2} {E : Type u_4} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {p : ENNReal} {f : ι → α → E} {g : α → E} [NormedAddCommGroup E] {l : Filter ι} (hp_ne_zero : p ≠ 0) (hf : ∀ (n : ι), MeasureTheory.AEStronglyMeasurable (f n) μ) (hg : MeasureTheory.AEStronglyMeasurable g μ) (hfg : Filter.Tendsto (fun n => MeasureTheory.eLpNorm (f n - g) p μ) l (nhds 0)) : MeasureTheory.TendstoInMeasure μ f l g - MeasureTheory.SimpleFunc.tendsto_approxOn_Lp_eLpNorm 📋 Mathlib.MeasureTheory.Function.SimpleFuncDenseLp
{β : Type u_2} {E : Type u_4} [MeasurableSpace β] [MeasurableSpace E] [NormedAddCommGroup E] {p : ENNReal} [OpensMeasurableSpace E] {f : β → E} (hf : Measurable f) {s : Set E} {y₀ : E} (h₀ : y₀ ∈ s) [TopologicalSpace.SeparableSpace ↑s] (hp_ne_top : p ≠ ⊤) {μ : MeasureTheory.Measure β} (hμ : ∀ᵐ (x : β) ∂μ, f x ∈ closure s) (hi : MeasureTheory.eLpNorm (fun x => f x - y₀) p μ < ⊤) : Filter.Tendsto (fun n => MeasureTheory.eLpNorm (⇑(MeasureTheory.SimpleFunc.approxOn f hf s y₀ h₀ n) - f) p μ) Filter.atTop (nhds 0) - MeasureTheory.SimpleFunc.tendsto_approxOn_range_Lp_eLpNorm 📋 Mathlib.MeasureTheory.Function.SimpleFuncDenseLp
{β : Type u_2} {E : Type u_4} [MeasurableSpace β] [MeasurableSpace E] [NormedAddCommGroup E] {p : ENNReal} [BorelSpace E] {f : β → E} (hp_ne_top : p ≠ ⊤) {μ : MeasureTheory.Measure β} (fmeas : Measurable f) [TopologicalSpace.SeparableSpace ↑(Set.range f ∪ {0})] (hf : MeasureTheory.eLpNorm f p μ < ⊤) : Filter.Tendsto (fun n => MeasureTheory.eLpNorm (⇑(MeasureTheory.SimpleFunc.approxOn f fmeas (Set.range f ∪ {0}) 0 ⋯ n) - f) p μ) Filter.atTop (nhds 0) - MeasureTheory.tendsto_integral_of_L1' 📋 Mathlib.MeasureTheory.Integral.Bochner.Basic
{α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] [NormedSpace ℝ G] {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ι : Type u_6} (f : α → G) (hfi : MeasureTheory.Integrable f μ) {F : ι → α → G} {l : Filter ι} (hFi : ∀ᶠ (i : ι) in l, MeasureTheory.Integrable (F i) μ) (hF : Filter.Tendsto (fun i => MeasureTheory.eLpNorm (F i - f) 1 μ) l (nhds 0)) : Filter.Tendsto (fun i => ∫ (x : α), F i x ∂μ) l (nhds (∫ (x : α), f x ∂μ)) - MeasureTheory.tendsto_setIntegral_of_L1' 📋 Mathlib.MeasureTheory.Integral.Bochner.Basic
{α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] [NormedSpace ℝ G] {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ι : Type u_6} (f : α → G) (hfi : MeasureTheory.Integrable f μ) {F : ι → α → G} {l : Filter ι} (hFi : ∀ᶠ (i : ι) in l, MeasureTheory.Integrable (F i) μ) (hF : Filter.Tendsto (fun i => MeasureTheory.eLpNorm (F i - f) 1 μ) l (nhds 0)) (s : Set α) : Filter.Tendsto (fun i => ∫ (x : α) in s, F i x ∂μ) l (nhds (∫ (x : α) in s, f x ∂μ)) - MeasureTheory.unifIntegrable_of_tendsto_Lp_zero 📋 Mathlib.MeasureTheory.Function.UniformIntegrable
{α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup β] {p : ENNReal} {f : ℕ → α → β} (hp : 1 ≤ p) (hp' : p ≠ ⊤) (hf : ∀ (n : ℕ), MeasureTheory.MemLp (f n) p μ) (hf_tendsto : Filter.Tendsto (fun n => MeasureTheory.eLpNorm (f n) p μ) Filter.atTop (nhds 0)) : MeasureTheory.UnifIntegrable f p μ - MeasureTheory.unifIntegrable_of_tendsto_Lp 📋 Mathlib.MeasureTheory.Function.UniformIntegrable
