Loogle!
Result
Found 1323 declarations mentioning FiniteDimensional. Of these, only the first 200 are shown.
- FiniteDimensional ๐ Mathlib.LinearAlgebra.FiniteDimensional.Defs
(K : Type u_1) (V : Type u_2) [DivisionRing K] [AddCommGroup V] [Module K V] : Prop - FiniteDimensional.finiteDimensional_self ๐ Mathlib.LinearAlgebra.FiniteDimensional.Defs
(K : Type u) [DivisionRing K] : FiniteDimensional K K - FiniteDimensional.instFintypeElemOfVectorSpaceIndex ๐ Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] : Fintype โ(Basis.ofVectorSpaceIndex K V) - FiniteDimensional.fintypeBasisIndex ๐ Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ฮน : Type u_1} [FiniteDimensional K V] (b : Basis ฮน K V) : Fintype ฮน - FiniteDimensional.of_fintype_basis ๐ Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ฮน : Type w} [Finite ฮน] (h : Basis ฮน K V) : FiniteDimensional K V - FiniteDimensional.of_finrank_eq_succ ๐ Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {n : โ} (hn : Module.finrank K V = n.succ) : FiniteDimensional K V - FiniteDimensional.of_finrank_pos ๐ Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (h : 0 < Module.finrank K V) : FiniteDimensional K V - Module.finrank_of_infinite_dimensional ๐ Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (h : ยฌFiniteDimensional K V) : Module.finrank K V = 0 - FiniteDimensional.of_finite_basis ๐ Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ฮน : Type w} {s : Set ฮน} (h : Basis (โs) K V) (hs : s.Finite) : FiniteDimensional K V - FiniteDimensional.finiteDimensional_pi ๐ Mathlib.LinearAlgebra.FiniteDimensional.Defs
(K : Type u) [DivisionRing K] {ฮน : Type u_1} [Finite ฮน] : FiniteDimensional K (ฮน โ K) - FiniteDimensional.of_fact_finrank_eq_succ ๐ Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (n : โ) [hn : Fact (Module.finrank K V = n + 1)] : FiniteDimensional K V - Module.finrank_eq_rank' ๐ Mathlib.LinearAlgebra.FiniteDimensional.Defs
(K : Type u) (V : Type v) [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] : โ(Module.finrank K V) = Module.rank K V - Module.finrank_eq_card_basis' ๐ Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {ฮน : Type w} (h : Basis ฮน K V) : โ(Module.finrank K V) = Cardinal.mk ฮน - FiniteDimensional.finiteDimensional_pi' ๐ Mathlib.LinearAlgebra.FiniteDimensional.Defs
(K : Type u) [DivisionRing K] {ฮน : Type u_1} [Finite ฮน] (M : ฮน โ Type u_2) [(i : ฮน) โ AddCommGroup (M i)] [(i : ฮน) โ Module K (M i)] [โ (i : ฮน), FiniteDimensional K (M i)] : FiniteDimensional K ((i : ฮน) โ M i) - FiniteDimensional.finiteDimensional_quotient ๐ Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (S : Submodule K V) : FiniteDimensional K (V โงธ S) - LinearEquiv.finiteDimensional ๐ Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Vโ : Type v'} [AddCommGroup Vโ] [Module K Vโ] (f : V โโ[K] Vโ) [FiniteDimensional K V] : FiniteDimensional K Vโ - Module.finiteDimensional_iff_of_rank_eq_nsmul ๐ Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {W : Type v} [AddCommGroup W] [Module K W] {n : โ} (hn : n โ 0) (hVW : Module.rank K V = n โข Module.rank K W) : FiniteDimensional K V โ FiniteDimensional K W - FiniteDimensional.finiteDimensional_submodule ๐ Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (S : Submodule K V) : FiniteDimensional K โฅS - Submodule.fg_iff_finiteDimensional ๐ Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (s : Submodule K V) : s.FG โ FiniteDimensional K โฅs - FiniteDimensional.span_of_finite ๐ Mathlib.LinearAlgebra.FiniteDimensional.Defs
(K : Type u) {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {A : Set V} (hA : A.Finite) : FiniteDimensional K โฅ(Submodule.span K A) - FiniteDimensional.span_finset ๐ Mathlib.LinearAlgebra.FiniteDimensional.Defs
(K : Type u) {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (s : Finset V) : FiniteDimensional K โฅ(Submodule.span K โs) - FiniteDimensional.span_singleton ๐ Mathlib.LinearAlgebra.FiniteDimensional.Defs
(K : Type u) {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (x : V) : FiniteDimensional K โฅ(Submodule.span K {x}) - FiniteDimensional.of_injective ๐ Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Vโ : Type v'} [AddCommGroup Vโ] [Module K Vโ] (f : V โโ[K] Vโ) (w : Function.Injective โf) [FiniteDimensional K Vโ] : FiniteDimensional K V - FiniteDimensional.of_surjective ๐ Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Vโ : Type v'} [AddCommGroup Vโ] [Module K Vโ] (f : V โโ[K] Vโ) (w : Function.Surjective โf) [FiniteDimensional K V] : FiniteDimensional K Vโ - FiniteDimensional.trans ๐ Mathlib.LinearAlgebra.FiniteDimensional.Defs
(F : Type u_1) (K : Type u_2) (A : Type u_3) [DivisionRing F] [DivisionRing K] [AddCommGroup A] [Module F K] [Module K A] [Module F A] [IsScalarTower F K A] [FiniteDimensional F K] [FiniteDimensional K A] : FiniteDimensional F A - FiniteDimensional.instSubtypeMemSubmoduleMapLinearMapId ๐ Mathlib.LinearAlgebra.FiniteDimensional.Defs
(K : Type u) {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Vโ : Type v'} [AddCommGroup Vโ] [Module K Vโ] (f : V โโ[K] Vโ) (p : Submodule K V) [FiniteDimensional K โฅp] : FiniteDimensional K โฅ(Submodule.map f p) - FiniteDimensional.of_rank_eq_nat ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {n : โ} (h : Module.rank K V = โn) : FiniteDimensional K V - FiniteDimensional.of_rank_eq_one ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (h : Module.rank K V = 1) : FiniteDimensional K V - FiniteDimensional.of_rank_eq_zero ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (h : Module.rank K V = 0) : FiniteDimensional K V - divisionRingOfFiniteDimensional ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
(F : Type u_1) (K : Type u_2) [Field F] [Ring K] [IsDomain K] [Algebra F K] [FiniteDimensional F K] : DivisionRing K - LinearIndependent.lt_aleph0_of_finiteDimensional ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ฮน : Type w} [FiniteDimensional K V] {v : ฮน โ V} (h : LinearIndependent K v) : Cardinal.mk ฮน < Cardinal.aleph0 - fieldOfFiniteDimensional ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
