Loogle!
Result
Found 116 declarations mentioning Finset.HasAntidiagonal.antidiagonal.
- Finset.HasAntidiagonal.antidiagonal π Mathlib.Algebra.Order.Antidiag.Prod
{A : Type u_1} {instβ : AddMonoid A} [self : Finset.HasAntidiagonal A] : A β Finset (A Γ A) - Finset.hasAntidiagonal_congr π Mathlib.Algebra.Order.Antidiag.Prod
(A : Type u_2) [AddMonoid A] [H1 : Finset.HasAntidiagonal A] [H2 : Finset.HasAntidiagonal A] : Finset.antidiagonal = Finset.antidiagonal - Finset.map_prodComm_antidiagonal π Mathlib.Algebra.Order.Antidiag.Prod
{A : Type u_1} [AddCommMonoid A] [Finset.HasAntidiagonal A] {n : A} : Finset.map (Equiv.prodComm A A).toEmbedding (Finset.antidiagonal n) = Finset.antidiagonal n - Finset.sigmaAntidiagonalEquivProd π Mathlib.Algebra.Order.Antidiag.Prod
{A : Type u_1} [AddMonoid A] [Finset.HasAntidiagonal A] : (n : A) Γ β₯(Finset.antidiagonal n) β A Γ A - Finset.map_swap_antidiagonal π Mathlib.Algebra.Order.Antidiag.Prod
{A : Type u_1} [AddCommMonoid A] [Finset.HasAntidiagonal A] {n : A} : Finset.map { toFun := Prod.swap, inj' := β― } (Finset.antidiagonal n) = Finset.antidiagonal n - Finset.HasAntidiagonal.mem_antidiagonal π Mathlib.Algebra.Order.Antidiag.Prod
{A : Type u_1} {instβ : AddMonoid A} [self : Finset.HasAntidiagonal A] {n : A} {a : A Γ A} : a β Finset.antidiagonal n β a.1 + a.2 = n - Finset.swap_mem_antidiagonal π Mathlib.Algebra.Order.Antidiag.Prod
{A : Type u_1} [AddCommMonoid A] [Finset.HasAntidiagonal A] {n : A} {xy : A Γ A} : xy.swap β Finset.antidiagonal n β xy β Finset.antidiagonal n - Finset.antidiagonal.fst_le π Mathlib.Algebra.Order.Antidiag.Prod
{A : Type u_1} [AddCommMonoid A] [PartialOrder A] [CanonicallyOrderedAdd A] [Finset.HasAntidiagonal A] {n : A} {kl : A Γ A} (hlk : kl β Finset.antidiagonal n) : kl.1 β€ n - Finset.antidiagonal.snd_le π Mathlib.Algebra.Order.Antidiag.Prod
{A : Type u_1} [AddCommMonoid A] [PartialOrder A] [CanonicallyOrderedAdd A] [Finset.HasAntidiagonal A] {n : A} {kl : A Γ A} (hlk : kl β Finset.antidiagonal n) : kl.2 β€ n - Finset.antidiagonal_congr π Mathlib.Algebra.Order.Antidiag.Prod
{A : Type u_1} [AddCancelMonoid A] [Finset.HasAntidiagonal A] {p q : A Γ A} {n : A} (hp : p β Finset.antidiagonal n) (hq : q β Finset.antidiagonal n) : p = q β p.1 = q.1 - Finset.antidiagonal_congr' π Mathlib.Algebra.Order.Antidiag.Prod
{A : Type u_1} [AddCancelCommMonoid A] [Finset.HasAntidiagonal A] {p q : A Γ A} {n : A} (hp : p β Finset.antidiagonal n) (hq : q β Finset.antidiagonal n) : p = q β p.2 = q.2 - Finset.antidiagonal_zero π Mathlib.Algebra.Order.Antidiag.Prod
{A : Type u_1} [AddCommMonoid A] [PartialOrder A] [CanonicallyOrderedAdd A] [Finset.HasAntidiagonal A] : Finset.antidiagonal 0 = {(0, 0)} - Finset.filter_fst_eq_antidiagonal π Mathlib.Algebra.Order.Antidiag.Prod
