Loogle!
Result
Found 1436 declarations mentioning FiniteDimensional. Of these, only the first 200 are shown.
- FiniteDimensional π Mathlib.LinearAlgebra.FiniteDimensional.Defs
(K : Type u_1) (V : Type u_2) [DivisionRing K] [AddCommGroup V] [Module K V] : Prop - FiniteDimensional.finiteDimensional_self π Mathlib.LinearAlgebra.FiniteDimensional.Defs
(K : Type u) [DivisionRing K] : FiniteDimensional K K - FiniteDimensional.instFintypeElemOfVectorSpaceIndex π Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] : Fintype β(Basis.ofVectorSpaceIndex K V) - FiniteDimensional.fintypeBasisIndex π Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ΞΉ : Type u_1} [FiniteDimensional K V] (b : Basis ΞΉ K V) : Fintype ΞΉ - FiniteDimensional.of_fintype_basis π Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ΞΉ : Type w} [Finite ΞΉ] (h : Basis ΞΉ K V) : FiniteDimensional K V - FiniteDimensional.of_finrank_eq_succ π Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {n : β} (hn : Module.finrank K V = n.succ) : FiniteDimensional K V - FiniteDimensional.of_finrank_pos π Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (h : 0 < Module.finrank K V) : FiniteDimensional K V - Module.finrank_of_infinite_dimensional π Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (h : Β¬FiniteDimensional K V) : Module.finrank K V = 0 - FiniteDimensional.of_finite_basis π Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ΞΉ : Type w} {s : Set ΞΉ} (h : Basis (βs) K V) (hs : s.Finite) : FiniteDimensional K V - FiniteDimensional.finiteDimensional_pi π Mathlib.LinearAlgebra.FiniteDimensional.Defs
(K : Type u) [DivisionRing K] {ΞΉ : Type u_1} [Finite ΞΉ] : FiniteDimensional K (ΞΉ β K) - FiniteDimensional.of_fact_finrank_eq_succ π Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (n : β) [hn : Fact (Module.finrank K V = n + 1)] : FiniteDimensional K V - Module.finrank_eq_rank' π Mathlib.LinearAlgebra.FiniteDimensional.Defs
(K : Type u) (V : Type v) [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] : β(Module.finrank K V) = Module.rank K V - Module.finrank_eq_card_basis' π Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {ΞΉ : Type w} (h : Basis ΞΉ K V) : β(Module.finrank K V) = Cardinal.mk ΞΉ - FiniteDimensional.finiteDimensional_pi' π Mathlib.LinearAlgebra.FiniteDimensional.Defs
(K : Type u) [DivisionRing K] {ΞΉ : Type u_1} [Finite ΞΉ] (M : ΞΉ β Type u_2) [(i : ΞΉ) β AddCommGroup (M i)] [(i : ΞΉ) β Module K (M i)] [β (i : ΞΉ), FiniteDimensional K (M i)] : FiniteDimensional K ((i : ΞΉ) β M i) - FiniteDimensional.finiteDimensional_quotient π Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (S : Submodule K V) : FiniteDimensional K (V β§Έ S) - LinearEquiv.finiteDimensional π Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Vβ : Type v'} [AddCommGroup Vβ] [Module K Vβ] (f : V ββ[K] Vβ) [FiniteDimensional K V] : FiniteDimensional K Vβ - Module.finiteDimensional_iff_of_rank_eq_nsmul π Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {W : Type v} [AddCommGroup W] [Module K W] {n : β} (hn : n β 0) (hVW : Module.rank K V = n β’ Module.rank K W) : FiniteDimensional K V β FiniteDimensional K W - FiniteDimensional.finiteDimensional_submodule π Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (S : Submodule K V) : FiniteDimensional K β₯S - Submodule.fg_iff_finiteDimensional π Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (s : Submodule K V) : s.FG β FiniteDimensional K β₯s - FiniteDimensional.span_of_finite π Mathlib.LinearAlgebra.FiniteDimensional.Defs
(K : Type u) {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {A : Set V} (hA : A.Finite) : FiniteDimensional K β₯(Submodule.span K A) - FiniteDimensional.span_finset π Mathlib.LinearAlgebra.FiniteDimensional.Defs
(K : Type u) {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (s : Finset V) : FiniteDimensional K β₯(Submodule.span K βs) - FiniteDimensional.span_singleton π Mathlib.LinearAlgebra.FiniteDimensional.Defs
(K : Type u) {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (x : V) : FiniteDimensional K β₯(Submodule.span K {x}) - FiniteDimensional.of_injective π Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Vβ : Type v'} [AddCommGroup Vβ] [Module K Vβ] (f : V ββ[K] Vβ) (w : Function.Injective βf) [FiniteDimensional K Vβ] : FiniteDimensional K V - FiniteDimensional.of_surjective π Mathlib.LinearAlgebra.FiniteDimensional.Defs
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Vβ : Type v'} [AddCommGroup Vβ] [Module K Vβ] (f : V ββ[K] Vβ) (w : Function.Surjective βf) [FiniteDimensional K V] : FiniteDimensional K Vβ - FiniteDimensional.trans π Mathlib.LinearAlgebra.FiniteDimensional.Defs
(F : Type u_1) (K : Type u_2) (A : Type u_3) [DivisionRing F] [DivisionRing K] [AddCommGroup A] [Module F K] [Module K A] [Module F A] [IsScalarTower F K A] [FiniteDimensional F K] [FiniteDimensional K A] : FiniteDimensional F A - FiniteDimensional.instSubtypeMemSubmoduleMapLinearMapId π Mathlib.LinearAlgebra.FiniteDimensional.Defs
(K : Type u) {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Vβ : Type v'} [AddCommGroup Vβ] [Module K Vβ] (f : V ββ[K] Vβ) (p : Submodule K V) [FiniteDimensional K β₯p] : FiniteDimensional K β₯(Submodule.map f p) - FiniteDimensional.of_rank_eq_nat π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {n : β} (h : Module.rank K V = βn) : FiniteDimensional K V - FiniteDimensional.of_rank_eq_one π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (h : Module.rank K V = 1) : FiniteDimensional K V - FiniteDimensional.of_rank_eq_zero π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (h : Module.rank K V = 0) : FiniteDimensional K V - divisionRingOfFiniteDimensional π Mathlib.LinearAlgebra.FiniteDimensional.Basic