{α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup β] {p : ENNReal} {f : ℕ → α → β} {g : α → β} (hp : 1 ≤ p) (hp' : p ≠ ⊤) (hf : ∀ (n : ℕ), MeasureTheory.MemLp (f n) p μ) (hg : MeasureTheory.MemLp g p μ) (hfg : Filter.Tendsto (fun n => MeasureTheory.eLpNorm (f n - g) p μ) Filter.atTop (nhds 0)) : MeasureTheory.UnifIntegrable f p μ - MeasureTheory.tendsto_Lp_finite_of_tendstoInMeasure 📋 Mathlib.MeasureTheory.Function.UniformIntegrable
{α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup β] {p : ENNReal} {f : ℕ → α → β} {g : α → β} [MeasureTheory.IsFiniteMeasure μ] (hp : 1 ≤ p) (hp' : p ≠ ⊤) (hf : ∀ (n : ℕ), MeasureTheory.AEStronglyMeasurable (f n) μ) (hg : MeasureTheory.MemLp g p μ) (hui : MeasureTheory.UnifIntegrable f p μ) (hfg : MeasureTheory.TendstoInMeasure μ f Filter.atTop g) : Filter.Tendsto (fun n => MeasureTheory.eLpNorm (f n - g) p μ) Filter.atTop (nhds 0) - MeasureTheory.tendsto_Lp_finite_of_tendsto_ae 📋 Mathlib.MeasureTheory.Function.UniformIntegrable
{α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup β] {p : ENNReal} [MeasureTheory.IsFiniteMeasure μ] (hp : 1 ≤ p) (hp' : p ≠ ⊤) {f : ℕ → α → β} {g : α → β} (hf : ∀ (n : ℕ), MeasureTheory.AEStronglyMeasurable (f n) μ) (hg : MeasureTheory.MemLp g p μ) (hui : MeasureTheory.UnifIntegrable f p μ) (hfg : ∀ᵐ (x : α) ∂μ, Filter.Tendsto (fun n => f n x) Filter.atTop (nhds (g x))) : Filter.Tendsto (fun n => MeasureTheory.eLpNorm (f n - g) p μ) Filter.atTop (nhds 0) - MeasureTheory.tendstoInMeasure_iff_tendsto_Lp_finite 📋 Mathlib.MeasureTheory.Function.UniformIntegrable
{α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup β] {p : ENNReal} {f : ℕ → α → β} {g : α → β} [MeasureTheory.IsFiniteMeasure μ] (hp : 1 ≤ p) (hp' : p ≠ ⊤) (hf : ∀ (n : ℕ), MeasureTheory.MemLp (f n) p μ) (hg : MeasureTheory.MemLp g p μ) : MeasureTheory.TendstoInMeasure μ f Filter.atTop g ∧ MeasureTheory.UnifIntegrable f p μ ↔ Filter.Tendsto (fun n => MeasureTheory.eLpNorm (f n - g) p μ) Filter.atTop (nhds 0) - MeasureTheory.tendsto_Lp_finite_of_tendsto_ae_of_meas 📋 Mathlib.MeasureTheory.Function.UniformIntegrable
{α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedAddCommGroup β] {p : ENNReal} [MeasureTheory.IsFiniteMeasure μ] (hp : 1 ≤ p) (hp' : p ≠ ⊤) {f : ℕ → α → β} {g : α → β} (hf : ∀ (n : ℕ), MeasureTheory.StronglyMeasurable (f n)) (hg : MeasureTheory.StronglyMeasurable g) (hg' : MeasureTheory.MemLp g p μ) (hui : MeasureTheory.UnifIntegrable f p μ) (hfg : ∀ᵐ (x : α) ∂μ, Filter.Tendsto (fun n => f n x) Filter.atTop (nhds (g x))) : Filter.Tendsto (fun n => MeasureTheory.eLpNorm (f n - g) p μ) Filter.atTop (nhds 0) - MeasureTheory.tendsto_Lp_of_tendstoInMeasure 📋 Mathlib.MeasureTheory.Function.UnifTight
{α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup β] {μ : MeasureTheory.Measure α} {p : ENNReal} {f : ℕ → α → β} {g : α → β} (hp : 1 ≤ p) (hp' : p ≠ ⊤) (hf : ∀ (n : ℕ), MeasureTheory.AEStronglyMeasurable (f n) μ) (hg : MeasureTheory.MemLp g p μ) (hui : MeasureTheory.UnifIntegrable f p μ) (hut : MeasureTheory.UnifTight f p μ) (hfg : MeasureTheory.TendstoInMeasure μ f Filter.atTop g) : Filter.Tendsto (fun n => MeasureTheory.eLpNorm (f n - g) p μ) Filter.atTop (nhds 0) - MeasureTheory.tendsto_Lp_of_tendsto_ae 📋 Mathlib.MeasureTheory.Function.UnifTight