{A : Type u_1} [AddCommMonoid A] [PartialOrder A] [CanonicallyOrderedAdd A] [Sub A] [OrderedSub A] [AddLeftReflectLE A] [Finset.HasAntidiagonal A] (n m : A) [DecidablePred fun x => x = m] [Decidable (m β€ n)] : {x β Finset.antidiagonal n | x.1 = m} = if m β€ n then {(m, n - m)} else β - Finset.filter_snd_eq_antidiagonal π Mathlib.Algebra.Order.Antidiag.Prod
{A : Type u_1} [AddCommMonoid A] [PartialOrder A] [CanonicallyOrderedAdd A] [Sub A] [OrderedSub A] [AddLeftReflectLE A] [Finset.HasAntidiagonal A] (n m : A) [DecidablePred fun x => x = m] [Decidable (m β€ n)] : {x β Finset.antidiagonal n | x.2 = m} = if m β€ n then {(n - m, m)} else β - Finset.antidiagonal_subtype_ext π Mathlib.Algebra.Order.Antidiag.Prod
{A : Type u_1} [AddCancelMonoid A] [Finset.HasAntidiagonal A] {n : A} {p q : β₯(Finset.antidiagonal n)} (h : (βp).1 = (βq).1) : p = q - Finset.antidiagonal_subtype_ext_iff π Mathlib.Algebra.Order.Antidiag.Prod
{A : Type u_1} [AddCancelMonoid A] [Finset.HasAntidiagonal A] {n : A} {p q : β₯(Finset.antidiagonal n)} : p = q β (βp).1 = (βq).1 - Finset.sigmaAntidiagonalEquivProd_symm_apply_fst π Mathlib.Algebra.Order.Antidiag.Prod
{A : Type u_1} [AddMonoid A] [Finset.HasAntidiagonal A] (x : A Γ A) : (Finset.sigmaAntidiagonalEquivProd.symm x).fst = x.1 + x.2 - Finset.sigmaAntidiagonalEquivProd_symm_apply_snd_coe π Mathlib.Algebra.Order.Antidiag.Prod
{A : Type u_1} [AddMonoid A] [Finset.HasAntidiagonal A] (x : A Γ A) : β(Finset.sigmaAntidiagonalEquivProd.symm x).snd = x - Finset.sigmaAntidiagonalEquivProd_apply π Mathlib.Algebra.Order.Antidiag.Prod
{A : Type u_1} [AddMonoid A] [Finset.HasAntidiagonal A] (x : (n : A) Γ β₯(Finset.antidiagonal n)) : Finset.sigmaAntidiagonalEquivProd x = βx.snd - Finset.Nat.card_antidiagonal π Mathlib.Data.Finset.NatAntidiagonal
(n : β) : (Finset.antidiagonal n).card = n + 1 - Finset.Nat.antidiagonal_zero π Mathlib.Data.Finset.NatAntidiagonal
: Finset.antidiagonal 0 = {(0, 0)} - Finset.Nat.antidiagonal.fst_lt π Mathlib.Data.Finset.NatAntidiagonal
{n : β} {kl : β Γ β} (hlk : kl β Finset.antidiagonal n) : kl.1 < n + 1 - Finset.Nat.antidiagonal.snd_lt π Mathlib.Data.Finset.NatAntidiagonal
{n : β} {kl : β Γ β} (hlk : kl β Finset.antidiagonal n) : kl.2 < n + 1 - Finset.Nat.antidiagonalEquivFin π Mathlib.Data.Finset.NatAntidiagonal
(n : β) : β₯(Finset.antidiagonal n) β Fin (n + 1) - Finset.Nat.antidiagonal_eq_image π Mathlib.Data.Finset.NatAntidiagonal
(n : β) : Finset.antidiagonal n = Finset.image (fun i => (i, n - i)) (Finset.range (n + 1)) - Finset.Nat.antidiagonal_eq_image' π Mathlib.Data.Finset.NatAntidiagonal
(n : β) : Finset.antidiagonal n = Finset.image (fun i => (n - i, i)) (Finset.range (n + 1)) - Finset.Nat.antidiagonal_succ π Mathlib.Data.Finset.NatAntidiagonal
(n : β) : Finset.antidiagonal (n + 1) = Finset.cons (0, n + 1) (Finset.map ({ toFun := Nat.succ, inj' := Nat.succ_injective }.prodMap (Function.Embedding.refl β)) (Finset.antidiagonal n)) β― - Finset.Nat.antidiagonal_succ' π Mathlib.Data.Finset.NatAntidiagonal