(F : Type u_1) (K : Type u_2) [Field F] [Ring K] [IsDomain K] [Algebra F K] [FiniteDimensional F K] : DivisionRing K - LinearIndependent.lt_aleph0_of_finiteDimensional π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ΞΉ : Type w} [FiniteDimensional K V] {v : ΞΉ β V} (h : LinearIndependent K v) : Cardinal.mk ΞΉ < Cardinal.aleph0 - fieldOfFiniteDimensional π Mathlib.LinearAlgebra.FiniteDimensional.Basic
(F : Type u_1) (K : Type u_2) [Field F] [h : CommRing K] [IsDomain K] [Algebra F K] [FiniteDimensional F K] : Field K - basisOfFinrankZero π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {ΞΉ : Type u_1} [IsEmpty ΞΉ] (hV : Module.finrank K V = 0) : Basis ΞΉ K V - finiteDimensional_finsupp π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ΞΉ : Type u_1} [Finite ΞΉ] [FiniteDimensional K V] : FiniteDimensional K (ΞΉ ββ V) - finrank_zero_iff_forall_zero π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] : Module.finrank K V = 0 β β (x : V), x = 0 - Set.finrank_mono π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {s t : Set V} (h : s β t) : Set.finrank K s β€ Set.finrank K t - FiniteDimensional.isUnit π Mathlib.LinearAlgebra.FiniteDimensional.Basic
(F : Type u_1) {K : Type u_2} [Field F] [Ring K] [IsDomain K] [Algebra F K] [FiniteDimensional F K] {x : K} (H : x β 0) : IsUnit x - FiniteDimensional.exists_mul_eq_one π Mathlib.LinearAlgebra.FiniteDimensional.Basic
(F : Type u_1) {K : Type u_2} [Field F] [Ring K] [IsDomain K] [Algebra F K] [FiniteDimensional F K] {x : K} (H : x β 0) : β y, x * y = 1 - finiteDimensional_bot π Mathlib.LinearAlgebra.FiniteDimensional.Basic
(K : Type u) (V : Type v) [DivisionRing K] [AddCommGroup V] [Module K V] : FiniteDimensional K β₯β₯ - Submodule.eq_top_of_finrank_eq π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {S : Submodule K V} (h : Module.finrank K β₯S = Module.finrank K V) : S = β€ - FiniteDimensional.finiteDimensional_subalgebra π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{F : Type u_1} {E : Type u_2} [Field F] [Ring E] [Algebra F E] [FiniteDimensional F E] (S : Subalgebra F E) : FiniteDimensional F β₯S - LinearEquiv.ofInjectiveEndo π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : V ββ[K] V) (h_inj : Function.Injective βf) : V ββ[K] V - LinearMap.surjective_of_injective π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f : V ββ[K] V} (hinj : Function.Injective βf) : Function.Surjective βf - LinearMap.injective_iff_surjective π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f : V ββ[K] V} : Function.Injective βf β Function.Surjective βf - LinearEquiv.ofInjectiveOfFinrankEq π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {V' : Type u_1} [AddCommGroup V'] [Module K V'] [FiniteDimensional K V'] (f : V ββ[K] V') (hinj : Function.Injective βf) (hrank : Module.finrank K V = Module.finrank K V') : V ββ[K] V' - LinearMap.finiteDimensional_of_surjective π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Vβ : Type v'} [AddCommGroup Vβ] [Module K Vβ] [FiniteDimensional K V] (f : V ββ[K] Vβ) (hf : LinearMap.range f = β€) : FiniteDimensional K Vβ - Submodule.finiteDimensional_inf_left π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (Sβ Sβ : Submodule K V) [FiniteDimensional K β₯Sβ] : FiniteDimensional K β₯(Sβ β Sβ) - Submodule.finiteDimensional_inf_right π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (Sβ Sβ : Submodule K V) [FiniteDimensional K β₯Sβ] : FiniteDimensional K β₯(Sβ β Sβ) - Submodule.finiteDimensional_of_le π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Sβ Sβ : Submodule K V} [FiniteDimensional K β₯Sβ] (h : Sβ β€ Sβ) : FiniteDimensional K β₯Sβ - LinearEquiv.coe_ofInjectiveOfFinrankEq π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {V' : Type u_1} [AddCommGroup V'] [Module K V'] [FiniteDimensional K V'] (f : V ββ[K] V') (hinj : Function.Injective βf) (hrank : Module.finrank K V = Module.finrank K V') : β(LinearEquiv.ofInjectiveOfFinrankEq f hinj hrank) = f - LinearMap.isUnit_iff_ker_eq_bot π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : V ββ[K] V) : IsUnit f β LinearMap.ker f = β₯ - LinearMap.isUnit_iff_range_eq_top π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : V ββ[K] V) : IsUnit f β LinearMap.range f = β€ - FiniteDimensional.exists_relation_sum_zero_pos_coefficient_of_finrank_succ_lt_card π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{L : Type u_1} [Field L] [LinearOrder L] [IsStrictOrderedRing L] {W : Type v} [AddCommGroup W] [Module L W] [FiniteDimensional L W] {t : Finset W} (h : Module.finrank L W + 1 < t.card) : β f, β e β t, f e β’ e = 0 β§ β e β t, f e = 0 β§ β x β t, 0 < f x - Submodule.finiteDimensional_iSup π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ΞΉ : Sort u_1} [Finite ΞΉ] (S : ΞΉ β Submodule K V) [β (i : ΞΉ), FiniteDimensional K β₯(S i)] : FiniteDimensional K β₯(β¨ i, S i) - LinearMap.comp_eq_id_comm π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f g : V ββ[K] V} : f ββ g = LinearMap.id β g ββ f = LinearMap.id - Submodule.eq_of_le_of_finrank_eq π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Sβ Sβ : Submodule K V} [FiniteDimensional K β₯Sβ] (hle : Sβ β€ Sβ) (hd : Module.finrank K β₯Sβ = Module.finrank K β₯Sβ) : Sβ = Sβ - Submodule.eq_of_le_of_finrank_le π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Sβ Sβ : Submodule K V} [FiniteDimensional K β₯Sβ] (hle : Sβ β€ Sβ) (hd : Module.finrank K β₯Sβ β€ Module.finrank K β₯Sβ) : Sβ = Sβ - LinearEquiv.coe_ofInjectiveEndo π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : V ββ[K] V) (h_inj : Function.Injective βf) : β(LinearEquiv.ofInjectiveEndo f h_inj) = βf - LinearMap.ker_eq_bot_iff_range_eq_top π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f : V ββ[K] V} : LinearMap.ker f = β₯ β LinearMap.range f = β€ - Submodule.finiteDimensional_finset_sup π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ΞΉ : Type u_1} (s : Finset ΞΉ) (S : ΞΉ β Submodule K V) [β (i : ΞΉ), FiniteDimensional K β₯(S i)] : FiniteDimensional K β₯(s.sup S) - Submodule.finiteDimensional_sup