Loogle!
Result
Found 72 declarations mentioning nhdsWithin, Set.instHasCompl, Filter.Tendsto, HasCompl.compl, and Set. Of these, 65 match your pattern(s).
- continuousAt_iff_punctured_nhds ๐ Mathlib.Topology.NhdsWithin
{ฮฑ : Type u_1} {ฮฒ : Type u_2} [TopologicalSpace ฮฑ] [TopologicalSpace ฮฒ] {f : ฮฑ โ ฮฒ} {a : ฮฑ} : ContinuousAt f a โ Filter.Tendsto f (nhdsWithin a {a}แถ) (nhds (f a)) - continuousAt_update_same ๐ Mathlib.Topology.Piecewise
{ฮฑ : Type u_1} {ฮฒ : Type u_2} [TopologicalSpace ฮฑ] [TopologicalSpace ฮฒ] {f : ฮฑ โ ฮฒ} {x : ฮฑ} [DecidableEq ฮฑ] {y : ฮฒ} : ContinuousAt (Function.update f x y) x โ Filter.Tendsto f (nhdsWithin x {x}แถ) (nhds y) - tendsto_abs_nhdsNE_zero ๐ Mathlib.Topology.Algebra.Order.Group
{G : Type u_1} [TopologicalSpace G] [AddCommGroup G] [LinearOrder G] [IsOrderedAddMonoid G] [OrderTopology G] : Filter.Tendsto abs (nhdsWithin 0 {0}แถ) (nhdsWithin 0 (Set.Ioi 0)) - tendsto_mabs_nhdsNE_one ๐ Mathlib.Topology.Algebra.Order.Group
{G : Type u_1} [TopologicalSpace G] [CommGroup G] [LinearOrder G] [IsOrderedMonoid G] [OrderTopology G] : Filter.Tendsto mabs (nhdsWithin 1 {1}แถ) (nhdsWithin 1 (Set.Ioi 1)) - EReal.tendsto_toReal_atBot ๐ Mathlib.Topology.Instances.EReal.Lemmas
: Filter.Tendsto EReal.toReal (nhdsWithin โฅ {โฅ}แถ) Filter.atBot - EReal.tendsto_toReal_atTop ๐ Mathlib.Topology.Instances.EReal.Lemmas
: Filter.Tendsto EReal.toReal (nhdsWithin โค {โค}แถ) Filter.atTop - tendsto_norm_div_self_nhdsNE ๐ Mathlib.Analysis.Normed.Group.Continuity
{E : Type u_5} [NormedGroup E] (a : E) : Filter.Tendsto (fun x => โx / aโ) (nhdsWithin a {a}แถ) (nhdsWithin 0 (Set.Ioi 0)) - tendsto_norm_sub_self_nhdsNE ๐ Mathlib.Analysis.Normed.Group.Continuity
{E : Type u_5} [NormedAddGroup E] (a : E) : Filter.Tendsto (fun x => โx - aโ) (nhdsWithin a {a}แถ) (nhdsWithin 0 (Set.Ioi 0)) - tendsto_norm_nhdsNE_one ๐ Mathlib.Analysis.Normed.Group.Continuity
{E : Type u_5} [NormedGroup E] : Filter.Tendsto norm (nhdsWithin 1 {1}แถ) (nhdsWithin 0 (Set.Ioi 0)) - tendsto_norm_nhdsNE_zero ๐ Mathlib.Analysis.Normed.Group.Continuity
{E : Type u_5} [NormedAddGroup E] : Filter.Tendsto norm (nhdsWithin 0 {0}แถ) (nhdsWithin 0 (Set.Ioi 0)) - tendsto_norm_inv_nhdsNE_zero_atTop ๐ Mathlib.Analysis.Normed.Field.Lemmas
{ฮฑ : Type u_1} [NormedDivisionRing ฮฑ] : Filter.Tendsto (fun x => โxโปยนโ) (nhdsWithin 0 {0}แถ) Filter.atTop - NormedField.tendsto_norm_inv_nhdsNE_zero_atTop ๐ Mathlib.Analysis.Normed.Field.Lemmas
{ฮฑ : Type u_1} [NormedDivisionRing ฮฑ] : Filter.Tendsto (fun x => โxโปยนโ) (nhdsWithin 0 {0}แถ) Filter.atTop - Filter.tendsto_invโ_nhdsNE_zero ๐ Mathlib.Analysis.Normed.Field.Lemmas