(F : Type u_1) (K : Type u_2) [Field F] [h : CommRing K] [IsDomain K] [Algebra F K] [FiniteDimensional F K] : Field K - basisOfFinrankZero ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {ฮน : Type u_1} [IsEmpty ฮน] (hV : Module.finrank K V = 0) : Basis ฮน K V - finiteDimensional_finsupp ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ฮน : Type u_1} [Finite ฮน] [FiniteDimensional K V] : FiniteDimensional K (ฮน โโ V) - finrank_zero_iff_forall_zero ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] : Module.finrank K V = 0 โ โ (x : V), x = 0 - Set.finrank_mono ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {s t : Set V} (h : s โ t) : Set.finrank K s โค Set.finrank K t - FiniteDimensional.isUnit ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
(F : Type u_1) {K : Type u_2} [Field F] [Ring K] [IsDomain K] [Algebra F K] [FiniteDimensional F K] {x : K} (H : x โ 0) : IsUnit x - FiniteDimensional.exists_mul_eq_one ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
(F : Type u_1) {K : Type u_2} [Field F] [Ring K] [IsDomain K] [Algebra F K] [FiniteDimensional F K] {x : K} (H : x โ 0) : โ y, x * y = 1 - finiteDimensional_bot ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
(K : Type u) (V : Type v) [DivisionRing K] [AddCommGroup V] [Module K V] : FiniteDimensional K โฅโฅ - Submodule.eq_top_of_finrank_eq ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {S : Submodule K V} (h : Module.finrank K โฅS = Module.finrank K V) : S = โค - FiniteDimensional.finiteDimensional_subalgebra ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{F : Type u_1} {E : Type u_2} [Field F] [Ring E] [Algebra F E] [FiniteDimensional F E] (S : Subalgebra F E) : FiniteDimensional F โฅS - LinearEquiv.ofInjectiveEndo ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : V โโ[K] V) (h_inj : Function.Injective โf) : V โโ[K] V - LinearMap.surjective_of_injective ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f : V โโ[K] V} (hinj : Function.Injective โf) : Function.Surjective โf - LinearMap.injective_iff_surjective ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f : V โโ[K] V} : Function.Injective โf โ Function.Surjective โf - LinearMap.finiteDimensional_of_surjective ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Vโ : Type v'} [AddCommGroup Vโ] [Module K Vโ] [FiniteDimensional K V] (f : V โโ[K] Vโ) (hf : LinearMap.range f = โค) : FiniteDimensional K Vโ - Submodule.finiteDimensional_inf_left ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (Sโ Sโ : Submodule K V) [FiniteDimensional K โฅSโ] : FiniteDimensional K โฅ(Sโ โ Sโ) - Submodule.finiteDimensional_inf_right ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (Sโ Sโ : Submodule K V) [FiniteDimensional K โฅSโ] : FiniteDimensional K โฅ(Sโ โ Sโ) - Submodule.finiteDimensional_of_le ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Sโ Sโ : Submodule K V} [FiniteDimensional K โฅSโ] (h : Sโ โค Sโ) : FiniteDimensional K โฅSโ - LinearMap.isUnit_iff_ker_eq_bot ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : V โโ[K] V) : IsUnit f โ LinearMap.ker f = โฅ - LinearMap.isUnit_iff_range_eq_top ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : V โโ[K] V) : IsUnit f โ LinearMap.range f = โค - FiniteDimensional.exists_relation_sum_zero_pos_coefficient_of_finrank_succ_lt_card ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{L : Type u_1} [Field L] [LinearOrder L] [IsStrictOrderedRing L] {W : Type v} [AddCommGroup W] [Module L W] [FiniteDimensional L W] {t : Finset W} (h : Module.finrank L W + 1 < t.card) : โ f, โ e โ t, f e โข e = 0 โง โ e โ t, f e = 0 โง โ x โ t, 0 < f x - Submodule.finiteDimensional_iSup ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ฮน : Sort u_1} [Finite ฮน] (S : ฮน โ Submodule K V) [โ (i : ฮน), FiniteDimensional K โฅ(S i)] : FiniteDimensional K โฅ(โจ i, S i) - LinearMap.comp_eq_id_comm ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f g : V โโ[K] V} : f โโ g = LinearMap.id โ g โโ f = LinearMap.id - Submodule.eq_of_le_of_finrank_eq ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Sโ Sโ : Submodule K V} [FiniteDimensional K โฅSโ] (hle : Sโ โค Sโ) (hd : Module.finrank K โฅSโ = Module.finrank K โฅSโ) : Sโ = Sโ - Submodule.eq_of_le_of_finrank_le ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Sโ Sโ : Submodule K V} [FiniteDimensional K โฅSโ] (hle : Sโ โค Sโ) (hd : Module.finrank K โฅSโ โค Module.finrank K โฅSโ) : Sโ = Sโ - LinearEquiv.coe_ofInjectiveEndo ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : V โโ[K] V) (h_inj : Function.Injective โf) : โ(LinearEquiv.ofInjectiveEndo f h_inj) = โf - LinearMap.ker_eq_bot_iff_range_eq_top ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f : V โโ[K] V} : LinearMap.ker f = โฅ โ LinearMap.range f = โค - Submodule.finiteDimensional_finset_sup ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ฮน : Type u_1} (s : Finset ฮน) (S : ฮน โ Submodule K V) [โ (i : ฮน), FiniteDimensional K โฅ(S i)] : FiniteDimensional K โฅ(s.sup S) - Submodule.finiteDimensional_sup ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (Sโ Sโ : Submodule K V) [hโ : FiniteDimensional K โฅSโ] [hโ : FiniteDimensional K โฅSโ] : FiniteDimensional K โฅ(Sโ โ Sโ) - LinearEquiv.ofInjectiveEndo_left_inv ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : V โโ[K] V) (h_inj : Function.Injective โf) : โ(LinearEquiv.ofInjectiveEndo f h_inj).symm * f = 1 - LinearEquiv.ofInjectiveEndo_right_inv ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : V โโ[K] V) (h_inj : Function.Injective โf) : f * โ(LinearEquiv.ofInjectiveEndo f h_inj).symm = 1 - LinearMap.injOn_iff_surjOn ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {p : Submodule K