π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (Sβ Sβ : Submodule K V) [hβ : FiniteDimensional K β₯Sβ] [hβ : FiniteDimensional K β₯Sβ] : FiniteDimensional K β₯(Sβ β Sβ) - LinearEquiv.ofInjectiveEndo_left_inv π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : V ββ[K] V) (h_inj : Function.Injective βf) : β(LinearEquiv.ofInjectiveEndo f h_inj).symm * f = 1 - LinearEquiv.ofInjectiveEndo_right_inv π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : V ββ[K] V) (h_inj : Function.Injective βf) : f * β(LinearEquiv.ofInjectiveEndo f h_inj).symm = 1 - LinearMap.injOn_iff_surjOn π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {p : Submodule K V} [FiniteDimensional K β₯p] {f : V ββ[K] V} (h : β x β p, f x β p) : Set.InjOn βf βp β Set.SurjOn βf βp βp - LinearMap.finiteDimensional_range π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Vβ : Type v'} [AddCommGroup Vβ] [Module K Vβ] [FiniteDimensional K V] (f : V ββ[K] Vβ) : FiniteDimensional K β₯(LinearMap.range f) - LinearMap.mul_eq_one_of_mul_eq_one π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f g : V ββ[K] V} (hfg : f * g = 1) : g * f = 1 - LinearMap.mul_eq_one_comm π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f g : V ββ[K] V} : f * g = 1 β g * f = 1 - Subalgebra.eq_of_le_of_finrank_eq π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u_1} {L : Type u_2} [Field K] [Ring L] [Algebra K L] {F E : Subalgebra K L} [hfin : FiniteDimensional K β₯E] (h_le : F β€ E) (h_finrank : Module.finrank K β₯F = Module.finrank K β₯E) : F = E - Subalgebra.eq_of_le_of_finrank_le π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u_1} {L : Type u_2} [Field K] [Ring L] [Algebra K L] {F E : Subalgebra K L} [hfin : FiniteDimensional K β₯E] (h_le : F β€ E) (h_finrank : Module.finrank K β₯E β€ Module.finrank K β₯F) : F = E - LinearMap.comap_eq_sup_ker_of_disjoint π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {p : Submodule K V} [FiniteDimensional K β₯p] {f : V ββ[K] V} (h : β x β p, f x β p) (h' : Disjoint p (LinearMap.ker f)) : Submodule.comap f p = p β LinearMap.ker f - LinearMap.ker_noncommProd_eq_of_supIndep_ker π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {ΞΉ : Type u_1} {f : ΞΉ β V ββ[K] V} (s : Finset ΞΉ) (comm : (βs).Pairwise (Function.onFun Commute f)) (h : s.SupIndep fun i => LinearMap.ker (f i)) : LinearMap.ker (s.noncommProd f comm) = β¨ i β s, LinearMap.ker (f i) - LinearMap.ker_comp_eq_of_commute_of_disjoint_ker π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f g : V ββ[K] V} (h : Commute f g) (h' : Disjoint (LinearMap.ker f) (LinearMap.ker g)) : LinearMap.ker (f ββ g) = LinearMap.ker f β LinearMap.ker g - FiniteDimensional.of_subalgebra_toSubmodule π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{F : Type u_1} {E : Type u_2} [Field F] [Ring E] [Algebra F E] {S : Subalgebra F E} : FiniteDimensional F β₯(Subalgebra.toSubmodule S) β FiniteDimensional F β₯S - FiniteDimensional.subalgebra_toSubmodule π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{F : Type u_1} {E : Type u_2} [Field F] [Ring E] [Algebra F E] {S : Subalgebra F E} : FiniteDimensional F β₯S β FiniteDimensional F β₯(Subalgebra.toSubmodule S) - Subalgebra.finiteDimensional_toSubmodule π Mathlib.LinearAlgebra.FiniteDimensional.Basic
{F : Type u_1} {E : Type u_2} [Field F] [Ring E] [Algebra F E] {S : Subalgebra F E} : FiniteDimensional F β₯(Subalgebra.toSubmodule S) β FiniteDimensional F β₯S - CSA.fin_dim π Mathlib.Algebra.BrauerGroup.Defs
{K : Type u} [Field K] (self : CSA K) : FiniteDimensional K βself.toAlgCat - CSA.mk π Mathlib.Algebra.BrauerGroup.Defs
{K : Type u} [Field K] (toAlgCat : AlgCat K) [isCentral : Algebra.IsCentral K βtoAlgCat] [isSimple : IsSimpleRing βtoAlgCat] [fin_dim : FiniteDimensional K βtoAlgCat] : CSA K - CSA.mk.injEq π Mathlib.Algebra.BrauerGroup.Defs
{K : Type u} [Field K] (toAlgCat : AlgCat K) [isCentral : Algebra.IsCentral K βtoAlgCat] [isSimple : IsSimpleRing βtoAlgCat] [fin_dim : FiniteDimensional K βtoAlgCat] (toAlgCatβ : AlgCat K) (isCentralβ : Algebra.IsCentral K βtoAlgCatβ) (isSimpleβ : IsSimpleRing βtoAlgCatβ) (fin_dimβ : FiniteDimensional K βtoAlgCatβ) : ({ toAlgCat := toAlgCat, isCentral := isCentral, isSimple := isSimple, fin_dim := fin_dim } = { toAlgCat := toAlgCatβ, isCentral := isCentralβ, isSimple := isSimpleβ, fin_dim := fin_dimβ }) = (toAlgCat = toAlgCatβ) - CSA.mk.sizeOf_spec π Mathlib.Algebra.BrauerGroup.Defs
{K : Type u} [Field K] [SizeOf K] (toAlgCat : AlgCat K) [isCentral : Algebra.IsCentral K βtoAlgCat] [isSimple : IsSimpleRing βtoAlgCat] [fin_dim : FiniteDimensional K βtoAlgCat] : sizeOf { toAlgCat := toAlgCat, isCentral := isCentral, isSimple := isSimple, fin_dim := fin_dim } = 1 + sizeOf toAlgCat + sizeOf isCentral + sizeOf isSimple + sizeOf fin_dim - LinearIndependent.span_eq_top_of_card_eq_finrank' π Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ΞΉ : Type u_1} [Fintype ΞΉ] [FiniteDimensional K V] {b : ΞΉ β V} (lin_ind : LinearIndependent K b) (card_eq : Fintype.card ΞΉ = Module.finrank K V) : Submodule.span K (Set.range b) = β€ - Submodule.finrank_lt π Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {s : Submodule K V} (h : s β β€) : Module.finrank K β₯s < Module.finrank K V - Submodule.finrank_strictMono π Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] : StrictMono fun s => Module.finrank K β₯s - LinearMap.linearEquivOfInjective π Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Vβ : Type v'} [AddCommGroup Vβ] [Module K Vβ] [FiniteDimensional K V] [FiniteDimensional K Vβ] (f : V ββ[K] Vβ) (hf : Function.Injective βf) (hdim : Module.finrank K V = Module.finrank K Vβ) : V ββ[K] Vβ - LinearMap.injective_iff_surjective_of_finrank_eq_finrank π Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Vβ : Type v'} [AddCommGroup Vβ] [Module K Vβ] [FiniteDimensional K V] [FiniteDimensional K Vβ] (H : Module.finrank K V = Module.finrank K Vβ) {f : V