{ฮฑ : Type u_1} [NormedDivisionRing ฮฑ] : Filter.Tendsto Inv.inv (nhdsWithin 0 {0}แถ) (Bornology.cobounded ฮฑ) - Filter.tendsto_invโ_nhdsWithin_ne_zero ๐ Mathlib.Analysis.Normed.Field.Lemmas
{ฮฑ : Type u_1} [NormedDivisionRing ฮฑ] : Filter.Tendsto Inv.inv (nhdsWithin 0 {0}แถ) (Bornology.cobounded ฮฑ) - NormedField.tendsto_norm_zpow_nhdsNE_zero_atTop ๐ Mathlib.Analysis.Normed.Field.Lemmas
{ฮฑ : Type u_1} [NormedDivisionRing ฮฑ] {m : โค} (hm : m < 0) : Filter.Tendsto (fun x => โx ^ mโ) (nhdsWithin 0 {0}แถ) Filter.atTop - tendsto_zpow_nhdsNE_zero_cobounded ๐ Mathlib.Analysis.Normed.Field.Lemmas
{ฮฑ : Type u_1} [NormedDivisionRing ฮฑ] {m : โค} (hm : m < 0) : Filter.Tendsto (fun x => x ^ m) (nhdsWithin 0 {0}แถ) (Bornology.cobounded ฮฑ) - Real.tendsto_log_nhdsNE_zero ๐ Mathlib.Analysis.SpecialFunctions.Log.Basic
: Filter.Tendsto Real.log (nhdsWithin 0 {0}แถ) Filter.atBot - HasDerivAt.tendsto_slope ๐ Mathlib.Analysis.Calculus.Deriv.Slope
{๐ : Type u} [NontriviallyNormedField ๐] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐ F] {f : ๐ โ F} {f' : F} {x : ๐} : HasDerivAt f f' x โ Filter.Tendsto (slope f x) (nhdsWithin x {x}แถ) (nhds f') - hasDerivAt_iff_tendsto_slope ๐ Mathlib.Analysis.Calculus.Deriv.Slope
{๐ : Type u} [NontriviallyNormedField ๐] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐ F] {f : ๐ โ F} {f' : F} {x : ๐} : HasDerivAt f f' x โ Filter.Tendsto (slope f x) (nhdsWithin x {x}แถ) (nhds f') - HasDerivAt.tendsto_slope_zero ๐ Mathlib.Analysis.Calculus.Deriv.Slope
{๐ : Type u} [NontriviallyNormedField ๐] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐ F] {f : ๐ โ F} {f' : F} {x : ๐} : HasDerivAt f f' x โ Filter.Tendsto (fun t => tโปยน โข (f (x + t) - f x)) (nhdsWithin 0 {0}แถ) (nhds f') - hasDerivAt_iff_tendsto_slope_zero ๐ Mathlib.Analysis.Calculus.Deriv.Slope
{๐ : Type u} [NontriviallyNormedField ๐] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐ F] {f : ๐ โ F} {f' : F} {x : ๐} : HasDerivAt f f' x โ Filter.Tendsto (fun t => tโปยน โข (f (x + t) - f x)) (nhdsWithin 0 {0}แถ) (nhds f') - HasDerivAt.tendsto_nhdsNE ๐ Mathlib.Analysis.Calculus.Deriv.Inverse
{๐ : Type u} [NontriviallyNormedField ๐] {F : Type v} [NormedAddCommGroup F] [NormedSpace ๐ F] {f : ๐ โ F} {f' : F} {x : ๐} (h : HasDerivAt f f' x) (hf' : f' โ 0) : Filter.Tendsto f (nhdsWithin x {x}แถ) (nhdsWithin (f x) {f x}แถ) - not_intervalIntegrable_of_tendsto_norm_atTop_of_deriv_isBigO_punctured ๐ Mathlib.Analysis.SpecialFunctions.NonIntegrable
