Loogle!
Result
Found 7 declarations mentioning FinVec.map.
- FinVec.map 📋 Mathlib.Data.Fin.Tuple.Reflection
{α : Type u_1} {β : Type u_2} (f : α → β) {m : ℕ} : (Fin m → α) → Fin m → β - FinVec.map_eq 📋 Mathlib.Data.Fin.Tuple.Reflection
{α : Type u_1} {β : Type u_2} (f : α → β) {m : ℕ} (v : Fin m → α) : FinVec.map f v = f ∘ v - Matrix.mulVecᵣ.eq_1 📋 Mathlib.Data.Matrix.Reflection
{l m : ℕ} {α : Type u_1} [Mul α] [Add α] [Zero α] (A : Matrix (Fin l) (Fin m) α) (v : Fin m → α) : A.mulVecᵣ v = FinVec.map (fun a => Matrix.dotProductᵣ a v) A - Matrix.dotProductᵣ.eq_1 📋 Mathlib.Data.Matrix.Reflection
{α : Type u_1} [Mul α] [Add α] [Zero α] {m : ℕ} (a b : Fin m → α) : Matrix.dotProductᵣ a b = FinVec.sum (FinVec.seq (FinVec.map (fun x1 x2 => x1 * x2) a) b) - Matrix.vecMulᵣ.eq_1 📋 Mathlib.Data.Matrix.Reflection
{l m : ℕ} {α : Type u_1} [Mul α] [Add α] [Zero α] (v : Fin l → α) (A : Matrix (Fin l) (Fin m) α) : Matrix.vecMulᵣ v A = FinVec.map (fun a => Matrix.dotProductᵣ v a) A.transpose - Matrix.mulᵣ.eq_1 📋 Mathlib.Data.Matrix.Reflection
{l m n : ℕ} {α : Type u_1} [Mul α] [Add α] [Zero α] (A : Matrix (Fin l) (Fin m) α) (B : Matrix (Fin m) (Fin n) α) : A.mulᵣ B = Matrix.of (FinVec.map (fun v₁ => FinVec.map (fun v₂ => Matrix.dotProductᵣ v₁ v₂) B.transpose) A) - Matrix.transposeᵣ.eq_2 📋 Mathlib.Data.Matrix.Reflection
{α : Type u_1} (x✝ n : ℕ) (A : Matrix (Fin x✝) (Fin (n + 1)) α) : A.transposeᵣ = Matrix.of (Matrix.vecCons (FinVec.map (fun v => v 0) A) (A.submatrix id Fin.succ).transposeᵣ)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65