ββ[K] Vβ} : Function.Injective βf β Function.Surjective βf - LinearMap.ker_ne_bot_of_finrank_lt π Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Vβ : Type v'} [AddCommGroup Vβ] [Module K Vβ] [FiniteDimensional K V] [FiniteDimensional K Vβ] {f : V ββ[K] Vβ} (h : Module.finrank K Vβ < Module.finrank K V) : LinearMap.ker f β β₯ - Submodule.finrank_add_finrank_le_of_disjoint π Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {s t : Submodule K V} (hdisjoint : Disjoint s t) : Module.finrank K β₯s + Module.finrank K β₯t β€ Module.finrank K V - Submodule.finrank_add_eq_of_isCompl π Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {U W : Submodule K V} (h : IsCompl U W) : Module.finrank K β₯U + Module.finrank K β₯W = Module.finrank K V - Submodule.finrank_lt_finrank_of_lt π Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {s t : Submodule K V} [FiniteDimensional K β₯t] (hst : s < t) : Module.finrank K β₯s < Module.finrank K β₯t - FiniteDimensional.LinearEquiv.quotEquivOfQuotEquiv π Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {p q : Subspace K V} (f : (V β§Έ p) ββ[K] β₯q) : (V β§Έ q) ββ[K] β₯p - Submodule.isCompl_iff_disjoint π Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (s t : Submodule K V) (hdim : Module.finrank K V β€ Module.finrank K β₯s + Module.finrank K β₯t) : IsCompl s t β Disjoint s t - Submodule.eq_top_of_disjoint π Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (s t : Submodule K V) (hdim : Module.finrank K V β€ Module.finrank K β₯s + Module.finrank K β₯t) (hdisjoint : Disjoint s t) : s β t = β€ - Module.End.exists_ker_pow_eq_ker_pow_succ π Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : Module.End K V) : β k β€ Module.finrank K V, LinearMap.ker (f ^ k) = LinearMap.ker (f ^ k.succ) - FiniteDimensional.LinearEquiv.quotEquivOfEquiv π Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Vβ : Type v'} [AddCommGroup Vβ] [Module K Vβ] [FiniteDimensional K V] [FiniteDimensional K Vβ] {p : Subspace K V} {q : Subspace K Vβ} (fβ : β₯p ββ[K] β₯q) (fβ : V ββ[K] Vβ) : (V β§Έ p) ββ[K] Vβ β§Έ q - Module.End.ker_pow_eq_ker_pow_finrank_of_le π Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f : Module.End K V} {m : β} (hm : Module.finrank K V β€ m) : LinearMap.ker (f ^ m) = LinearMap.ker (f ^ Module.finrank K V) - LinearMap.linearEquivOfInjective_apply π Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Vβ : Type v'} [AddCommGroup Vβ] [Module K Vβ] [FiniteDimensional K V] [FiniteDimensional K Vβ] {f : V ββ[K] Vβ} (hf : Function.Injective βf) (hdim : Module.finrank K V = Module.finrank K Vβ) (x : V) : (f.linearEquivOfInjective hf hdim) x = f x - LinearMap.ker_eq_bot_iff_range_eq_top_of_finrank_eq_finrank π Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Vβ : Type v'} [AddCommGroup Vβ] [Module K Vβ] [FiniteDimensional K V] [FiniteDimensional K Vβ] (H : Module.finrank K V = Module.finrank K Vβ) {f : V ββ[K] Vβ} : LinearMap.ker f = β₯ β LinearMap.range f = β€ - Module.End.ker_pow_le_ker_pow_finrank π Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : Module.End K V) (m : β) : LinearMap.ker (f ^ m) β€ LinearMap.ker (f ^ Module.finrank K V) - Submodule.finrank_add_le_finrank_add_finrank π Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (s t : Submodule K V) [FiniteDimensional K β₯s] [FiniteDimensional K β₯t] : Module.finrank K β₯(s β t) β€ Module.finrank K β₯s + Module.finrank K β₯t - Submodule.finrank_sup_add_finrank_inf_eq π Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] (s t : Submodule K V) [FiniteDimensional K β₯s] [FiniteDimensional K β₯t] : Module.finrank K β₯(s β t) + Module.finrank K β₯(s β t) = Module.finrank K β₯s + Module.finrank K β₯t - LinearMap.finrank_range_add_finrank_ker π Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {Vβ : Type v'} [AddCommGroup Vβ] [Module K Vβ] [FiniteDimensional K V] (f : V ββ[K] Vβ) : Module.finrank K β₯(LinearMap.range f) + Module.finrank K β₯(LinearMap.ker f) = Module.finrank K V - FiniteDimensional.eq_1 π Mathlib.LinearAlgebra.Dual.Lemmas
(K : Type u_1) (V : Type u_2) [DivisionRing K] [AddCommGroup V] [Module K V] : FiniteDimensional K V = Module.Finite K V - Module.instFiniteDimensionalOfIsReflexive π Mathlib.LinearAlgebra.Dual.Lemmas
(K : Type u_4) (V : Type u_5) [Field K] [AddCommGroup V] [Module K V] [Module.IsReflexive K V] : FiniteDimensional K V - Subspace.instModuleDualFiniteDimensional π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] : FiniteDimensional K (Module.Dual K V) - Basis.linearEquiv_dual_iff_finiteDimensional π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type uK} {V : Type uV} [Field K] [AddCommGroup V] [Module K V] : Nonempty (V ββ[K] Module.Dual K V) β FiniteDimensional K V - Module.Dual.eq_of_ker_eq_of_apply_eq π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {Vβ : Type u_2} [Field K] [AddCommGroup Vβ] [Module K Vβ] [FiniteDimensional K Vβ] {f g : Module.Dual K Vβ} (x : Vβ) (h : LinearMap.ker f = LinearMap.ker g) (h' : f x = g x) (hx : f x β 0) : f = g - Module.Dual.isCompl_ker_of_disjoint_of_ne_bot π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {Vβ : Type u_2} [Field K] [AddCommGroup Vβ] [Module K Vβ] {f : Module.Dual K Vβ} (hf : f β 0) [FiniteDimensional K Vβ] {p : Submodule K Vβ} (hpf : Disjoint (LinearMap.ker f) p) (hp : p β β₯) : IsCompl (LinearMap.ker f) p - Module.Dual.finrank_ker_add_one_of_ne_zero π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {Vβ : Type u_2} [Field K] [AddCommGroup Vβ] [Module K Vβ] {f : Module.Dual K Vβ} (hf : f β 0) [FiniteDimensional K Vβ] : Module.finrank K β₯(LinearMap.ker f) + 1 = Module.finrank K Vβ - Subspace.finrank_add_finrank_dualAnnihilator_eq π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (W : Subspace K V) : Module.finrank K β₯W + Module.finrank K β₯(Submodule.dualAnnihilator W) = Module.finrank K V - Subspace.quotEquivAnnihilator π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (W : Subspace K V) : (V β§Έ W) ββ[K] β₯(Submodule.dualAnnihilator W) - Subspace.finiteDimensional_quot_dualCoannihilator_iff π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_4} {V : Type u_5} [Field K] [AddCommGroup V] [Module K V] {W : Submodule K (Module.Dual K V)} : FiniteDimensional K (V β§Έ W.dualCoannihilator) β FiniteDimensional K β₯W - Subspace.finrank_add_finrank_dualCoannihilator_eq π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (W : Subspace K (Module.Dual K V)) : Module.finrank K β₯W + Module.finrank K β₯(Submodule.dualCoannihilator W) = Module.finrank K V - Subspace.orderIsoFiniteDimensional π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_4} {V : Type u_5} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] : Subspace K V βo (Subspace K (Module.Dual K V))α΅α΅ - Subspace.dualCoannihilator_dualAnnihilator_eq π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_4} {V : Type u_5} [Field K] [AddCommGroup V] [Module K V] {W : Subspace K (Module.Dual K V)} [FiniteDimensional K β₯W] : (Submodule.dualCoannihilator W).dualAnnihilator = W - FiniteDimensional.mem_span_of_iInf_ker_le_ker π Mathlib.LinearAlgebra.Dual.Lemmas
{ΞΉ : Type u_3} {π : Type u_4} {E : Type u_5} [Field π] [AddCommGroup E] [Module π E] [FiniteDimensional π E] {L : ΞΉ β E ββ[π] π} {K : E ββ[π] π} (h : β¨ i, LinearMap.ker (L i) β€ LinearMap.ker K) : K β Submodule.span π (Set.range L) - LinearMap.flip_bijective_iffβ π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {Vβ : Type u_2} {Vβ : Type u_3} [Field K] [AddCommGroup Vβ] [Module K Vβ] [AddCommGroup Vβ] [Module K Vβ] {B : Vβ ββ[K] Vβ ββ[K] K} [FiniteDimensional K Vβ] : Function.Bijective βB.flip β Function.Bijective βB - LinearMap.flip_bijective_iffβ π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {Vβ : Type u_2} {Vβ : Type u_3} [Field K] [AddCommGroup Vβ] [Module K Vβ] [AddCommGroup Vβ] [Module K Vβ] {B : Vβ ββ[K] Vβ ββ[K] K} [FiniteDimensional K Vβ] : Function.Bijective βB.flip β Function.Bijective βB - LinearMap.flip_injective_iffβ π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {Vβ : Type u_2} {Vβ : Type u_3} [Field K] [AddCommGroup Vβ] [Module K Vβ] [AddCommGroup Vβ] [Module K Vβ] {B : Vβ ββ[K] Vβ ββ[K] K} [FiniteDimensional K Vβ] : Function.Injective βB.flip β Function.Surjective βB - LinearMap.flip_injective_iffβ π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {Vβ : Type u_2} {Vβ : Type u_3} [Field K] [AddCommGroup Vβ] [Module K Vβ] [AddCommGroup Vβ] [Module K Vβ] {B : Vβ ββ[K] Vβ ββ[K] K} [FiniteDimensional K Vβ] : Function.Injective βB.flip β Function.Surjective βB - LinearMap.flip_surjective_iffβ π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {Vβ : Type u_2} {Vβ : Type u_3} [Field K] [AddCommGroup Vβ] [Module K Vβ] [AddCommGroup Vβ] [Module K Vβ] {B : Vβ ββ[K] Vβ ββ[K] K} [FiniteDimensional K Vβ] : Function.Surjective βB.flip β Function.Injective βB - LinearMap.flip_surjective_iffβ π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {Vβ : Type u_2} {Vβ : Type u_3} [Field K] [AddCommGroup Vβ] [Module K Vβ] [AddCommGroup Vβ] [Module K Vβ] {B : Vβ ββ[K] Vβ ββ[K] K} [FiniteDimensional K Vβ] : Function.Surjective βB.flip β Function.Injective βB - Subspace.dualAnnihilator_dualAnnihilator_eq_map π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_4} {V : Type u_5} [Field K] [AddCommGroup V] [Module K V] (W : Subspace K V) [FiniteDimensional K β₯W] : (Submodule.dualAnnihilator W).dualAnnihilator = Submodule.map (Module.Dual.eval K V) W - Subspace.map_dualCoannihilator π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_4} {V : Type u_5} [Field K] [AddCommGroup V] [Module K V] (W : Subspace K (Module.Dual K V)) [FiniteDimensional K V] : Submodule.map (Module.Dual.eval K V) (Submodule.dualCoannihilator W) = Submodule.dualAnnihilator W - Subspace.orderIsoFiniteCodimDim π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_4} {V : Type u_5} [Field K] [AddCommGroup V] [Module K V] : { W // FiniteDimensional K (V β§Έ W) } βo { W // FiniteDimensional K β₯W }α΅α΅ - Subspace.finrank_dualCoannihilator_eq π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {Ξ¦ : Subspace K (Module.Dual K V)} : Module.finrank K β₯(Submodule.dualCoannihilator Ξ¦) = Module.finrank K β₯(Submodule.dualAnnihilator Ξ¦) - Subspace.flip_quotDualCoannihilatorToDual_bijective π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_4} {V : Type u_5} [Field K] [AddCommGroup V] [Module K V] (W : Subspace K (Module.Dual K V)) [FiniteDimensional K β₯W] : Function.Bijective β(Submodule.quotDualCoannihilatorToDual W).flip - Subspace.dualQuotDistrib π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {Vβ : Type u_2} [Field K] [AddCommGroup Vβ] [Module K Vβ] [FiniteDimensional K Vβ] (W : Subspace K Vβ) : Module.Dual K (Vβ β§Έ W) ββ[K] Module.Dual K Vβ β§Έ LinearMap.range W.dualLift - Subspace.quotDualCoannihilatorToDual_bijective π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_4} {V : Type u_5} [Field K] [AddCommGroup V] [Module K V] (W : Subspace K (Module.Dual K V)) [FiniteDimensional K β₯W] : Function.Bijective β(Submodule.quotDualCoannihilatorToDual W) - Subspace.quotDualEquivAnnihilator π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (W : Subspace K V) : (Module.Dual K V β§Έ LinearMap.range W.dualLift) ββ[K] β₯(Submodule.dualAnnihilator W) - Subspace.dualAnnihilator_dualAnnihilator_eq π Mathlib.LinearAlgebra.Dual.Lemmas
{K : Type u_1} {V : Type u_2} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (W : Subspace K V) : (Submodule.dualAnnihilator W).dualAnnihilator = (Module.mapEvalEquiv K V) W - coevaluation π Mathlib.LinearAlgebra.Coevaluation
(K : Type u) [Field K] (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] : K ββ[K] TensorProduct K V (Module.Dual K V) - coevaluation_apply_one π Mathlib.LinearAlgebra.Coevaluation