(n : β) : Finset.antidiagonal (n + 1) = Finset.cons (n + 1, 0) (Finset.map ((Function.Embedding.refl β).prodMap { toFun := Nat.succ, inj' := Nat.succ_injective }) (Finset.antidiagonal n)) β― - Finset.Nat.antidiagonal_filter_le_fst_of_le π Mathlib.Data.Finset.NatAntidiagonal
{n k : β} (h : k β€ n) : {a β Finset.antidiagonal n | k β€ a.1} = Finset.map ({ toFun := fun x => x + k, inj' := β― }.prodMap (Function.Embedding.refl β)) (Finset.antidiagonal (n - k)) - Finset.Nat.antidiagonal_filter_le_snd_of_le π Mathlib.Data.Finset.NatAntidiagonal
{n k : β} (h : k β€ n) : {a β Finset.antidiagonal n | k β€ a.2} = Finset.map ((Function.Embedding.refl β).prodMap { toFun := fun x => x + k, inj' := β― }) (Finset.antidiagonal (n - k)) - Finset.Nat.antidiagonal_filter_fst_le_of_le π Mathlib.Data.Finset.NatAntidiagonal
{n k : β} (h : k β€ n) : {a β Finset.antidiagonal n | a.1 β€ k} = Finset.map ((Function.Embedding.refl β).prodMap { toFun := fun x => x + (n - k), inj' := β― }) (Finset.antidiagonal k) - Finset.Nat.antidiagonal_filter_snd_le_of_le π Mathlib.Data.Finset.NatAntidiagonal
{n k : β} (h : k β€ n) : {a β Finset.antidiagonal n | a.2 β€ k} = Finset.map ({ toFun := fun x => x + (n - k), inj' := β― }.prodMap (Function.Embedding.refl β)) (Finset.antidiagonal k) - Finset.Nat.antidiagonal_succ_succ' π Mathlib.Data.Finset.NatAntidiagonal
{n : β} : Finset.antidiagonal (n + 2) = Finset.cons (0, n + 2) (Finset.cons (n + 2, 0) (Finset.map ({ toFun := Nat.succ, inj' := Nat.succ_injective }.prodMap { toFun := Nat.succ, inj' := Nat.succ_injective }) (Finset.antidiagonal n)) β―) β― - Finset.Nat.antidiagonal_eq_map π Mathlib.Data.Finset.NatAntidiagonal
(n : β) : Finset.antidiagonal n = Finset.map { toFun := fun i => (i, n - i), inj' := β― } (Finset.range (n + 1)) - Finset.Nat.antidiagonal_eq_map' π Mathlib.Data.Finset.NatAntidiagonal
(n : β) : Finset.antidiagonal n = Finset.map { toFun := fun i => (n - i, i), inj' := β― } (Finset.range (n + 1)) - Finset.Nat.antidiagonalEquivFin_apply_val π Mathlib.Data.Finset.NatAntidiagonal
(n : β) (xβ : β₯(Finset.antidiagonal n)) : β((Finset.Nat.antidiagonalEquivFin n) xβ) = xβ.1.1 - Finset.Nat.antidiagonalEquivFin_symm_apply_coe π Mathlib.Data.Finset.NatAntidiagonal
(n : β) (xβ : Fin (n + 1)) : β((Finset.Nat.antidiagonalEquivFin n).symm xβ) = (βxβ, n - βxβ) - Finset.Nat.prod_antidiagonal_swap π Mathlib.Algebra.BigOperators.NatAntidiagonal
{M : Type u_1} [CommMonoid M] {n : β} {f : β Γ β β M} : β p β Finset.antidiagonal n, f p.swap = β p β Finset.antidiagonal n, f p - Finset.Nat.sum_antidiagonal_swap π Mathlib.Algebra.BigOperators.NatAntidiagonal