{α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup β] {μ : MeasureTheory.Measure α} {p : ENNReal} (hp : 1 ≤ p) (hp' : p ≠ ⊤) {f : ℕ → α → β} {g : α → β} (haef : ∀ (n : ℕ), MeasureTheory.AEStronglyMeasurable (f n) μ) (hg' : MeasureTheory.MemLp g p μ) (hui : MeasureTheory.UnifIntegrable f p μ) (hut : MeasureTheory.UnifTight f p μ) (hfg : ∀ᵐ (x : α) ∂μ, Filter.Tendsto (fun n => f n x) Filter.atTop (nhds (g x))) : Filter.Tendsto (fun n => MeasureTheory.eLpNorm (f n - g) p μ) Filter.atTop (nhds 0) - MeasureTheory.tendstoInMeasure_iff_tendsto_Lp 📋 Mathlib.MeasureTheory.Function.UnifTight
{α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup β] {μ : MeasureTheory.Measure α} {p : ENNReal} {f : ℕ → α → β} {g : α → β} (hp : 1 ≤ p) (hp' : p ≠ ⊤) (hf : ∀ (n : ℕ), MeasureTheory.MemLp (f n) p μ) (hg : MeasureTheory.MemLp g p μ) : MeasureTheory.TendstoInMeasure μ f Filter.atTop g ∧ MeasureTheory.UnifIntegrable f p μ ∧ MeasureTheory.UnifTight f p μ ↔ Filter.Tendsto (fun n => MeasureTheory.eLpNorm (f n - g) p μ) Filter.atTop (nhds 0) - MeasureTheory.Submartingale.exists_ae_tendsto_of_bdd 📋 Mathlib.Probability.Martingale.Convergence
{Ω : Type u_1} {m0 : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {ℱ : MeasureTheory.Filtration ℕ m0} {f : ℕ → Ω → ℝ} {R : NNReal} [MeasureTheory.IsFiniteMeasure μ] (hf : MeasureTheory.Submartingale f ℱ μ) (hbdd : ∀ (n : ℕ), MeasureTheory.eLpNorm (f n) 1 μ ≤ ↑R) : ∀ᵐ (ω : Ω) ∂μ, ∃ c, Filter.Tendsto (fun n => f n ω) Filter.atTop (nhds c) - MeasureTheory.Submartingale.ae_tendsto_limitProcess 📋 Mathlib.Probability.Martingale.Convergence
{Ω : Type u_1} {m0 : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {ℱ : MeasureTheory.Filtration ℕ m0} {f : ℕ → Ω → ℝ} {R : NNReal} [MeasureTheory.IsFiniteMeasure μ] (hf : MeasureTheory.Submartingale f ℱ μ) (hbdd : ∀ (n : ℕ), MeasureTheory.eLpNorm (f n) 1 μ ≤ ↑R) : ∀ᵐ (ω : Ω) ∂μ, Filter.Tendsto (fun n => f n ω) Filter.atTop (nhds (MeasureTheory.Filtration.limitProcess f ℱ μ ω)) - MeasureTheory.Submartingale.tendsto_eLpNorm_one_limitProcess 📋 Mathlib.Probability.Martingale.Convergence
{Ω : Type u_1} {m0 : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {ℱ : MeasureTheory.Filtration ℕ m0} {f : ℕ → Ω → ℝ} [MeasureTheory.IsFiniteMeasure μ] (hf : MeasureTheory.Submartingale f ℱ μ) (hunif : MeasureTheory.UniformIntegrable f 1 μ) : Filter.Tendsto (fun n => MeasureTheory.eLpNorm (f n - MeasureTheory.Filtration.limitProcess f ℱ μ) 1 μ) Filter.atTop (nhds 0) - MeasureTheory.tendsto_eLpNorm_condExp 📋 Mathlib.Probability.Martingale.Convergence
{Ω : Type u_1} {m0 : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {ℱ : MeasureTheory.Filtration ℕ m0} [MeasureTheory.IsFiniteMeasure μ] (g : Ω → ℝ) : Filter.Tendsto (fun n => MeasureTheory.eLpNorm (μ[g|↑ℱ n] - μ[g|⨆ n, ↑ℱ n]) 1 μ) Filter.atTop (nhds 0) - MeasureTheory.Integrable.tendsto_eLpNorm_condExp 📋 Mathlib.Probability.Martingale.Convergence