(K : Type u) [Field K] (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] : (coevaluation K V) 1 = have bV := Basis.ofVectorSpace K V; β i, bV i ββ[K] bV.coord i - coevaluation.eq_1 π Mathlib.LinearAlgebra.Coevaluation
(K : Type u) [Field K] (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] : coevaluation K V = ((Basis.singleton Unit K).constr K) fun x => β i, (Basis.ofVectorSpace K V) i ββ[K] (Basis.ofVectorSpace K V).coord i - contractLeft_assoc_coevaluation' π Mathlib.LinearAlgebra.Coevaluation
(K : Type u) [Field K] (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] : LinearMap.lTensor V (contractLeft K V) ββ β(TensorProduct.assoc K V (Module.Dual K V) V) ββ LinearMap.rTensor V (coevaluation K V) = β(TensorProduct.rid K V).symm ββ β(TensorProduct.lid K V) - contractLeft_assoc_coevaluation π Mathlib.LinearAlgebra.Coevaluation
(K : Type u) [Field K] (V : Type v) [AddCommGroup V] [Module K V] [FiniteDimensional K V] : LinearMap.rTensor (Module.Dual K V) (contractLeft K V) ββ β(TensorProduct.assoc K (Module.Dual K V) V (Module.Dual K V)).symm ββ LinearMap.lTensor (Module.Dual K V) (coevaluation K V) = β(TensorProduct.lid K (Module.Dual K V)).symm ββ β(TensorProduct.rid K (Module.Dual K V)) - FGModuleCat.instFiniteDimensionalCarrierPiObjModuleCatOfFinite π Mathlib.Algebra.Category.FGModuleCat.Limits
{k : Type u} [Field k] {J : Type} [Finite J] (Z : J β ModuleCat k) [β (j : J), FiniteDimensional k β(Z j)] : FiniteDimensional k β(βαΆ fun j => Z j) - FGModuleCat.instFiniteDimensionalCarrierLimitModuleCatCompForgetβ π Mathlib.Algebra.Category.FGModuleCat.Limits
{J : Type} [CategoryTheory.SmallCategory J] [CategoryTheory.FinCategory J] {k : Type u} [Field k] (F : CategoryTheory.Functor J (FGModuleCat k)) : FiniteDimensional k β(CategoryTheory.Limits.limit (F.comp (CategoryTheory.forgetβ (FGModuleCat k) (ModuleCat k)))) - IsLocalRing.instFiniteDimensionalResidueFieldCotangentSpaceOfIsNoetherianRing π Mathlib.RingTheory.Ideal.Cotangent
(R : Type u_1) [CommRing R] [IsLocalRing R] [IsNoetherianRing R] : FiniteDimensional (IsLocalRing.ResidueField R) (IsLocalRing.CotangentSpace R) - LinearMap.BilinForm.exists_orthogonal_basis π Mathlib.LinearAlgebra.QuadraticForm.Basic
{V : Type u} {K : Type v} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] [hK : Invertible 2] {B : LinearMap.BilinForm K V} (hBβ : LinearMap.IsSymm B) : β v, LinearMap.IsOrthoα΅’ B βv - QuadraticForm.equivalent_weightedSumSquares π Mathlib.LinearAlgebra.QuadraticForm.IsometryEquiv
{K : Type u_3} {V : Type u_8} [Field K] [Invertible 2] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (Q : QuadraticForm K V) : β w, QuadraticMap.Equivalent Q (QuadraticMap.weightedSumSquares K w) - QuadraticForm.equivalent_weightedSumSquares_units_of_nondegenerate' π Mathlib.LinearAlgebra.QuadraticForm.IsometryEquiv
{K : Type u_3} {V : Type u_8} [Field K] [Invertible 2] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (Q : QuadraticForm K V) (hQ : LinearMap.SeparatingLeft (QuadraticMap.associated Q)) : β w, QuadraticMap.Equivalent Q (QuadraticMap.weightedSumSquares K w) - AlgHom.bijective π Mathlib.RingTheory.Algebraic.Integral
{K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] [FiniteDimensional K L] (Ο : L ββ[K] L) : Function.Bijective βΟ - algEquivEquivAlgHom π Mathlib.RingTheory.Algebraic.Integral
(K : Type u_1) (L : Type u_2) [Field K] [Field L] [Algebra K L] [FiniteDimensional K L] : (L ββ[K] L) β* (L ββ[K] L) - IsIntegralClosure.isFractionRing_of_finite_extension π Mathlib.RingTheory.Localization.Integral
(A : Type u_3) (K : Type u_4) [CommRing A] (L : Type u_5) [Field K] [Field L] [Algebra A K] [Algebra A L] [IsFractionRing A K] (C : Type u_6) [CommRing C] [IsDomain C] [Algebra C L] [IsIntegralClosure C A L] [Algebra A C] [IsScalarTower A C L] [IsDomain A] [Algebra K L] [IsScalarTower A K L] [FiniteDimensional K L] : IsFractionRing C L - integralClosure.isFractionRing_of_finite_extension π Mathlib.RingTheory.Localization.Integral
{A : Type u_3} (K : Type u_4) [CommRing A] (L : Type u_5) [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [IsDomain A] [Algebra A L] [Algebra K L] [IsScalarTower A K L] [FiniteDimensional K L] : IsFractionRing (β₯(integralClosure A L)) L - Module.End.maxUnifEigenspaceIndex_le_finrank π Mathlib.LinearAlgebra.Eigenspace.Basic
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : Module.End K V) (ΞΌ : K) : f.maxUnifEigenspaceIndex ΞΌ β€ Module.finrank K V - Module.End.HasEigenvalue.of_mem_spectrum π Mathlib.LinearAlgebra.Eigenspace.Basic
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f : Module.End K V} {ΞΌ : K} : ΞΌ β spectrum K f β f.HasEigenvalue ΞΌ - Module.End.hasEigenvalue_iff_mem_spectrum π Mathlib.LinearAlgebra.Eigenspace.Basic
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f : Module.End K V} {ΞΌ : K} : f.HasEigenvalue ΞΌ β ΞΌ β spectrum K f - Module.End.HasUnifEigenvalue.of_mem_spectrum π Mathlib.LinearAlgebra.Eigenspace.Basic
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f : Module.End K V} {ΞΌ : K} : ΞΌ β spectrum K f β f.HasUnifEigenvalue ΞΌ 1 - Module.End.hasUnifEigenvalue_iff_mem_spectrum π Mathlib.LinearAlgebra.Eigenspace.Basic
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f : Module.End K V} {ΞΌ : K} : f.HasUnifEigenvalue ΞΌ 1 β ΞΌ β spectrum K f - Module.End.maxGenEigenspace_eq_genEigenspace_finrank π Mathlib.LinearAlgebra.Eigenspace.Basic
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : Module.End K V) (ΞΌ : K) : f.maxGenEigenspace ΞΌ = (f.genEigenspace ΞΌ) β(Module.finrank K V) - Module.End.generalized_eigenvec_disjoint_range_ker π Mathlib.LinearAlgebra.Eigenspace.Basic
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : Module.End K V) (ΞΌ : K) : Disjoint (f.genEigenrange ΞΌ β(Module.finrank K V)) ((f.genEigenspace ΞΌ) β(Module.finrank K V)) - Module.End.genEigenspace_eq_genEigenspace_finrank_of_le π Mathlib.LinearAlgebra.Eigenspace.Basic