{E : Type u_1} {F : Type u_2} [NormedAddCommGroup E] [NormedSpace โ E] [NormedAddCommGroup F] {f : โ โ E} {g : โ โ F} {a b c : โ} (h_deriv : โแถ (x : โ) in nhdsWithin c {c}แถ, DifferentiableAt โ f x) (h_infty : Filter.Tendsto (fun x => โf xโ) (nhdsWithin c {c}แถ) Filter.atTop) (hg : deriv f =O[nhdsWithin c {c}แถ] g) (hne : a โ b) (hc : c โ Set.uIcc a b) : ยฌIntervalIntegrable g MeasureTheory.volume a b - Complex.circleIntegral_sub_center_inv_smul_of_differentiable_on_off_countable_of_tendsto ๐ Mathlib.Analysis.Complex.CauchyIntegral
{E : Type u} [NormedAddCommGroup E] [NormedSpace โ E] [CompleteSpace E] {c : โ} {R : โ} (h0 : 0 < R) {f : โ โ E} {y : E} {s : Set โ} (hs : s.Countable) (hc : ContinuousOn f (Metric.closedBall c R \ {c})) (hd : โ z โ (Metric.ball c R \ {c}) \ s, DifferentiableAt โ f z) (hy : Filter.Tendsto f (nhdsWithin c {c}แถ) (nhds y)) : โฎ (z : โ) in C(c, R), (z - c)โปยน โข f z = (2 * โReal.pi * Complex.I) โข y - HasLineDerivAt.tendsto_slope_zero ๐ Mathlib.Analysis.Calculus.LineDeriv.Basic
{๐ : Type u_1} [NontriviallyNormedField ๐] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace ๐ F] {E : Type u_3} [AddCommGroup E] [Module ๐ E] {f : E โ F} {f' : F} {x v : E} : HasLineDerivAt ๐ f f' x v โ Filter.Tendsto (fun t => tโปยน โข (f (x + t โข v) - f x)) (nhdsWithin 0 {0}แถ) (nhds f') - hasLineDerivAt_iff_tendsto_slope_zero ๐ Mathlib.Analysis.Calculus.LineDeriv.Basic
{๐ : Type u_1} [NontriviallyNormedField ๐] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace ๐ F] {E : Type u_3} [AddCommGroup E] [Module ๐ E] {f : E โ F} {f' : F} {x v : E} : HasLineDerivAt ๐ f f' x v โ Filter.Tendsto (fun t => tโปยน โข (f (x + t โข v) - f x)) (nhdsWithin 0 {0}แถ) (nhds f') - deriv.lhopital_zero_nhds ๐ Mathlib.Analysis.Calculus.LHopital
{a : โ} {l : Filter โ} {f g : โ โ โ} (hdf : โแถ (x : โ) in nhds a, DifferentiableAt โ f x) (hg' : โแถ (x : โ) in nhds a, deriv g x โ 0) (hfa : Filter.Tendsto f (nhds a) (nhds 0)) (hga : Filter.Tendsto g (nhds a) (nhds 0)) (hdiv : Filter.Tendsto (fun x => deriv f x / deriv g x) (nhds a) l) : Filter.Tendsto (fun x => f x / g x) (nhdsWithin a {a}แถ) l - deriv.lhopital_zero_nhdsNE ๐ Mathlib.Analysis.Calculus.LHopital
{a : โ} {l : Filter โ} {f g : โ โ โ} (hdf : โแถ (x : โ) in nhdsWithin a {a}แถ, DifferentiableAt โ f x) (hg' : โแถ (x : โ) in nhdsWithin a {a}แถ, deriv g x โ 0) (hfa : Filter.Tendsto f (nhdsWithin a {a}แถ) (nhds 0)) (hga : Filter.Tendsto g (nhdsWithin a {a}แถ) (nhds 0)) (hdiv : Filter.Tendsto (fun x => deriv f x / deriv g x) (nhdsWithin a {a}แถ) l) : Filter.Tendsto (fun x => f x / g x) (nhdsWithin a {a}แถ) l - HasDerivAt.lhopital_zero_nhds ๐ Mathlib.Analysis.Calculus.LHopital