V} [FiniteDimensional K โฅp] {f : V โโ[K] V} (h : โ x โ p, f x โ p) : Set.InjOn โf โp โ Set.SurjOn โf โp โp - LinearMap.finiteDimensional_range ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Vโ : Type v'} [AddCommGroup Vโ] [Module K Vโ] [FiniteDimensional K V] (f : V โโ[K] Vโ) : FiniteDimensional K โฅ(LinearMap.range f) - LinearMap.mul_eq_one_of_mul_eq_one ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f g : V โโ[K] V} (hfg : f * g = 1) : g * f = 1 - LinearMap.mul_eq_one_comm ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f g : V โโ[K] V} : f * g = 1 โ g * f = 1 - Subalgebra.eq_of_le_of_finrank_eq ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u_1} {L : Type u_2} [Field K] [Ring L] [Algebra K L] {F E : Subalgebra K L} [hfin : FiniteDimensional K โฅE] (h_le : F โค E) (h_finrank : Module.finrank K โฅF = Module.finrank K โฅE) : F = E - Subalgebra.eq_of_le_of_finrank_le ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u_1} {L : Type u_2} [Field K] [Ring L] [Algebra K L] {F E : Subalgebra K L} [hfin : FiniteDimensional K โฅE] (h_le : F โค E) (h_finrank : Module.finrank K โฅE โค Module.finrank K โฅF) : F = E - LinearMap.comap_eq_sup_ker_of_disjoint ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {p : Submodule K V} [FiniteDimensional K โฅp] {f : V โโ[K] V} (h : โ x โ p, f x โ p) (h' : Disjoint p (LinearMap.ker f)) : Submodule.comap f p = p โ LinearMap.ker f - LinearMap.ker_noncommProd_eq_of_supIndep_ker ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {ฮน : Type u_1} {f : ฮน โ V โโ[K] V} (s : Finset ฮน) (comm : (โs).Pairwise (Function.onFun Commute f)) (h : s.SupIndep fun i => LinearMap.ker (f i)) : LinearMap.ker (s.noncommProd f comm) = โจ i โ s, LinearMap.ker (f i) - LinearMap.ker_comp_eq_of_commute_of_disjoint_ker ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f g : V โโ[K] V} (h : Commute f g) (h' : Disjoint (LinearMap.ker f) (LinearMap.ker g)) : LinearMap.ker (f โโ g) = LinearMap.ker f โ LinearMap.ker g - FiniteDimensional.of_subalgebra_toSubmodule ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{F : Type u_1} {E : Type u_2} [Field F] [Ring E] [Algebra F E] {S : Subalgebra F E} : FiniteDimensional F โฅ(Subalgebra.toSubmodule S) โ FiniteDimensional F โฅS - FiniteDimensional.subalgebra_toSubmodule ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{F : Type u_1} {E : Type u_2} [Field F] [Ring E] [Algebra F E] {S : Subalgebra F E} : FiniteDimensional F โฅS โ FiniteDimensional F โฅ(Subalgebra.toSubmodule S) - Subalgebra.finiteDimensional_toSubmodule ๐ Mathlib.LinearAlgebra.FiniteDimensional.Basic
{F : Type u_1} {E : Type u_2} [Field F] [Ring E] [Algebra F E] {S : Subalgebra F E} : FiniteDimensional F โฅ(Subalgebra.toSubmodule S) โ FiniteDimensional F โฅS - CSA.fin_dim ๐ Mathlib.Algebra.BrauerGroup.Defs
{K : Type u} [Field K] (self : CSA K) : FiniteDimensional K โself.toAlgebraCat - CSA.mk ๐ Mathlib.Algebra.BrauerGroup.Defs
{K : Type u} [Field K] (toAlgebraCat : AlgebraCat K) [isCentral : Algebra.IsCentral K โtoAlgebraCat] [isSimple : IsSimpleRing โtoAlgebraCat] [fin_dim : FiniteDimensional K โtoAlgebraCat] : CSA K - CSA.mk.injEq ๐ Mathlib.Algebra.BrauerGroup.Defs
{K : Type u} [Field K] (toAlgebraCat : AlgebraCat K) [isCentral : Algebra.IsCentral K โtoAlgebraCat] [isSimple : IsSimpleRing โtoAlgebraCat] [fin_dim : FiniteDimensional K โtoAlgebraCat] (toAlgebraCatโ : AlgebraCat K) (isCentralโ : Algebra.IsCentral K โtoAlgebraCatโ) (isSimpleโ : IsSimpleRing โtoAlgebraCatโ) (fin_dimโ : FiniteDimensional K โtoAlgebraCatโ) : ({ toAlgebraCat := toAlgebraCat, isCentral := isCentral, isSimple := isSimple, fin_dim := fin_dim } = { toAlgebraCat := toAlgebraCatโ, isCentral := isCentralโ, isSimple := isSimpleโ, fin_dim := fin_dimโ }) = (toAlgebraCat = toAlgebraCatโ) - CSA.mk.sizeOf_spec ๐ Mathlib.Algebra.BrauerGroup.Defs
{K : Type u} [Field K] [SizeOf K] (toAlgebraCat : AlgebraCat K) [isCentral : Algebra.IsCentral K โtoAlgebraCat] [isSimple : IsSimpleRing โtoAlgebraCat] [fin_dim : FiniteDimensional K โtoAlgebraCat] : sizeOf { toAlgebraCat := toAlgebraCat, isCentral := isCentral, isSimple := isSimple, fin_dim := fin_dim } = 1 + sizeOf toAlgebraCat + sizeOf isCentral + sizeOf isSimple + sizeOf fin_dim - LinearIndependent.span_eq_top_of_card_eq_finrank' ๐ Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ฮน : Type u_1} [Fintype ฮน] [FiniteDimensional K V] {b : ฮน โ V} (lin_ind : LinearIndependent K b) (card_eq : Fintype.card ฮน = Module.finrank K V) : Submodule.span K (Set.range b) = โค - Submodule.finrank_lt ๐ Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {s : Submodule K V} (h : s โ โค) : Module.finrank K โฅs < Module.finrank K V - Submodule.finrank_strictMono ๐ Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] : StrictMono fun s => Module.finrank K โฅs - LinearMap.linearEquivOfInjective ๐ Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Vโ : Type v'} [AddCommGroup Vโ] [Module K Vโ] [FiniteDimensional K V] [FiniteDimensional K Vโ] (f : V โโ[K] Vโ) (hf : Function.Injective โf) (hdim : Module.finrank K V = Module.finrank K Vโ) : V โโ[K] Vโ - LinearMap.injective_iff_surjective_of_finrank_eq_finrank ๐ Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Vโ : Type v'} [AddCommGroup Vโ] [Module K Vโ] [FiniteDimensional K V] [FiniteDimensional K Vโ] (H : Module.finrank K V = Module.finrank K Vโ) {f : V โโ[K] Vโ} : Function.Injective โf โ Function.Surjective โf - LinearMap.ker_ne_bot_of_finrank_lt ๐ Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Vโ : Type v'} [AddCommGroup Vโ] [Module K Vโ] [FiniteDimensional K V] [FiniteDimensional K Vโ] {f : V โโ[K] Vโ} (h : Module.finrank K Vโ < Module.finrank K V) : LinearMap.ker f โ โฅ - Submodule.finrank_add_finrank_le_of_disjoint ๐ Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {s t : Submodule K V} (hdisjoint : Disjoint s t) : Module.finrank K โฅs + Module.finrank K โฅt โค