{M : Type u_1} [AddCommMonoid M] {n : β} {f : β Γ β β M} : β p β Finset.antidiagonal n, f p.swap = β p β Finset.antidiagonal n, f p - Finset.Nat.prod_antidiagonal_eq_prod_range_succ_mk π Mathlib.Algebra.BigOperators.NatAntidiagonal
{M : Type u_3} [CommMonoid M] (f : β Γ β β M) (n : β) : β ij β Finset.antidiagonal n, f ij = β k β Finset.range n.succ, f (k, n - k) - Finset.Nat.sum_antidiagonal_eq_sum_range_succ_mk π Mathlib.Algebra.BigOperators.NatAntidiagonal
{M : Type u_3} [AddCommMonoid M] (f : β Γ β β M) (n : β) : β ij β Finset.antidiagonal n, f ij = β k β Finset.range n.succ, f (k, n - k) - Finset.Nat.prod_antidiagonal_eq_prod_range_succ π Mathlib.Algebra.BigOperators.NatAntidiagonal
{M : Type u_3} [CommMonoid M] (f : β β β β M) (n : β) : β ij β Finset.antidiagonal n, f ij.1 ij.2 = β k β Finset.range n.succ, f k (n - k) - Finset.Nat.sum_antidiagonal_eq_sum_range_succ π Mathlib.Algebra.BigOperators.NatAntidiagonal
{M : Type u_3} [AddCommMonoid M] (f : β β β β M) (n : β) : β ij β Finset.antidiagonal n, f ij.1 ij.2 = β k β Finset.range n.succ, f k (n - k) - Finset.Nat.prod_antidiagonal_subst π Mathlib.Algebra.BigOperators.NatAntidiagonal
{M : Type u_1} [CommMonoid M] {n : β} {f : β Γ β β β β M} : β p β Finset.antidiagonal n, f p n = β p β Finset.antidiagonal n, f p (p.1 + p.2) - Finset.Nat.sum_antidiagonal_subst π Mathlib.Algebra.BigOperators.NatAntidiagonal
{M : Type u_1} [AddCommMonoid M] {n : β} {f : β Γ β β β β M} : β p β Finset.antidiagonal n, f p n = β p β Finset.antidiagonal n, f p (p.1 + p.2) - Finset.Nat.sum_antidiagonal_succ π Mathlib.Algebra.BigOperators.NatAntidiagonal
{N : Type u_2} [AddCommMonoid N] {n : β} {f : β Γ β β N} : β p β Finset.antidiagonal (n + 1), f p = f (0, n + 1) + β p β Finset.antidiagonal n, f (p.1 + 1, p.2) - Finset.Nat.sum_antidiagonal_succ' π Mathlib.Algebra.BigOperators.NatAntidiagonal
{N : Type u_2} [AddCommMonoid N] {n : β} {f : β Γ β β N} : β p β Finset.antidiagonal (n + 1), f p = f (n + 1, 0) + β p β Finset.antidiagonal n, f (p.1, p.2 + 1) - Finset.Nat.prod_antidiagonal_succ π Mathlib.Algebra.BigOperators.NatAntidiagonal
{M : Type u_1} [CommMonoid M] {n : β} {f : β Γ β β M} : β p β Finset.antidiagonal (n + 1), f p = f (0, n + 1) * β p β Finset.antidiagonal n, f (p.1 + 1, p.2) - Finset.Nat.prod_antidiagonal_succ' π Mathlib.Algebra.BigOperators.NatAntidiagonal
{M : Type u_1} [CommMonoid M] {n : β} {f : β Γ β β M} : β p β Finset.antidiagonal (n + 1), f p = f (n + 1, 0) * β p β Finset.antidiagonal n, f (p.1, p.2 + 1) - Finset.sum_antidiagonal_choose_add π Mathlib.Data.Nat.Choose.Sum
(d n : β) : β ij β Finset.antidiagonal n, (d + ij.2).choose d = (d + n + 1).choose (d + 1) - Commute.add_pow' π Mathlib.Data.Nat.Choose.Sum
{R : Type u_1} [Semiring R] {x y : R} (h : Commute x y) (n : β) : (x + y) ^ n = β m β Finset.antidiagonal n, n.choose m.1 β’ (x ^ m.1 * y ^ m.2) - Finset.prod_antidiagonal_pow_choose_succ π Mathlib.Data.Nat.Choose.Sum