{a : โ} {l : Filter โ} {f f' g g' : โ โ โ} (hff' : โแถ (x : โ) in nhds a, HasDerivAt f (f' x) x) (hgg' : โแถ (x : โ) in nhds a, HasDerivAt g (g' x) x) (hg' : โแถ (x : โ) in nhds a, g' x โ 0) (hfa : Filter.Tendsto f (nhds a) (nhds 0)) (hga : Filter.Tendsto g (nhds a) (nhds 0)) (hdiv : Filter.Tendsto (fun x => f' x / g' x) (nhds a) l) : Filter.Tendsto (fun x => f x / g x) (nhdsWithin a {a}แถ) l - HasDerivAt.lhopital_zero_nhdsNE ๐ Mathlib.Analysis.Calculus.LHopital
{a : โ} {l : Filter โ} {f f' g g' : โ โ โ} (hff' : โแถ (x : โ) in nhdsWithin a {a}แถ, HasDerivAt f (f' x) x) (hgg' : โแถ (x : โ) in nhdsWithin a {a}แถ, HasDerivAt g (g' x) x) (hg' : โแถ (x : โ) in nhdsWithin a {a}แถ, g' x โ 0) (hfa : Filter.Tendsto f (nhdsWithin a {a}แถ) (nhds 0)) (hga : Filter.Tendsto g (nhdsWithin a {a}แถ) (nhds 0)) (hdiv : Filter.Tendsto (fun x => f' x / g' x) (nhdsWithin a {a}แถ) l) : Filter.Tendsto (fun x => f x / g x) (nhdsWithin a {a}แถ) l - Complex.tendsto_limUnder_of_differentiable_on_punctured_nhds_of_bounded_under ๐ Mathlib.Analysis.Complex.RemovableSingularity
{E : Type u} [NormedAddCommGroup E] [NormedSpace โ E] [CompleteSpace E] {f : โ โ E} {c : โ} (hd : โแถ (z : โ) in nhdsWithin c {c}แถ, DifferentiableAt โ f z) (hb : Filter.IsBoundedUnder (fun x1 x2 => x1 โค x2) (nhdsWithin c {c}แถ) fun z => โf z - f cโ) : Filter.Tendsto f (nhdsWithin c {c}แถ) (nhds (limUnder (nhdsWithin c {c}แถ) f)) - Complex.tendsto_limUnder_of_differentiable_on_punctured_nhds_of_isLittleO ๐ Mathlib.Analysis.Complex.RemovableSingularity
{E : Type u} [NormedAddCommGroup E] [NormedSpace โ E] [CompleteSpace E] {f : โ โ E} {c : โ} (hd : โแถ (z : โ) in nhdsWithin c {c}แถ, DifferentiableAt โ f z) (ho : (fun z => f z - f c) =o[nhdsWithin c {c}แถ] fun z => (z - c)โปยน) : Filter.Tendsto f (nhdsWithin c {c}แถ) (nhds (limUnder (nhdsWithin c {c}แถ) f)) - Complex.tendsto_norm_tan_of_cos_eq_zero ๐ Mathlib.Analysis.SpecialFunctions.Trigonometric.ComplexDeriv
{x : โ} (hx : Complex.cos x = 0) : Filter.Tendsto (fun x => โComplex.tan xโ) (nhdsWithin x {x}แถ) Filter.atTop - Complex.tendsto_norm_tan_atTop ๐ Mathlib.Analysis.SpecialFunctions.Trigonometric.ComplexDeriv
(k : โค) : Filter.Tendsto (fun x => โComplex.tan xโ) (nhdsWithin ((2 * โk + 1) * โReal.pi / 2) {(2 * โk + 1) * โReal.pi / 2}แถ) Filter.atTop - Real.tendsto_abs_tan_of_cos_eq_zero ๐ Mathlib.Analysis.SpecialFunctions.Trigonometric.ArctanDeriv