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : Module.End K V) (ΞΌ : K) {k : β} (hk : Module.finrank K V β€ k) : (f.genEigenspace ΞΌ) βk = (f.genEigenspace ΞΌ) β(Module.finrank K V) - Module.End.genEigenspace_le_genEigenspace_finrank π Mathlib.LinearAlgebra.Eigenspace.Basic
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : Module.End K V) (ΞΌ : K) (k : ββ) : (f.genEigenspace ΞΌ) k β€ (f.genEigenspace ΞΌ) β(Module.finrank K V) - Module.End.pos_finrank_genEigenspace_of_hasEigenvalue π Mathlib.LinearAlgebra.Eigenspace.Basic
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f : Module.End K V} {k : β} {ΞΌ : K} (hx : f.HasEigenvalue ΞΌ) (hk : 0 < k) : 0 < Module.finrank K β₯((f.genEigenspace ΞΌ) βk) - integralClosure.isIntegrallyClosedOfFiniteExtension π Mathlib.RingTheory.IntegralClosure.IntegrallyClosed
{R : Type u_1} [CommRing R] (K : Type u_2) [Field K] [Algebra R K] [IsFractionRing R K] {L : Type u_3} [Field L] [Algebra K L] [Algebra R L] [IsScalarTower R K L] [IsDomain R] [FiniteDimensional K L] : IsIntegrallyClosed β₯(integralClosure R L) - LinearMap.finiteDimensional_of_det_ne_one π Mathlib.LinearAlgebra.Determinant
{M : Type u_2} [AddCommGroup M] {π : Type u_7} [Field π] [Module π M] (f : M ββ[π] M) (hf : LinearMap.det f β 1) : FiniteDimensional π M - LinearMap.equivOfDetNeZero π Mathlib.LinearAlgebra.Determinant
{π : Type u_5} [Field π] {M : Type u_6} [AddCommGroup M] [Module π M] [FiniteDimensional π M] (f : M ββ[π] M) (hf : LinearMap.det f β 0) : M ββ[π] M - minpoly.AlgHom.fintype π Mathlib.FieldTheory.Minpoly.Field
(F : Type u_3) (E : Type u_4) (K : Type u_5) [Field F] [Ring E] [CommRing K] [IsDomain K] [Algebra F E] [Algebra F K] [FiniteDimensional F E] : Fintype (E ββ[F] K) - minpoly.ne_zero_of_finite π Mathlib.FieldTheory.Minpoly.Field
(A : Type u_1) {B : Type u_2} [Field A] [Ring B] [Algebra A B] (e : B) [FiniteDimensional A B] : minpoly A e β 0 - minpoly.rootsOfMinPolyPiType π Mathlib.FieldTheory.Minpoly.Field
(F : Type u_3) (E : Type u_4) (K : Type u_5) [Field F] [Ring E] [CommRing K] [IsDomain K] [Algebra F E] [Algebra F K] [FiniteDimensional F E] (Ο : E ββ[F] K) (x : β(Set.range β(Module.finBasis F E))) : { l // l β (minpoly F βx).aroots K } - minpoly.aux_inj_roots_of_min_poly π Mathlib.FieldTheory.Minpoly.Field
(F : Type u_3) (E : Type u_4) (K : Type u_5) [Field F] [Ring E] [CommRing K] [IsDomain K] [Algebra F E] [Algebra F K] [FiniteDimensional F E] : Function.Injective (minpoly.rootsOfMinPolyPiType F E K) - LinearMap.minpoly_dvd_charpoly π Mathlib.LinearAlgebra.Charpoly.Basic
{K : Type u} {M : Type v} [Field K] [AddCommGroup M] [Module K M] [FiniteDimensional K M] (f : M ββ[K] M) : minpoly K f β£ f.charpoly - Module.End.instFintypeEigenvalues π Mathlib.LinearAlgebra.Eigenspace.Minpoly
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : Module.End K V) : Fintype f.Eigenvalues - Module.End.finite_hasEigenvalue π Mathlib.LinearAlgebra.Eigenspace.Minpoly
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : Module.End K V) : Set.Finite f.HasEigenvalue - Module.End.finite_spectrum π Mathlib.LinearAlgebra.Eigenspace.Minpoly
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (f : Module.End K V) : (spectrum K f).Finite - Module.End.hasEigenvalue_of_isRoot π Mathlib.LinearAlgebra.Eigenspace.Minpoly
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f : Module.End K V} {ΞΌ : K} (h : (minpoly K f).IsRoot ΞΌ) : f.HasEigenvalue ΞΌ - Module.End.hasEigenvalue_iff_isRoot π Mathlib.LinearAlgebra.Eigenspace.Minpoly
{K : Type v} {V : Type w} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {f : Module.End K V} {ΞΌ : K} : f.HasEigenvalue ΞΌ β (minpoly K f).IsRoot ΞΌ - LinearMap.BilinForm.Nondegenerate.flip π Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} (hB : B.Nondegenerate) : B.flip.Nondegenerate - LinearMap.BilinForm.nonDegenerateFlip_iff π Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} : B.flip.Nondegenerate β B.Nondegenerate - LinearMap.BilinForm.symmCompOfNondegenerate π Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (Bβ Bβ : LinearMap.BilinForm K V) (bβ : Bβ.Nondegenerate) : V ββ[K] V - LinearMap.BilinForm.dualBasis_dualBasis π Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] (B : LinearMap.BilinForm K V) (hB : B.Nondegenerate) (hB' : B.IsSymm) {ΞΉ : Type u_10} [Finite ΞΉ] [DecidableEq ΞΉ] [FiniteDimensional K V] (b : Basis ΞΉ K V) : B.dualBasis hB (B.dualBasis hB b) = b - LinearMap.BilinForm.leftAdjointOfNondegenerate π Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (B : LinearMap.BilinForm K V) (b : B.Nondegenerate) (Ο : V ββ[K] V) : V ββ[K] V - LinearMap.BilinForm.dualBasis_dualBasis_flip π Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (B : LinearMap.BilinForm K V) (hB : B.Nondegenerate) {ΞΉ : Type u_10} [Finite ΞΉ] [DecidableEq ΞΉ] (b : Basis ΞΉ K V) : B.dualBasis hB (B.flip.dualBasis β― b) = b - LinearMap.BilinForm.dualBasis_flip_dualBasis π Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] (B : LinearMap.BilinForm K V) (hB : B.Nondegenerate) {ΞΉ : Type u_10} [Finite ΞΉ] [DecidableEq ΞΉ] [FiniteDimensional K V] (b : Basis ΞΉ K V) : B.flip.dualBasis β― (B.dualBasis hB b) = b - LinearMap.BilinForm.isAdjointPairLeftAdjointOfNondegenerate π Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (B : LinearMap.BilinForm K V) (b : B.Nondegenerate) (Ο : V ββ[K] V) : LinearMap.IsAdjointPair B B β(B.leftAdjointOfNondegenerate b Ο) βΟ - LinearMap.BilinForm.toDual π Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (B : LinearMap.BilinForm K V) (b : B.Nondegenerate) : V ββ[K] Module.Dual K V - LinearMap.BilinForm.isAdjointPair_iff_eq_of_nondegenerate π Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (B : LinearMap.BilinForm K V) (b : B.Nondegenerate) (Ο Ο : V ββ[K] V) : LinearMap.IsAdjointPair B B βΟ βΟ β Ο = B.leftAdjointOfNondegenerate b Ο - LinearMap.BilinForm.symmCompOfNondegenerate.eq_1 π Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (Bβ Bβ : LinearMap.BilinForm K V) (bβ : Bβ.Nondegenerate) : Bβ.symmCompOfNondegenerate Bβ bβ = β(Bβ.toDual bβ).symm ββ Bβ - LinearMap.BilinForm.comp_symmCompOfNondegenerate_apply π Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (Bβ : LinearMap.BilinForm K V) {Bβ : LinearMap.BilinForm K V} (bβ : Bβ.Nondegenerate) (v : V) : Bβ ((Bβ.symmCompOfNondegenerate Bβ bβ) v) = Bβ v - LinearMap.BilinForm.symmCompOfNondegenerate_left_apply π Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (Bβ : LinearMap.BilinForm K V) {Bβ : LinearMap.BilinForm K V} (bβ : Bβ.Nondegenerate) (v w : V) : (Bβ ((Bβ.symmCompOfNondegenerate Bβ bβ) w)) v = (Bβ w) v - LinearMap.BilinForm.toDual_def π Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} (b : LinearMap.SeparatingLeft B) {m n : V} : ((B.toDual b) m) n = (B m) n - LinearMap.BilinForm.apply_toDual_symm_apply π Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} {hB : B.Nondegenerate} (f : Module.Dual K V) (v : V) : (B ((B.toDual hB).symm f)) v = f v - LinearMap.BilinForm.orthogonal_orthogonal π Mathlib.LinearAlgebra.BilinearForm.Orthogonal
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} (hB : B.Nondegenerate) (hBβ : B.IsRefl) (W : Submodule K V) : B.orthogonal (B.orthogonal W) = W - LinearMap.BilinForm.isCompl_orthogonal_iff_disjoint π Mathlib.LinearAlgebra.BilinearForm.Orthogonal
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} {W : Submodule K V} (hBβ : B.IsRefl) : IsCompl W (B.orthogonal W) β Disjoint W (B.orthogonal W) - LinearMap.BilinForm.eq_top_of_restrict_nondegenerate_of_orthogonal_eq_bot π Mathlib.LinearAlgebra.BilinearForm.Orthogonal
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} {W : Submodule K V} (bβ : B.IsRefl) (bβ : (B.restrict W).Nondegenerate) (bβ : B.orthogonal W = β₯) : W = β€ - LinearMap.BilinForm.isCompl_orthogonal_of_restrict_nondegenerate π Mathlib.LinearAlgebra.BilinearForm.Orthogonal
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} {W : Submodule K V} (bβ : B.IsRefl) (bβ : (B.restrict W).Nondegenerate) : IsCompl W (B.orthogonal W) - LinearMap.BilinForm.orthogonal_eq_top_iff π Mathlib.LinearAlgebra.BilinearForm.Orthogonal
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} {W : Submodule K V} (bβ : B.IsRefl) (bβ : (B.restrict W).Nondegenerate) : B.orthogonal W = β€ β W = β₯ - LinearMap.BilinForm.restrict_nondegenerate_iff_isCompl_orthogonal π Mathlib.LinearAlgebra.BilinearForm.Orthogonal
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} {W : Submodule K V} (bβ : B.IsRefl) : (B.restrict W).Nondegenerate β IsCompl W (B.orthogonal W) - LinearMap.BilinForm.orthogonal_eq_bot_iff π Mathlib.LinearAlgebra.BilinearForm.Orthogonal
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} {W : Submodule K V} (bβ : B.IsRefl) (bβ : (B.restrict W).Nondegenerate) (bβ : B.Nondegenerate) : B.orthogonal W = β₯ β W = β€ - LinearMap.BilinForm.finrank_orthogonal π Mathlib.LinearAlgebra.BilinearForm.Orthogonal
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} (hB : B.Nondegenerate) (hBβ : B.IsRefl) (W : Submodule K V) : Module.finrank K β₯(B.orthogonal W) = Module.finrank K V - Module.finrank K β₯W - LinearMap.BilinForm.finrank_add_finrank_orthogonal π Mathlib.LinearAlgebra.BilinearForm.Orthogonal
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} (bβ : B.IsRefl) (W : Submodule K V) : Module.finrank K β₯W + Module.finrank K β₯(B.orthogonal W) = Module.finrank K V + Module.finrank K β₯(W β B.orthogonal β€) - IntermediateField.finiteDimensional_right π Mathlib.FieldTheory.IntermediateField.Algebraic
{K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (F : IntermediateField K L) [FiniteDimensional K L] : FiniteDimensional (β₯F) L - IntermediateField.finiteDimensional_left π Mathlib.FieldTheory.IntermediateField.Algebraic
{K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (F : IntermediateField K L) [FiniteDimensional K L] : FiniteDimensional K β₯F - IntermediateField.finrank_le_of_le_left π Mathlib.FieldTheory.IntermediateField.Algebraic
{K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} [FiniteDimensional (β₯F) L] (h : F β€ E) : Module.finrank (β₯E) L β€ Module.finrank (β₯F) L - IntermediateField.eq_of_le_of_finrank_eq' π Mathlib.FieldTheory.IntermediateField.Algebraic
{K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} [FiniteDimensional (β₯F) L] (h_le : F β€ E) (h_finrank : Module.finrank (β₯F) L = Module.finrank (β₯E) L) : F = E - IntermediateField.eq_of_le_of_finrank_le' π Mathlib.FieldTheory.IntermediateField.Algebraic
{K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} [FiniteDimensional (β₯F) L] (h_le : F β€ E) (h_finrank : Module.finrank (β₯F) L β€ Module.finrank (β₯E) L) : F = E - im_finiteDimensional π Mathlib.FieldTheory.IntermediateField.Algebraic
{K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {E : IntermediateField K L} (f : L ββ[K] L) [FiniteDimensional K β₯E] : FiniteDimensional K β₯(IntermediateField.map f E) - IntermediateField.finiteDimensional_map π Mathlib.FieldTheory.IntermediateField.Algebraic
{K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {E : IntermediateField K L} (f : L ββ[K] L) [FiniteDimensional K β₯E] : FiniteDimensional K β₯(IntermediateField.map f E) - IntermediateField.finrank_le_of_le_right π Mathlib.FieldTheory.IntermediateField.Algebraic
{K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} [FiniteDimensional K β₯E] (h : F β€ E) : Module.finrank K β₯F β€ Module.finrank K β₯E - IntermediateField.eq_of_le_of_finrank_eq π Mathlib.FieldTheory.IntermediateField.Algebraic
{K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F E : IntermediateField K L} [FiniteDimensional K β₯E] (h_le : F β€ E) (h_finrank : Module.finrank K β₯F = Module.finrank K β₯E) : F = E
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 2c2d6a2
serving mathlib revision 90643a7