{M : Type u_2} [CommMonoid M] (f : β β β β M) (n : β) : β ij β Finset.antidiagonal (n + 1), f ij.1 ij.2 ^ (n + 1).choose ij.1 = (β ij β Finset.antidiagonal n, f ij.1 (ij.2 + 1) ^ n.choose ij.1) * β ij β Finset.antidiagonal n, f (ij.1 + 1) ij.2 ^ n.choose ij.2 - Finset.sum_antidiagonal_choose_succ_nsmul π Mathlib.Data.Nat.Choose.Sum
{M : Type u_2} [AddCommMonoid M] (f : β β β β M) (n : β) : β ij β Finset.antidiagonal (n + 1), (n + 1).choose ij.1 β’ f ij.1 ij.2 = β ij β Finset.antidiagonal n, n.choose ij.1 β’ f ij.1 (ij.2 + 1) + β ij β Finset.antidiagonal n, n.choose ij.2 β’ f (ij.1 + 1) ij.2 - Finset.sum_antidiagonal_choose_succ_mul π Mathlib.Data.Nat.Choose.Sum
{R : Type u_1} [NonAssocSemiring R] (f : β β β β R) (n : β) : β ij β Finset.antidiagonal (n + 1), β((n + 1).choose ij.1) * f ij.1 ij.2 = β ij β Finset.antidiagonal n, β(n.choose ij.1) * f ij.1 (ij.2 + 1) + β ij β Finset.antidiagonal n, β(n.choose ij.2) * f (ij.1 + 1) ij.2 - Polynomial.coeff_mul π Mathlib.Algebra.Polynomial.Coeff
{R : Type u} [Semiring R] (p q : Polynomial R) (n : β) : (p * q).coeff n = β x β Finset.antidiagonal n, p.coeff x.1 * q.coeff x.2 - Finsupp.antidiagonal_single π Mathlib.Data.Finsupp.Antidiagonal
{Ξ± : Type u} [DecidableEq Ξ±] (a : Ξ±) (n : β) : (Finset.antidiagonal funβ | a => n) = Finset.map ({ toFun := Finsupp.single a, inj' := β― }.prodMap { toFun := Finsupp.single a, inj' := β― }) (Finset.antidiagonal n) - Finsupp.antidiagonal_zero π Mathlib.Data.Finsupp.Antidiagonal
{Ξ± : Type u} [DecidableEq Ξ±] : Finset.antidiagonal 0 = {(0, 0)} - Finsupp.prod_antidiagonal_swap π Mathlib.Data.Finsupp.Antidiagonal
{Ξ± : Type u} [DecidableEq Ξ±] {M : Type u_1} [CommMonoid M] (n : Ξ± ββ β) (f : (Ξ± ββ β) β (Ξ± ββ β) β M) : β p β Finset.antidiagonal n, f p.1 p.2 = β p β Finset.antidiagonal n, f p.2 p.1 - Finsupp.sum_antidiagonal_swap π Mathlib.Data.Finsupp.Antidiagonal
{Ξ± : Type u} [DecidableEq Ξ±] {M : Type u_1} [AddCommMonoid M] (n : Ξ± ββ β) (f : (Ξ± ββ β) β (Ξ± ββ β) β M) : β p β Finset.antidiagonal n, f p.1 p.2 = β p β Finset.antidiagonal n, f p.2 p.1 - MvPolynomial.coeff_mul π Mathlib.Algebra.MvPolynomial.Basic
{R : Type u} {Ο : Type u_1} [CommSemiring R] [DecidableEq Ο] (p q : MvPolynomial Ο R) (n : Ο ββ β) : MvPolynomial.coeff n (p * q) = β x β Finset.antidiagonal n, MvPolynomial.coeff x.1 p * MvPolynomial.coeff x.2 q - summable_sum_mul_antidiagonal_of_summable_mul π Mathlib.Topology.Algebra.InfiniteSum.Ring
{Ξ± : Type u_3} {A : Type u_4} [AddCommMonoid A] [Finset.HasAntidiagonal A] [TopologicalSpace Ξ±] [NonUnitalNonAssocSemiring Ξ±] {f g : A β Ξ±} [T3Space Ξ±] [IsTopologicalSemiring Ξ±] (h : Summable fun x => f x.1 * g x.2) : Summable fun n => β kl β Finset.antidiagonal n, f kl.1 * g kl.2 - Summable.tsum_mul_tsum_eq_tsum_sum_antidiagonal π Mathlib.Topology.Algebra.InfiniteSum.Ring