{Ω : Type u_1} {m0 : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {ℱ : MeasureTheory.Filtration ℕ m0} [MeasureTheory.IsFiniteMeasure μ] {g : Ω → ℝ} (hg : MeasureTheory.Integrable g μ) (hgmeas : MeasureTheory.StronglyMeasurable g) : Filter.Tendsto (fun n => MeasureTheory.eLpNorm (μ[g|↑ℱ n] - g) 1 μ) Filter.atTop (nhds 0) - MeasureTheory.Martingale.eq_condExp_of_tendsto_eLpNorm 📋 Mathlib.Probability.Martingale.Convergence
{Ω : Type u_1} {m0 : MeasurableSpace Ω} {ℱ : MeasureTheory.Filtration ℕ m0} {f : ℕ → Ω → ℝ} {g : Ω → ℝ} {μ : MeasureTheory.Measure Ω} (hf : MeasureTheory.Martingale f ℱ μ) (hg : MeasureTheory.Integrable g μ) (hgtends : Filter.Tendsto (fun n => MeasureTheory.eLpNorm (f n - g) 1 μ) Filter.atTop (nhds 0)) (n : ℕ) : f n =ᵐ[μ] μ[g|↑ℱ n] - MeasureTheory.Submartingale.exists_ae_trim_tendsto_of_bdd 📋 Mathlib.Probability.Martingale.Convergence
{Ω : Type u_1} {m0 : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {ℱ : MeasureTheory.Filtration ℕ m0} {f : ℕ → Ω → ℝ} {R : NNReal} [MeasureTheory.IsFiniteMeasure μ] (hf : MeasureTheory.Submartingale f ℱ μ) (hbdd : ∀ (n : ℕ), MeasureTheory.eLpNorm (f n) 1 μ ≤ ↑R) : ∀ᵐ (ω : Ω) ∂μ.trim ⋯, ∃ c, Filter.Tendsto (fun n => f n ω) Filter.atTop (nhds c) - ProbabilityTheory.Kernel.tendsto_eLpNorm_one_densityProcess_limitProcess 📋 Mathlib.Probability.Kernel.Disintegration.Density
{α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} [MeasurableSpace.CountablyGenerated γ] {κ : ProbabilityTheory.Kernel α (γ × β)} {ν : ProbabilityTheory.Kernel α γ} (hκν : κ.fst ≤ ν) [ProbabilityTheory.IsFiniteKernel ν] (a : α) {s : Set β} (hs : MeasurableSet s) : Filter.Tendsto (fun n => MeasureTheory.eLpNorm ((fun x => κ.densityProcess ν n a x s) - MeasureTheory.Filtration.limitProcess (fun n x => κ.densityProcess ν n a x s) (ProbabilityTheory.countableFiltration γ) (ν a)) 1 (ν a)) Filter.atTop (nhds 0) - ProbabilityTheory.Kernel.tendsto_eLpNorm_one_restrict_densityProcess_limitProcess 📋 Mathlib.Probability.Kernel.Disintegration.Density
{α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} [MeasurableSpace.CountablyGenerated γ] {κ : ProbabilityTheory.Kernel α (γ × β)} {ν : ProbabilityTheory.Kernel α γ} [ProbabilityTheory.IsFiniteKernel ν] (hκν : κ.fst ≤ ν) (a : α) {s : Set β} (hs : MeasurableSet s) (A : Set γ) : Filter.Tendsto (fun n => MeasureTheory.eLpNorm ((fun x => κ.densityProcess ν n a x s) - MeasureTheory.Filtration.limitProcess (fun n x => κ.densityProcess ν n a x s) (ProbabilityTheory.countableFiltration γ) (ν a)) 1 ((ν a).restrict A)) Filter.atTop (nhds 0) - ProbabilityTheory.strong_law_Lp 📋 Mathlib.Probability.StrongLaw
{Ω : Type u_1} {mΩ : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E] [MeasurableSpace E] [BorelSpace E] {p : ENNReal} (hp : 1 ≤ p) (hp' : p ≠ ⊤) (X : ℕ → Ω → E) (hℒp : MeasureTheory.MemLp (X 0) p μ) (hindep : Pairwise (Function.onFun (fun x1 x2 => ProbabilityTheory.IndepFun x1 x2 μ) X)) (hident : ∀ (i : ℕ), ProbabilityTheory.IdentDistrib (X i) (X 0) μ μ) : Filter.Tendsto (fun n => MeasureTheory.eLpNorm (fun ω => (↑n)⁻¹ • ∑ i ∈ Finset.range n, X i ω - ∫ (x : Ω), X 0 x ∂μ) p μ) Filter.atTop (nhds 0)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision 6ec3a4c