Module.finrank K V - Submodule.finrank_add_eq_of_isCompl ๐ Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {U W : Submodule K V} (h : IsCompl U W) : Module.finrank K โฅU + Module.finrank K โฅW = Module.finrank K V - Submodule.finrank_lt_finrank_of_lt ๐ Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {s t : Submodule K V} [FiniteDimensional K โฅt] (hst : s < t) : Module.finrank K โฅs < Module.finrank K โฅt - FiniteDimensional.LinearEquiv.quotEquivOfQuotEquiv ๐ Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {p q : Subspace K V} (f : (V โงธ p) โโ[K] โฅq) : (V โงธ q) โโ[K] โฅp - Submodule.isCompl_iff_disjoint ๐ Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (s t : Submodule K V) (hdim : Module.finrank K V โค Module.finrank K โฅs + Module.finrank K โฅt) : IsCompl s t โ Disjoint s t - Submodule.eq_top_of_disjoint ๐ Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (s t : Submodule K V) (hdim : Module.finrank K V โค Module.finrank K โฅs + Module.finrank K โฅt) (hdisjoint : Disjoint s t) : s โ t = โค - Module.End.exists_ker_pow_eq_ker_pow_succ ๐ Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : Module.End K V) : โ k โค Module.finrank K V, LinearMap.ker (f ^ k) = LinearMap.ker (f ^ k.succ) - FiniteDimensional.LinearEquiv.quotEquivOfEquiv ๐ Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Vโ : Type v'} [AddCommGroup Vโ] [Module K Vโ] [FiniteDimensional K V] [FiniteDimensional K Vโ] {p : Subspace K V} {q : Subspace K Vโ} (fโ : โฅp โโ[K] โฅq) (fโ : V โโ[K] Vโ) : (V โงธ p) โโ[K] Vโ โงธ q - Module.End.ker_pow_eq_ker_pow_finrank_of_le ๐ Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f : Module.End K V} {m : โ} (hm : Module.finrank K V โค m) : LinearMap.ker (f ^ m) = LinearMap.ker (f ^ Module.finrank K V) - LinearMap.linearEquivOfInjective_apply ๐ Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Vโ : Type v'} [AddCommGroup Vโ] [Module K Vโ] [FiniteDimensional K V] [FiniteDimensional K Vโ] {f : V โโ[K] Vโ} (hf : Function.Injective โf) (hdim : Module.finrank K V = Module.finrank K Vโ) (x : V) : (f.linearEquivOfInjective hf hdim) x = f x - LinearMap.ker_eq_bot_iff_range_eq_top_of_finrank_eq_finrank ๐ Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Vโ : Type v'} [AddCommGroup Vโ] [Module K Vโ] [FiniteDimensional K V] [FiniteDimensional K Vโ] (H : Module.finrank K V = Module.finrank K Vโ) {f : V โโ[K] Vโ} : LinearMap.ker f = โฅ โ LinearMap.range f = โค - Module.End.ker_pow_le_ker_pow_finrank ๐ Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : Module.End K V) (m : โ) : LinearMap.ker (f ^ m) โค LinearMap.ker (f ^ Module.finrank K V) - Submodule.finrank_add_le_finrank_add_finrank ๐ Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (s t : Submodule K V) [FiniteDimensional K โฅs] [FiniteDimensional K โฅt] : Module.finrank K โฅ(s โ t) โค Module.finrank K โฅs + Module.finrank K โฅt - Submodule.finrank_sup_add_finrank_inf_eq ๐ Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (s t : Submodule K V) [FiniteDimensional K โฅs] [FiniteDimensional K โฅt] : Module.finrank K โฅ(s โ t) + Module.finrank K โฅ(s โ t) = Module.finrank K โฅs + Module.finrank K โฅt - LinearMap.finrank_range_add_finrank_ker ๐ Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Vโ : Type v'} [AddCommGroup Vโ] [Module K Vโ] [FiniteDimensional K V] (f : V โโ[K] Vโ) : Module.finrank K โฅ(LinearMap.range f) + Module.finrank K โฅ(LinearMap.ker f) = Module.finrank K V - FiniteDimensional.eq_1 ๐ Mathlib.LinearAlgebra.Dual.Lemmas
(K : Type u_1) (V : Type u_2) [DivisionRing K] [AddCommGroup V] [Module K V] : FiniteDimensional K V = Module.Finite K V - Module.instFiniteDimensionalOfIsReflexive ๐ Mathlib.LinearAlgebra.Dual.Lemmas
(K : Type u_4) (V : Type u_5) [Field K] [AddCommGroup V] [Module K V] [Module.IsReflexive K V] : FiniteDimensional K V - Subspace.instModuleDualFiniteDimensional ๐ Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] : FiniteDimensional K (Module.Dual K V) - Basis.linearEquiv_dual_iff_finiteDimensional ๐ Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type uK} {V : Type uV} [Field K] [AddCommGroup V] [Module K V] : Nonempty (V โโ[K] Module.Dual K V) โ FiniteDimensional K V - Module.Dual.eq_of_ker_eq_of_apply_eq ๐ Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {Vโ : Type u_2} [Field K] [AddCommGroup Vโ] [Module K Vโ] [FiniteDimensional K Vโ] {f g : Module.Dual K Vโ} (x : Vโ) (h : LinearMap.ker f = LinearMap.ker g) (h' : f x = g x) (hx : f x โ 0) : f = g - Module.Dual.isCompl_ker_of_disjoint_of_ne_bot ๐ Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {Vโ : Type u_2} [Field K] [AddCommGroup Vโ] [Module K Vโ] {f : Module.Dual K Vโ} (hf : f โ 0) [FiniteDimensional K Vโ] {p : Submodule K Vโ} (hpf : Disjoint (LinearMap.ker f) p) (hp : p โ โฅ) : IsCompl (LinearMap.ker f) p - Module.Dual.finrank_ker_add_one_of_ne_zero ๐ Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {Vโ : Type u_2} [Field K] [AddCommGroup Vโ] [Module K Vโ] {f : Module.Dual K Vโ} (hf : f โ 0) [FiniteDimensional K Vโ] : Module.finrank K โฅ(LinearMap.ker f) + 1 = Module.finrank K Vโ - Subspace.finrank_add_finrank_dualAnnihilator_eq ๐ Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (W : Subspace K V) : Module.finrank K โฅW + Module.finrank K โฅ(Submodule.dualAnnihilator W) = Module.finrank K V - Subspace.quotEquivAnnihilator ๐ Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (W : Subspace K V) : (V โงธ W) โโ[K] โฅ(Submodule.dualAnnihilator W) - Subspace.finiteDimensional_quot_dualCoannihilator_iff ๐ Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_4} {V : Type u_5} [Field K] [AddCommGroup V] [Module K V] {W : Submodule K (Module.Dual K V)} : FiniteDimensional K (V โงธ W.dualCoannihilator) โ FiniteDimensional K โฅW - Subspace.finrank_add_finrank_dualCoannihilator_eq ๐ Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (W : Subspace K (Module.Dual K V)) : Module.finrank K โฅW + Module.finrank K โฅ(Submodule.dualCoannihilator W) = Module.finrank K V - Subspace.dualCoannihilator_dualAnnihilator_eq ๐ Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_4} {V : Type u_5} [Field K] [AddCommGroup V] [Module K V] {W : Subspace K (Module.Dual K V)} [FiniteDimensional K โฅW] : (Submodule.dualCoannihilator W).dualAnnihilator = W - Subspace.orderIsoFiniteDimensional ๐ Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_4} {V : Type u_5} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] : Subspace K V โo (Subspace K (Module.Dual K V))แตแต - FiniteDimensional.mem_span_of_iInf_ker_le_ker ๐ Mathlib.LinearAlgebra.Dual.Lemmas