{Ξ± : Type u_3} {A : Type u_4} [AddCommMonoid A] [Finset.HasAntidiagonal A] [TopologicalSpace Ξ±] [NonUnitalNonAssocSemiring Ξ±] {f g : A β Ξ±} [T3Space Ξ±] [IsTopologicalSemiring Ξ±] (hf : Summable f) (hg : Summable g) (hfg : Summable fun x => f x.1 * g x.2) : (β' (n : A), f n) * β' (n : A), g n = β' (n : A), β kl β Finset.antidiagonal n, f kl.1 * g kl.2 - summable_mul_prod_iff_summable_mul_sigma_antidiagonal π Mathlib.Topology.Algebra.InfiniteSum.Ring
{Ξ± : Type u_3} {A : Type u_4} [AddCommMonoid A] [Finset.HasAntidiagonal A] [TopologicalSpace Ξ±] [NonUnitalNonAssocSemiring Ξ±] {f g : A β Ξ±} : (Summable fun x => f x.1 * g x.2) β Summable fun x => f (βx.snd).1 * g (βx.snd).2 - Finset.Nat.antidiagonalTuple_two π Mathlib.Data.Fin.Tuple.NatAntidiagonal
(n : β) : Finset.Nat.antidiagonalTuple 2 n = Finset.map (piFinTwoEquiv fun x => β).symm.toEmbedding (Finset.antidiagonal n) - Finset.finsetCongr_piAntidiag_eq_antidiag π Mathlib.Algebra.Order.Antidiag.Pi
{ΞΌ : Type u_2} [AddCommMonoid ΞΌ] [Finset.HasAntidiagonal ΞΌ] [DecidableEq ΞΌ] (n : ΞΌ) : (Equiv.boolArrowEquivProd ΞΌ).finsetCongr (Finset.univ.piAntidiag n) = Finset.antidiagonal n - Finset.piAntidiag_insert π Mathlib.Algebra.Order.Antidiag.Pi
{ΞΉ : Type u_1} {ΞΌ : Type u_2} [DecidableEq ΞΉ] [AddCancelCommMonoid ΞΌ] [Finset.HasAntidiagonal ΞΌ] [DecidableEq ΞΌ] {i : ΞΉ} {s : Finset ΞΉ} [DecidableEq (ΞΉ β ΞΌ)] (hi : i β s) (n : ΞΌ) : (insert i s).piAntidiag n = (Finset.antidiagonal n).biUnion fun p => Finset.image (fun f j => f j + if j = i then p.1 else 0) (s.piAntidiag p.2) - Finset.pairwiseDisjoint_piAntidiag_map_addRightEmbedding π Mathlib.Algebra.Order.Antidiag.Pi
{ΞΉ : Type u_1} {ΞΌ : Type u_2} [DecidableEq ΞΉ] [AddCancelCommMonoid ΞΌ] [Finset.HasAntidiagonal ΞΌ] [DecidableEq ΞΌ] {i : ΞΉ} {s : Finset ΞΉ} (hi : i β s) (n : ΞΌ) : (β(Finset.antidiagonal n)).PairwiseDisjoint fun p => Finset.map (addRightEmbedding fun j => if j = i then p.1 else 0) (s.piAntidiag p.2) - Finset.piAntidiag_cons π Mathlib.Algebra.Order.Antidiag.Pi
{ΞΉ : Type u_1} {ΞΌ : Type u_2} [DecidableEq ΞΉ] [AddCancelCommMonoid ΞΌ] [Finset.HasAntidiagonal ΞΌ] [DecidableEq ΞΌ] {i : ΞΉ} {s : Finset ΞΉ} (hi : i β s) (n : ΞΌ) : (Finset.cons i s hi).piAntidiag n = (Finset.antidiagonal n).disjiUnion (fun p => Finset.map (addRightEmbedding fun t => if t = i then p.1 else 0) (s.piAntidiag p.2)) β― - Finset.mem_finsuppAntidiag_insert π Mathlib.Algebra.Order.Antidiag.Finsupp
{ΞΉ : Type u_1} {ΞΌ : Type u_2} [DecidableEq ΞΉ] [AddCommMonoid ΞΌ] [Finset.HasAntidiagonal ΞΌ] [DecidableEq ΞΌ] {a : ΞΉ} {s : Finset ΞΉ} (h : a β s) (n : ΞΌ) {f : ΞΉ ββ ΞΌ} : f β (insert a s).finsuppAntidiag n β β m β Finset.antidiagonal n, β g, f = g.update a m.1 β§ g β s.finsuppAntidiag m.2 - Finset.finsuppAntidiag_insert π Mathlib.Algebra.Order.Antidiag.Finsupp