{x : โ} (hx : Real.cos x = 0) : Filter.Tendsto (fun x => |Real.tan x|) (nhdsWithin x {x}แถ) Filter.atTop - Real.tendsto_abs_tan_atTop ๐ Mathlib.Analysis.SpecialFunctions.Trigonometric.ArctanDeriv
(k : โค) : Filter.Tendsto (fun x => |Real.tan x|) (nhdsWithin ((2 * โk + 1) * Real.pi / 2) {(2 * โk + 1) * Real.pi / 2}แถ) Filter.atTop - tendsto_cobounded_of_meromorphicOrderAt_neg ๐ Mathlib.Analysis.Meromorphic.Order
{๐ : Type u_1} [NontriviallyNormedField ๐] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐ E] {f : ๐ โ E} {x : ๐} (ho : meromorphicOrderAt f x < 0) : Filter.Tendsto f (nhdsWithin x {x}แถ) (Bornology.cobounded E) - tendsto_cobounded_iff_meromorphicOrderAt_neg ๐ Mathlib.Analysis.Meromorphic.Order
{๐ : Type u_1} [NontriviallyNormedField ๐] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐ E] {f : ๐ โ E} {x : ๐} (hf : MeromorphicAt f x) : Filter.Tendsto f (nhdsWithin x {x}แถ) (Bornology.cobounded E) โ meromorphicOrderAt f x < 0 - tendsto_nhds_of_meromorphicOrderAt_nonneg ๐ Mathlib.Analysis.Meromorphic.Order
{๐ : Type u_1} [NontriviallyNormedField ๐] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐ E] {f : ๐ โ E} {x : ๐} (hf : MeromorphicAt f x) (ho : 0 โค meromorphicOrderAt f x) : โ c, Filter.Tendsto f (nhdsWithin x {x}แถ) (nhds c) - tendsto_nhds_iff_meromorphicOrderAt_nonneg ๐ Mathlib.Analysis.Meromorphic.Order
{๐ : Type u_1} [NontriviallyNormedField ๐] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐ E] {f : ๐ โ E} {x : ๐} (hf : MeromorphicAt f x) : (โ c, Filter.Tendsto f (nhdsWithin x {x}แถ) (nhds c)) โ 0 โค meromorphicOrderAt f x - tendsto_zero_of_meromorphicOrderAt_pos ๐ Mathlib.Analysis.Meromorphic.Order
{๐ : Type u_1} [NontriviallyNormedField ๐] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐ E] {f : ๐ โ E} {x : ๐} (ho : 0 < meromorphicOrderAt f x) : Filter.Tendsto f (nhdsWithin x {x}แถ) (nhds 0) - tendsto_ne_zero_of_meromorphicOrderAt_eq_zero ๐ Mathlib.Analysis.Meromorphic.Order
{๐ : Type u_1} [NontriviallyNormedField ๐] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐ E] {f : ๐ โ E} {x : ๐} (hf : MeromorphicAt f x) (ho : meromorphicOrderAt f x = 0) : โ c, c โ 0 โง Filter.Tendsto f (nhdsWithin x {x}แถ) (nhds c) - tendsto_ne_zero_iff_meromorphicOrderAt_eq_zero ๐ Mathlib.Analysis.Meromorphic.Order
{๐ : Type u_1} [NontriviallyNormedField ๐] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐ E] {f : ๐ โ E} {x : ๐} (hf : MeromorphicAt f x) : (โ c, c โ 0 โง Filter.Tendsto f (nhdsWithin x {x}แถ) (nhds c)) โ meromorphicOrderAt f x = 0 - tendsto_zero_iff_meromorphicOrderAt_pos ๐ Mathlib.Analysis.Meromorphic.Order