{ฮน : Type u_3} {๐ : Type u_4} {E : Type u_5} [Field ๐] [AddCommGroup E] [Module ๐ E] [FiniteDimensional ๐ E] {L : ฮน โ E โโ[๐] ๐} {K : E โโ[๐] ๐} (h : โจ i, LinearMap.ker (L i) โค LinearMap.ker K) : K โ Submodule.span ๐ (Set.range L) - LinearMap.flip_bijective_iffโ ๐ Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {Vโ : Type u_2} {Vโ : Type u_3} [Field K] [AddCommGroup Vโ] [Module K Vโ] [AddCommGroup Vโ] [Module K Vโ] {B : Vโ โโ[K] Vโ โโ[K] K} [FiniteDimensional K Vโ] : Function.Bijective โB.flip โ Function.Bijective โB - LinearMap.flip_bijective_iffโ ๐ Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {Vโ : Type u_2} {Vโ : Type u_3} [Field K] [AddCommGroup Vโ] [Module K Vโ] [AddCommGroup Vโ] [Module K Vโ] {B : Vโ โโ[K] Vโ โโ[K] K} [FiniteDimensional K Vโ] : Function.Bijective โB.flip โ Function.Bijective โB - LinearMap.flip_injective_iffโ ๐ Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {Vโ : Type u_2} {Vโ : Type u_3} [Field K] [AddCommGroup Vโ] [Module K Vโ] [AddCommGroup Vโ] [Module K Vโ] {B : Vโ โโ[K] Vโ โโ[K] K} [FiniteDimensional K Vโ] : Function.Injective โB.flip โ Function.Surjective โB - LinearMap.flip_injective_iffโ ๐ Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {Vโ : Type u_2} {Vโ : Type u_3} [Field K] [AddCommGroup Vโ] [Module K Vโ] [AddCommGroup Vโ] [Module K Vโ] {B : Vโ โโ[K] Vโ โโ[K] K} [FiniteDimensional K Vโ] : Function.Injective โB.flip โ Function.Surjective โB - LinearMap.flip_surjective_iffโ ๐ Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {Vโ : Type u_2} {Vโ : Type u_3} [Field K] [AddCommGroup Vโ] [Module K Vโ] [AddCommGroup Vโ] [Module K Vโ] {B : Vโ โโ[K] Vโ โโ[K] K} [FiniteDimensional K Vโ] : Function.Surjective โB.flip โ Function.Injective โB - LinearMap.flip_surjective_iffโ ๐ Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {Vโ : Type u_2} {Vโ : Type u_3} [Field K] [AddCommGroup Vโ] [Module K Vโ] [AddCommGroup Vโ] [Module K Vโ] {B : Vโ โโ[K] Vโ โโ[K] K} [FiniteDimensional K Vโ] : Function.Surjective โB.flip โ Function.Injective โB - Subspace.dualAnnihilator_dualAnnihilator_eq_map ๐ Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_4} {V : Type u_5} [Field K] [AddCommGroup V] [Module K V] (W : Subspace K V) [FiniteDimensional K โฅW] : (Submodule.dualAnnihilator W).dualAnnihilator = Submodule.map (Module.Dual.eval K V) W - Subspace.map_dualCoannihilator ๐ Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_4} {V : Type u_5} [Field K] [AddCommGroup V] [Module K V] (W : Subspace K (Module.Dual K V)) [FiniteDimensional K V] : Submodule.map (Module.Dual.eval K V) (Submodule.dualCoannihilator W) = Submodule.dualAnnihilator W - Subspace.orderIsoFiniteCodimDim ๐ Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_4} {V : Type u_5} [Field K] [AddCommGroup V] [Module K V] : { W // FiniteDimensional K (V โงธ W) } โo { W // FiniteDimensional K โฅW }แตแต - Subspace.finrank_dualCoannihilator_eq ๐ Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {ฮฆ : Subspace K (Module.Dual K V)} : Module.finrank K โฅ(Submodule.dualCoannihilator ฮฆ) = Module.finrank K โฅ(Submodule.dualAnnihilator ฮฆ) - Subspace.flip_quotDualCoannihilatorToDual_bijective ๐ Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_4} {V : Type u_5} [Field K] [AddCommGroup V] [Module K V] (W : Subspace K (Module.Dual K V)) [FiniteDimensional K โฅW] : Function.Bijective โ(Submodule.quotDualCoannihilatorToDual W).flip - Subspace.dualQuotDistrib ๐ Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {Vโ : Type u_2} [Field K] [AddCommGroup Vโ] [Module K Vโ] [FiniteDimensional K Vโ] (W : Subspace K Vโ) : Module.Dual K (Vโ โงธ W) โโ[K] Module.Dual K Vโ โงธ LinearMap.range W.dualLift - Subspace.dualAnnihilator_dualAnnihilator_eq ๐ Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (W : Subspace K V) : (Submodule.dualAnnihilator W).dualAnnihilator = (Module.mapEvalEquiv K V) W - Subspace.quotDualEquivAnnihilator ๐ Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (W : Subspace K V) : (Module.Dual K V โงธ LinearMap.range W.dualLift) โโ[K] โฅ(Submodule.dualAnnihilator W) - Subspace.quotDualCoannihilatorToDual_bijective ๐ Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_4} {V : Type u_5} [Field K] [AddCommGroup V] [Module K V] (W : Subspace K (Module.Dual K V)) [FiniteDimensional K โฅW] : Function.Bijective โ(Submodule.quotDualCoannihilatorToDual W) - coevaluation ๐ Mathlib.LinearAlgebra.Coevaluation
(K : Type u) [Field K] (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] : K โโ[K] TensorProduct K V (Module.Dual K V) - coevaluation_apply_one ๐ Mathlib.LinearAlgebra.Coevaluation
(K : Type u) [Field K] (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] : (coevaluation K V) 1 = let bV := Basis.ofVectorSpace K V; โ i, bV i โโ[K] bV.coord i - coevaluation.eq_1 ๐ Mathlib.LinearAlgebra.Coevaluation
(K : Type u) [Field K] (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] : coevaluation K V = ((Basis.singleton Unit K).constr K) fun x => โ i, (Basis.ofVectorSpace K V) i โโ[K] (Basis.ofVectorSpace K V).coord i - contractLeft_assoc_coevaluation' ๐ Mathlib.LinearAlgebra.Coevaluation