{ΞΉ : Type u_1} {ΞΌ : Type u_2} [DecidableEq ΞΉ] [AddCommMonoid ΞΌ] [Finset.HasAntidiagonal ΞΌ] [DecidableEq ΞΌ] {a : ΞΉ} {s : Finset ΞΉ} (h : a β s) (n : ΞΌ) : (insert a s).finsuppAntidiag n = (Finset.antidiagonal n).biUnion fun p => Finset.map { toFun := fun f => (βf).update a p.1, inj' := β― } (s.finsuppAntidiag p.2).attach - PolynomialModule.smul_apply π Mathlib.Algebra.Polynomial.Module.Basic
{R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (f : Polynomial R) (g : PolynomialModule R M) (n : β) : (f β’ g) n = β x β Finset.antidiagonal n, f.coeff x.1 β’ g x.2 - DirectSum.coe_mul_apply_eq_sum_antidiagonal π Mathlib.Algebra.DirectSum.Internal
{ΞΉ : Type u_1} {Ο : Type u_2} {R : Type u_4} [DecidableEq ΞΉ] [Semiring R] [SetLike Ο R] [AddSubmonoidClass Ο R] (A : ΞΉ β Ο) [AddMonoid ΞΉ] [Finset.HasAntidiagonal ΞΉ] [SetLike.GradedMonoid A] (r r' : DirectSum ΞΉ fun i => β₯(A i)) (n : ΞΉ) : β((r * r') n) = β ij β Finset.antidiagonal n, β(r ij.1) * β(r' ij.2) - PolyEquivTensor.toFunLinear_mul_tmul_mul_aux_2 π Mathlib.RingTheory.PolynomialAlgebra
(R : Type u_1) (A : Type u_2) [CommSemiring R] [Semiring A] [Algebra R A] (k : β) (aβ aβ : A) (pβ pβ : Polynomial R) : aβ * aβ * (algebraMap R A) ((pβ * pβ).coeff k) = β x β Finset.antidiagonal k, aβ * (algebraMap R A) (pβ.coeff x.1) * (aβ * (algebraMap R A) (pβ.coeff x.2)) - Nat.add_choose_eq π Mathlib.Data.Nat.Choose.Vandermonde
(m n k : β) : (m + n).choose k = β ij β Finset.antidiagonal k, m.choose ij.1 * n.choose ij.2 - Polynomial.hasseDeriv_mul π Mathlib.Algebra.Polynomial.HasseDeriv
{R : Type u_1} [Semiring R] (k : β) (f g : Polynomial R) : (Polynomial.hasseDeriv k) (f * g) = β ij β Finset.antidiagonal k, (Polynomial.hasseDeriv ij.1) f * (Polynomial.hasseDeriv ij.2) g - Nat.fib_succ_eq_sum_choose π Mathlib.Data.Nat.Fib.Basic
(n : β) : Nat.fib (n + 1) = β p β Finset.antidiagonal n, p.1.choose p.2 - LieModule.toEnd_pow_lie π Mathlib.Algebra.Lie.OfAssociative
(R : Type u) {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (x y : L) (z : M) (n : β) : ((LieModule.toEnd R L M) x ^ n) β y, zβ = β ij β Finset.antidiagonal n, n.choose ij.1 β’ β ((LieAlgebra.ad R L) x ^ ij.1) y, ((LieModule.toEnd R L M) x ^ ij.2) zβ - LieAlgebra.ad_pow_lie π Mathlib.Algebra.Lie.OfAssociative
(R : Type u) {L : Type v} [CommRing R] [LieRing L] [LieAlgebra R L] (x y z : L) (n : β) : ((LieAlgebra.ad R L) x ^ n) β y, zβ = β ij β Finset.antidiagonal n, n.choose ij.1 β’ β ((LieAlgebra.ad R L) x ^ ij.1) y, ((LieAlgebra.ad R L) x ^ ij.2) zβ - LieDerivation.iterate_apply_lie π Mathlib.Algebra.Lie.Derivation.Basic
{R : Type u_1} {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] (D : LieDerivation R L L) (n : β) (a b : L) : (βD)^[n] β a, bβ = β ij β Finset.antidiagonal n, n.choose ij.1 β’ β (βD)^[ij.1] a, (βD)^[ij.2] bβ - summable_norm_sum_mul_antidiagonal_of_summable_norm π Mathlib.Analysis.Normed.Ring.InfiniteSum