{๐ : Type u_1} [NontriviallyNormedField ๐] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐ E] {f : ๐ โ E} {x : ๐} (hf : MeromorphicAt f x) : Filter.Tendsto f (nhdsWithin x {x}แถ) (nhds 0) โ 0 < meromorphicOrderAt f x - MeromorphicAt.tendsto_nhds_meromorphicTrailingCoeffAt ๐ Mathlib.Analysis.Meromorphic.TrailingCoefficient
{๐ : Type u_1} [NontriviallyNormedField ๐] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐ E] {f : ๐ โ E} {x : ๐} (h : MeromorphicAt f x) : Filter.Tendsto ((fun x_1 => x_1 - x) ^ (-(meromorphicOrderAt f x).untopโ) โข f) (nhdsWithin x {x}แถ) (nhds (meromorphicTrailingCoeffAt f x)) - Function.Periodic.invQParam_tendsto ๐ Mathlib.Analysis.Complex.Periodic
{h : โ} (hh : 0 < h) : Filter.Tendsto (Function.Periodic.invQParam h) (nhdsWithin 0 {0}แถ) (Filter.comap Complex.im Filter.atTop) - Complex.tendsto_self_mul_Gamma_nhds_zero ๐ Mathlib.Analysis.SpecialFunctions.Gamma.Deriv
: Filter.Tendsto (fun z => z * Complex.Gamma z) (nhdsWithin 0 {0}แถ) (nhds 1) - Complex.Gammaโ_residue_zero ๐ Mathlib.Analysis.SpecialFunctions.Gamma.Deligne
: Filter.Tendsto (fun s => s * s.Gammaโ) (nhdsWithin 0 {0}แถ) (nhds 2) - Real.tendsto_logb_nhdsNE_zero ๐ Mathlib.Analysis.SpecialFunctions.Log.Base
{b : โ} (hb : 1 < b) : Filter.Tendsto (Real.logb b) (nhdsWithin 0 {0}แถ) Filter.atBot - Real.tendsto_logb_nhdsNE_zero_of_base_lt_one ๐ Mathlib.Analysis.SpecialFunctions.Log.Base
{b : โ} (hbโ : 0 < b) (hb : b < 1) : Filter.Tendsto (Real.logb b) (nhdsWithin 0 {0}แถ) Filter.atTop - WeakFEPair.ฮ_residue_zero ๐ Mathlib.NumberTheory.LSeries.AbstractFuncEq
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ E] (P : WeakFEPair E) : Filter.Tendsto (fun s => s โข P.ฮ s) (nhdsWithin 0 {0}แถ) (nhds (-P.fโ)) - WeakFEPair.ฮ_residue_k ๐ Mathlib.NumberTheory.LSeries.AbstractFuncEq
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ E] (P : WeakFEPair E) : Filter.Tendsto (fun s => (s - โP.k) โข P.ฮ s) (nhdsWithin โP.k {โP.k}แถ) (nhds (P.ฮต โข P.gโ)) - HurwitzZeta.completedCosZeta_residue_zero ๐ Mathlib.NumberTheory.LSeries.HurwitzZetaEven
(a : UnitAddCircle) : Filter.Tendsto (fun s => s * HurwitzZeta.completedCosZeta a s) (nhdsWithin 0 {0}แถ) (nhds (-1)) - HurwitzZeta.completedHurwitzZetaEven_residue_one ๐ Mathlib.NumberTheory.LSeries.HurwitzZetaEven
(a : UnitAddCircle) : Filter.Tendsto (fun s => (s - 1) * HurwitzZeta.completedHurwitzZetaEven a s) (nhdsWithin 1 {1}แถ) (nhds 1) - HurwitzZeta.hurwitzZetaEven_residue_one ๐ Mathlib.NumberTheory.LSeries.HurwitzZetaEven