(K : Type u) [Field K] (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] : LinearMap.lTensor V (contractLeft K V) โโ โ(TensorProduct.assoc K V (Module.Dual K V) V) โโ LinearMap.rTensor V (coevaluation K V) = โ(TensorProduct.rid K V).symm โโ โ(TensorProduct.lid K V) - contractLeft_assoc_coevaluation ๐ Mathlib.LinearAlgebra.Coevaluation
(K : Type u) [Field K] (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] : LinearMap.rTensor (Module.Dual K V) (contractLeft K V) โโ โ(TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V)).symm โโ LinearMap.lTensor (Module.Dual K V) (coevaluation K V) = โ(TensorProduct.lid K (Module.Dual K V)).symm โโ โ(TensorProduct.rid K (Module.Dual K V)) - FGModuleCat.instFiniteDimensionalCarrierPiObjModuleCatOfFinite ๐ Mathlib.Algebra.Category.FGModuleCat.Limits
{k : Type v} [Field k] {J : Type} [Finite J] (Z : J โ ModuleCat k) [โ (j : J), FiniteDimensional k โ(Z j)] : FiniteDimensional k โ(โแถ fun j => Z j) - FGModuleCat.instFiniteDimensionalCarrierLimitModuleCatCompForgetโ ๐ Mathlib.Algebra.Category.FGModuleCat.Limits
{J : Type} [CategoryTheory.SmallCategory J] [CategoryTheory.FinCategory J] {k : Type v} [Field k] (F : CategoryTheory.Functor J (FGModuleCat k)) : FiniteDimensional k โ(CategoryTheory.Limits.limit (F.comp (CategoryTheory.forgetโ (FGModuleCat k) (ModuleCat k)))) - IsLocalRing.instFiniteDimensionalResidueFieldCotangentSpaceOfIsNoetherianRing ๐ Mathlib.RingTheory.Ideal.Cotangent
(R : Type u_1) [CommRing R] [IsLocalRing R] [IsNoetherianRing R] : FiniteDimensional (IsLocalRing.ResidueField R) (IsLocalRing.CotangentSpace R) - LinearMap.BilinForm.exists_orthogonal_basis ๐ Mathlib.LinearAlgebra.QuadraticForm.Basic
{V : Type u} {K : Type v} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] [hK : Invertible 2] {B : LinearMap.BilinForm K V} (hBโ : LinearMap.IsSymm B) : โ v, LinearMap.IsOrthoแตข B โv - QuadraticForm.equivalent_weightedSumSquares ๐ Mathlib.LinearAlgebra.QuadraticForm.IsometryEquiv
{K : Type u_3} {V : Type u_8} [Field K] [Invertible 2] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (Q : QuadraticForm K V) : โ w, QuadraticMap.Equivalent Q (QuadraticMap.weightedSumSquares K w) - QuadraticForm.equivalent_weightedSumSquares_units_of_nondegenerate' ๐ Mathlib.LinearAlgebra.QuadraticForm.IsometryEquiv
{K : Type u_3} {V : Type u_8} [Field K] [Invertible 2] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (Q : QuadraticForm K V) (hQ : LinearMap.SeparatingLeft (QuadraticMap.associated Q)) : โ w, QuadraticMap.Equivalent Q (QuadraticMap.weightedSumSquares K w) - AlgHom.bijective ๐ Mathlib.RingTheory.Algebraic.Integral
{K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] [FiniteDimensional K L] (ฯ : L โโ[K] L) : Function.Bijective โฯ - algEquivEquivAlgHom ๐ Mathlib.RingTheory.Algebraic.Integral
(K : Type u_1) (L : Type u_2) [Field K] [Field L] [Algebra K L] [FiniteDimensional K L] : (L โโ[K] L) โ* (L โโ[K] L) - IsIntegralClosure.isFractionRing_of_finite_extension ๐ Mathlib.RingTheory.Localization.Integral
(A : Type u_3) (K : Type u_4) [CommRing A] (L : Type u_5) [Field K] [Field L] [Algebra A K] [Algebra A L] [IsFractionRing A K] (C : Type u_6) [CommRing C] [IsDomain C] [Algebra C L] [IsIntegralClosure C A L] [Algebra A C] [IsScalarTower A C L] [IsDomain A] [Algebra K L] [IsScalarTower A K L] [FiniteDimensional K L] : IsFractionRing C L - integralClosure.isFractionRing_of_finite_extension ๐ Mathlib.RingTheory.Localization.Integral
{A : Type u_3} (K : Type u_4) [CommRing A] (L : Type u_5) [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [IsDomain A] [Algebra A L] [Algebra K L] [IsScalarTower A K L] [FiniteDimensional K L] : IsFractionRing (โฅ(integralClosure A L)) L - Module.End.maxUnifEigenspaceIndex_le_finrank ๐ Mathlib.LinearAlgebra.Eigenspace.Basic
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : Module.End K V) (ฮผ : K) : f.maxUnifEigenspaceIndex ฮผ โค Module.finrank K V - Module.End.HasEigenvalue.of_mem_spectrum ๐ Mathlib.LinearAlgebra.Eigenspace.Basic
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f : Module.End K V} {ฮผ : K} : ฮผ โ spectrum K f โ f.HasEigenvalue ฮผ - Module.End.hasEigenvalue_iff_mem_spectrum ๐ Mathlib.LinearAlgebra.Eigenspace.Basic
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f : Module.End K V} {ฮผ : K} : f.HasEigenvalue ฮผ โ ฮผ โ spectrum K f - Module.End.HasUnifEigenvalue.of_mem_spectrum ๐ Mathlib.LinearAlgebra.Eigenspace.Basic
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f : Module.End K V} {ฮผ : K} : ฮผ โ spectrum K f โ f.HasUnifEigenvalue ฮผ 1 - Module.End.hasUnifEigenvalue_iff_mem_spectrum ๐ Mathlib.LinearAlgebra.Eigenspace.Basic
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f : Module.End K V} {ฮผ : K} : f.HasUnifEigenvalue ฮผ 1 โ ฮผ โ spectrum K f - Module.End.maxGenEigenspace_eq_genEigenspace_finrank ๐ Mathlib.LinearAlgebra.Eigenspace.Basic
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : Module.End K V) (ฮผ : K) : f.maxGenEigenspace ฮผ = (f.genEigenspace ฮผ) โ(Module.finrank K V) - Module.End.generalized_eigenvec_disjoint_range_ker ๐ Mathlib.LinearAlgebra.Eigenspace.Basic
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : Module.End K V) (ฮผ : K) : Disjoint (f.genEigenrange ฮผ โ(Module.finrank K V)) ((f.genEigenspace ฮผ) โ(Module.finrank K V)) - Module.End.genEigenspace_eq_genEigenspace_finrank_of_le ๐ Mathlib.LinearAlgebra.Eigenspace.Basic
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : Module.End K V) (ฮผ : K) {k : โ} (hk : Module.finrank K V โค k) : (f.genEigenspace ฮผ) โk = (f.genEigenspace ฮผ) โ(Module.finrank K V) - Module.End.genEigenspace_le_genEigenspace_finrank ๐ Mathlib.LinearAlgebra.Eigenspace.Basic
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : Module.End K V) (ฮผ : K) (k : โโ) : (f.genEigenspace ฮผ) k โค (f.genEigenspace ฮผ) โ(Module.finrank K V) - Module.End.pos_finrank_genEigenspace_of_hasEigenvalue ๐ Mathlib.LinearAlgebra.Eigenspace.Basic