(a : UnitAddCircle) : Filter.Tendsto (fun s => (s - 1) * HurwitzZeta.hurwitzZetaEven a s) (nhdsWithin 1 {1}แถ) (nhds 1) - HurwitzZeta.completedHurwitzZetaEven_residue_zero ๐ Mathlib.NumberTheory.LSeries.HurwitzZetaEven
(a : UnitAddCircle) : Filter.Tendsto (fun s => s * HurwitzZeta.completedHurwitzZetaEven a s) (nhdsWithin 0 {0}แถ) (nhds (if a = 0 then -1 else 0)) - HurwitzZeta.differentiableAt_update_of_residue ๐ Mathlib.NumberTheory.LSeries.HurwitzZetaEven
{ฮ : โ โ โ} (hf : โ (s : โ), s โ 0 โ s โ 1 โ DifferentiableAt โ ฮ s) {L : โ} (h_lim : Filter.Tendsto (fun s => s * ฮ s) (nhdsWithin 0 {0}แถ) (nhds L)) (s : โ) (hs' : s โ 1) : DifferentiableAt โ (Function.update (fun s => ฮ s / s.Gammaโ) 0 (L / 2)) s - HurwitzZeta.hurwitzZeta_residue_one ๐ Mathlib.NumberTheory.LSeries.HurwitzZeta
(a : UnitAddCircle) : Filter.Tendsto (fun s => (s - 1) * HurwitzZeta.hurwitzZeta a s) (nhdsWithin 1 {1}แถ) (nhds 1) - completedRiemannZeta_residue_one ๐ Mathlib.NumberTheory.LSeries.RiemannZeta
: Filter.Tendsto (fun s => (s - 1) * completedRiemannZeta s) (nhdsWithin 1 {1}แถ) (nhds 1) - riemannZeta_residue_one ๐ Mathlib.NumberTheory.LSeries.RiemannZeta
: Filter.Tendsto (fun s => (s - 1) * riemannZeta s) (nhdsWithin 1 {1}แถ) (nhds 1) - tendsto_riemannZeta_sub_one_div ๐ Mathlib.NumberTheory.Harmonic.ZetaAsymp
: Filter.Tendsto (fun s => riemannZeta s - 1 / (s - 1)) (nhdsWithin 1 {1}แถ) (nhds โReal.eulerMascheroniConstant) - ZetaAsymptotics.tendsto_riemannZeta_sub_one_div_Gammaโ ๐ Mathlib.NumberTheory.Harmonic.ZetaAsymp
: Filter.Tendsto (fun s => riemannZeta s - 1 / s.Gammaโ / (s - 1)) (nhdsWithin 1 {1}แถ) (nhds ((โReal.eulerMascheroniConstant - Complex.log (4 * โReal.pi)) / 2)) - ZetaAsymptotics.tendsto_Gamma_term_aux ๐ Mathlib.NumberTheory.Harmonic.ZetaAsymp
: Filter.Tendsto (fun s => 1 / (s - 1) - 1 / s.Gammaโ / (s - 1)) (nhdsWithin 1 {1}แถ) (nhds (-(โReal.eulerMascheroniConstant + Complex.log (4 * โReal.pi)) / 2)) - ZMod.LFunction_residue_one ๐ Mathlib.NumberTheory.LSeries.ZMod
{N : โ} [NeZero N] (ฮฆ : ZMod N โ โ) : Filter.Tendsto (fun s => (s - 1) * ZMod.LFunction ฮฆ s) (nhdsWithin 1 {1}แถ) (nhds (โ j, ฮฆ j / โN)) - DirichletCharacter.LFunctionTrivChar_residue_one ๐ Mathlib.NumberTheory.LSeries.DirichletContinuation
{N : โ} [NeZero N] : Filter.Tendsto (fun s => (s - 1) * DirichletCharacter.LFunctionTrivChar N s) (nhdsWithin 1 {1}แถ) (nhds (โ p โ N.primeFactors, (1 - (โp)โปยน)))
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโandโ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision 519f454