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f : Module.End K V} {k : โ} {ฮผ : K} (hx : f.HasEigenvalue ฮผ) (hk : 0 < k) : 0 < Module.finrank K โฅ((f.genEigenspace ฮผ) โk) - integralClosure.isIntegrallyClosedOfFiniteExtension ๐ Mathlib.RingTheory.IntegralClosure.IntegrallyClosed
{R : Type u_1} [CommRing R] (K : Type u_2) [Field K] [Algebra R K] [IsFractionRing R K] {L : Type u_3} [Field L] [Algebra K L] [Algebra R L] [IsScalarTower R K L] [IsDomain R] [FiniteDimensional K L] : IsIntegrallyClosed โฅ(integralClosure R L) - LinearMap.finiteDimensional_of_det_ne_one ๐ Mathlib.LinearAlgebra.Determinant
{M : Type u_2} [AddCommGroup M] {๐ : Type u_7} [Field ๐] [Module ๐ M] (f : M โโ[๐] M) (hf : LinearMap.det f โ 1) : FiniteDimensional ๐ M - LinearMap.equivOfDetNeZero ๐ Mathlib.LinearAlgebra.Determinant
{๐ : Type u_5} [Field ๐] {M : Type u_6} [AddCommGroup M] [Module ๐ M] [FiniteDimensional ๐ M] (f : M โโ[๐] M) (hf : LinearMap.det f โ 0) : M โโ[๐] M - minpoly.AlgHom.fintype ๐ Mathlib.FieldTheory.Minpoly.Field
(F : Type u_3) (E : Type u_4) (K : Type u_5) [Field F] [Ring E] [CommRing K] [IsDomain K] [Algebra F E] [Algebra F K] [FiniteDimensional F E] : Fintype (E โโ[F] K) - minpoly.ne_zero_of_finite ๐ Mathlib.FieldTheory.Minpoly.Field
(A : Type u_1) {B : Type u_2} [Field A] [Ring B] [Algebra A B] (e : B) [FiniteDimensional A B] : minpoly A e โ 0 - minpoly.rootsOfMinPolyPiType ๐ Mathlib.FieldTheory.Minpoly.Field
(F : Type u_3) (E : Type u_4) (K : Type u_5) [Field F] [Ring E] [CommRing K] [IsDomain K] [Algebra F E] [Algebra F K] [FiniteDimensional F E] (ฯ : E โโ[F] K) (x : โ(Set.range โ(Module.finBasis F E))) : { l // l โ (minpoly F โx).aroots K } - minpoly.aux_inj_roots_of_min_poly ๐ Mathlib.FieldTheory.Minpoly.Field
(F : Type u_3) (E : Type u_4) (K : Type u_5) [Field F] [Ring E] [CommRing K] [IsDomain K] [Algebra F E] [Algebra F K] [FiniteDimensional F E] : Function.Injective (minpoly.rootsOfMinPolyPiType F E K) - LinearMap.minpoly_dvd_charpoly ๐ Mathlib.LinearAlgebra.Charpoly.Basic
{K : Type u} {M : Type v} [Field K] [AddCommGroup M] [Module K M] [FiniteDimensional K M] (f : M โโ[K] M) : minpoly K f โฃ f.charpoly - Module.End.instFintypeEigenvalues ๐ Mathlib.LinearAlgebra.Eigenspace.Minpoly
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : Module.End K V) : Fintype f.Eigenvalues - Module.End.finite_hasEigenvalue ๐ Mathlib.LinearAlgebra.Eigenspace.Minpoly
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : Module.End K V) : Set.Finite f.HasEigenvalue - Module.End.finite_spectrum ๐ Mathlib.LinearAlgebra.Eigenspace.Minpoly
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : Module.End K V) : (spectrum K f).Finite - Module.End.hasEigenvalue_of_isRoot ๐ Mathlib.LinearAlgebra.Eigenspace.Minpoly
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f : Module.End K V} {ฮผ : K} (h : (minpoly K f).IsRoot ฮผ) : f.HasEigenvalue ฮผ - Module.End.hasEigenvalue_iff_isRoot ๐ Mathlib.LinearAlgebra.Eigenspace.Minpoly
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f : Module.End K V} {ฮผ : K} : f.HasEigenvalue ฮผ โ (minpoly K f).IsRoot ฮผ - LinearMap.BilinForm.Nondegenerate.flip ๐ Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} (hB : B.Nondegenerate) : B.flip.Nondegenerate - LinearMap.BilinForm.nonDegenerateFlip_iff ๐ Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} : B.flip.Nondegenerate โ B.Nondegenerate - LinearMap.BilinForm.symmCompOfNondegenerate ๐ Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (Bโ Bโ : LinearMap.BilinForm K V) (bโ : Bโ.Nondegenerate) : V โโ[K] V - LinearMap.BilinForm.dualBasis_dualBasis ๐ Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] (B : LinearMap.BilinForm K V) (hB : B.Nondegenerate) (hB' : B.IsSymm) {ฮน : Type u_10} [Finite ฮน] [DecidableEq ฮน] [FiniteDimensional K V] (b : Basis ฮน K V) : B.dualBasis hB (B.dualBasis hB b) = b - LinearMap.BilinForm.leftAdjointOfNondegenerate ๐ Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (B : LinearMap.BilinForm K V) (b : B.Nondegenerate) (ฯ : V โโ[K] V) : V โโ[K] V - LinearMap.BilinForm.dualBasis_dualBasis_flip ๐ Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (B : LinearMap.BilinForm K V) (hB : B.Nondegenerate) {ฮน : Type u_10} [Finite ฮน] [DecidableEq ฮน] (b : Basis ฮน K V) : B.dualBasis hB (B.flip.dualBasis โฏ b) = b - LinearMap.BilinForm.dualBasis_flip_dualBasis ๐ Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] (B : LinearMap.BilinForm K V) (hB : B.Nondegenerate) {ฮน : Type u_10} [Finite ฮน] [DecidableEq ฮน] [FiniteDimensional K V] (b : Basis ฮน K V) : B.flip.dualBasis โฏ (B.dualBasis hB b) = b - LinearMap.BilinForm.isAdjointPairLeftAdjointOfNondegenerate ๐ Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (B : LinearMap.BilinForm K V) (b : B.Nondegenerate) (ฯ : V โโ[K] V) : LinearMap.IsAdjointPair B B โ(B.leftAdjointOfNondegenerate b ฯ) โฯ - LinearMap.BilinForm.toDual ๐ Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (B : LinearMap.BilinForm K V) (b : B.Nondegenerate) : V โโ[K] Module.Dual K V - LinearMap.BilinForm.isAdjointPair_iff_eq_of_nondegenerate ๐ Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (B : LinearMap.BilinForm K V) (b : B.Nondegenerate) (ฯ ฯ : V โโ[K] V) : LinearMap.IsAdjointPair B B โฯ โฯ โ ฯ = B.leftAdjointOfNondegenerate b ฯ - LinearMap.BilinForm.symmCompOfNondegenerate.eq_1 ๐ Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (Bโ Bโ : LinearMap.BilinForm K V) (bโ : Bโ.Nondegenerate) : Bโ.symmCompOfNondegenerate Bโ bโ = โ(Bโ.toDual bโ).symm โโ Bโ - LinearMap.BilinForm.comp_symmCompOfNondegenerate_apply ๐ Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (Bโ : LinearMap.BilinForm K V) {Bโ : LinearMap.BilinForm K V} (bโ : Bโ.Nondegenerate) (v : V) : Bโ ((Bโ.symmCompOfNondegenerate Bโ bโ) v) = Bโ v - LinearMap.BilinForm.symmCompOfNondegenerate_left_apply ๐ Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (Bโ : LinearMap.BilinForm K V) {Bโ : LinearMap.BilinForm K V} (bโ : Bโ.Nondegenerate) (v w : V) : (Bโ ((Bโ.symmCompOfNondegenerate Bโ bโ) w)) v = (Bโ w) v - LinearMap.BilinForm.toDual_def ๐ Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} (b : LinearMap.SeparatingLeft B) {m n : V} : ((B.toDual b) m) n = (B m) n - LinearMap.BilinForm.apply_toDual_symm_apply ๐ Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} {hB : B.Nondegenerate} (f : Module.Dual K V) (v : V) : (B ((B.toDual hB).symm f)) v = f v - LinearMap.BilinForm.orthogonal_orthogonal ๐ Mathlib.LinearAlgebra.BilinearForm.Orthogonal
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} (hB : B.Nondegenerate) (hBโ : B.IsRefl) (W : Submodule K V) : B.orthogonal (B.orthogonal W) = W - LinearMap.BilinForm.isCompl_orthogonal_iff_disjoint ๐ Mathlib.LinearAlgebra.BilinearForm.Orthogonal
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} {W : Submodule K V} (hBโ : B.IsRefl) : IsCompl W (B.orthogonal W) โ Disjoint W (B.orthogonal W) - LinearMap.BilinForm.eq_top_of_restrict_nondegenerate_of_orthogonal_eq_bot ๐ Mathlib.LinearAlgebra.BilinearForm.Orthogonal
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} {W : Submodule K V} (bโ : B.IsRefl) (bโ : (B.restrict W).Nondegenerate) (bโ : B.orthogonal W = โฅ) : W = โค - LinearMap.BilinForm.isCompl_orthogonal_of_restrict_nondegenerate ๐ Mathlib.LinearAlgebra.BilinearForm.Orthogonal
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} {W : Submodule K V} (bโ : B.IsRefl) (bโ : (B.restrict W).Nondegenerate) : IsCompl W (B.orthogonal W) - LinearMap.BilinForm.orthogonal_eq_top_iff ๐ Mathlib.LinearAlgebra.BilinearForm.Orthogonal
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} {W : Submodule K V} (bโ : B.IsRefl) (bโ : (B.restrict W).Nondegenerate) : B.orthogonal W = โค โ W = โฅ - LinearMap.BilinForm.restrict_nondegenerate_iff_isCompl_orthogonal ๐ Mathlib.LinearAlgebra.BilinearForm.Orthogonal
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} {W : Submodule K V} (bโ : B.IsRefl) : (B.restrict W).Nondegenerate โ IsCompl W (B.orthogonal W) - LinearMap.BilinForm.orthogonal_eq_bot_iff ๐ Mathlib.LinearAlgebra.BilinearForm.Orthogonal
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} {W : Submodule K V} (bโ : B.IsRefl) (bโ : (B.restrict W).Nondegenerate) (bโ : B.Nondegenerate) : B.orthogonal W = โฅ โ W = โค - LinearMap.BilinForm.finrank_orthogonal ๐ Mathlib.LinearAlgebra.BilinearForm.Orthogonal
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} (hB : B.Nondegenerate) (hBโ : B.IsRefl) (W : Submodule K V) : Module.finrank K โฅ(B.orthogonal W) = Module.finrank K V - Module.finrank K โฅW - LinearMap.BilinForm.finrank_add_finrank_orthogonal ๐ Mathlib.LinearAlgebra.BilinearForm.Orthogonal
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} (bโ : B.IsRefl) (W : Submodule K V) : Module.finrank K โฅW + Module.finrank K โฅ(B.orthogonal W) = Module.finrank K V + Module.finrank K โฅ(W โ B.orthogonal โค) - IntermediateField.finiteDimensional_right ๐ Mathlib.FieldTheory.IntermediateField.Algebraic
{K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (F : IntermediateField K L) [FiniteDimensional K L] : FiniteDimensional (โฅF) L - IntermediateField.finiteDimensional_left ๐ Mathlib.FieldTheory.IntermediateField.Algebraic
{K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (F : IntermediateField K L) [FiniteDimensional K L] : FiniteDimensional K โฅF - IntermediateField.eq_of_le_of_finrank_eq' ๐ Mathlib.FieldTheory.IntermediateField.Algebraic
{K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} [FiniteDimensional (โฅF) L] (h_le : F โค E) (h_finrank : Module.finrank (โฅF) L = Module.finrank (โฅE) L) : F = E - IntermediateField.eq_of_le_of_finrank_le' ๐ Mathlib.FieldTheory.IntermediateField.Algebraic
{K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} [FiniteDimensional (โฅF) L] (h_le : F โค E) (h_finrank : Module.finrank (โฅF) L โค Module.finrank (โฅE) L) : F = E - im_finiteDimensional ๐ Mathlib.FieldTheory.IntermediateField.Algebraic
{K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {E : IntermediateField K L} (f : L โโ[K] L) [FiniteDimensional K โฅE] : FiniteDimensional K โฅ(IntermediateField.map f E) - IntermediateField.finiteDimensional_map ๐ Mathlib.FieldTheory.IntermediateField.Algebraic
{K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {E : IntermediateField K L} (f : L โโ[K] L) [FiniteDimensional K โฅE] : FiniteDimensional K โฅ(IntermediateField.map f E) - IntermediateField.eq_of_le_of_finrank_eq ๐ Mathlib.FieldTheory.IntermediateField.Algebraic
{K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} [FiniteDimensional K โฅE] (h_le : F โค E) (h_finrank : Module.finrank K โฅF = Module.finrank K โฅE) : F = E - IntermediateField.eq_of_le_of_finrank_le ๐ Mathlib.FieldTheory.IntermediateField.Algebraic
{K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} [hfin : FiniteDimensional K โฅE] (h_le : F โค E) (h_finrank : Module.finrank K โฅE โค Module.finrank K โฅF) : F = E - IntermediateField.induction_on_adjoin ๐ Mathlib.FieldTheory.IntermediateField.Adjoin.Algebra
{F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] [FiniteDimensional F E] (P : IntermediateField F E โ Prop) (base : P โฅ) (ih : โ (K : IntermediateField F E) (x : E), P K โ P (IntermediateField.restrictScalars F (โฅK)โฎxโฏ)) (K : IntermediateField F E) : P K - IntermediateField.sup_toSubalgebra_of_left ๐ Mathlib.FieldTheory.IntermediateField.Adjoin.Algebra
{K : Type u_3} {L : Type u_4} [Field K] [Field L] [Algebra K L] (E1 E2 : IntermediateField K L) [FiniteDimensional K โฅE1] : (E1 โ E2).toSubalgebra = E1.toSubalgebra โ E2.toSubalgebra - IntermediateField.sup_toSubalgebra_of_right ๐ Mathlib.FieldTheory.IntermediateField.Adjoin.Algebra
{K : Type u_3} {L : Type u_4} [Field K] [Field L] [Algebra K L] (E1 E2 : IntermediateField K L) [FiniteDimensional K โฅE2] : (E1 โ E2).toSubalgebra = E1.toSubalgebra โ E2.toSubalgebra
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08