{R : Type u_1} [NormedRing R] {f g : β β R} (hf : Summable fun x => βf xβ) (hg : Summable fun x => βg xβ) : Summable fun n => ββ kl β Finset.antidiagonal n, f kl.1 * g kl.2β - summable_sum_mul_antidiagonal_of_summable_norm' π Mathlib.Analysis.Normed.Ring.InfiniteSum
{R : Type u_1} [NormedRing R] {f g : β β R} (hf : Summable fun x => βf xβ) (h'f : Summable f) (hg : Summable fun x => βg xβ) (h'g : Summable g) : Summable fun n => β kl β Finset.antidiagonal n, f kl.1 * g kl.2 - tsum_mul_tsum_eq_tsum_sum_antidiagonal_of_summable_norm π Mathlib.Analysis.Normed.Ring.InfiniteSum
{R : Type u_1} [NormedRing R] [CompleteSpace R] {f g : β β R} (hf : Summable fun x => βf xβ) (hg : Summable fun x => βg xβ) : (β' (n : β), f n) * β' (n : β), g n = β' (n : β), β kl β Finset.antidiagonal n, f kl.1 * g kl.2 - tsum_mul_tsum_eq_tsum_sum_antidiagonal_of_summable_norm' π Mathlib.Analysis.Normed.Ring.InfiniteSum
{R : Type u_1} [NormedRing R] {f g : β β R} (hf : Summable fun x => βf xβ) (h'f : Summable f) (hg : Summable fun x => βg xβ) (h'g : Summable g) : (β' (n : β), f n) * β' (n : β), g n = β' (n : β), β kl β Finset.antidiagonal n, f kl.1 * g kl.2 - Polynomial.homogenize.eq_1 π Mathlib.Algebra.Polynomial.Homogenize
{R : Type u_1} [CommSemiring R] (p : Polynomial R) (n : β) : p.homogenize n = β kl β Finset.antidiagonal n, (MvPolynomial.monomial funβ | 0 => kl.1 | 1 => kl.2) (p.coeff kl.1) - Ring.add_choose_eq π Mathlib.RingTheory.Binomial
{R : Type u_1} [Ring R] [BinomialRing R] {r s : R} (k : β) (h : Commute r s) : Ring.choose (r + s) k = β ij β Finset.antidiagonal k, Ring.choose r ij.1 * Ring.choose s ij.2 - Ring.descPochhammer_smeval_add π Mathlib.RingTheory.Binomial
{R : Type u_1} [Ring R] {r s : R} (k : β) (h : Commute r s) : (descPochhammer β€ k).smeval (r + s) = β ij β Finset.antidiagonal k, β(k.choose ij.1) * ((descPochhammer β€ ij.1).smeval r * (descPochhammer β€ ij.2).smeval s) - Nat.bell_succ' π Mathlib.Combinatorics.Enumerative.Bell
(n : β) : (n + 1).bell = β ij β Finset.antidiagonal n, n.choose ij.1 * ij.2.bell - catalan_succ' π Mathlib.Combinatorics.Enumerative.Catalan
(n : β) : catalan (n + 1) = β ij β Finset.antidiagonal n, catalan ij.1 * catalan ij.2 - Tree.treesOfNumNodesEq_succ π Mathlib.Combinatorics.Enumerative.Catalan
(n : β) : Tree.treesOfNumNodesEq (n + 1) = (Finset.antidiagonal n).biUnion fun ij => Tree.pairwiseNode (Tree.treesOfNumNodesEq ij.1) (Tree.treesOfNumNodesEq ij.2) - Tree.treesOfNumNodesEq.eq_2 π Mathlib.Combinatorics.Enumerative.Catalan
(n : β) : Tree.treesOfNumNodesEq n.succ = (Finset.antidiagonal n).attach.biUnion fun ijh => Tree.pairwiseNode (Tree.treesOfNumNodesEq (βijh).1) (Tree.treesOfNumNodesEq (βijh).2) - Tree.treesOfNumNodesEq.eq_def π Mathlib.Combinatorics.Enumerative.Catalan
(xβ : β) : Tree.treesOfNumNodesEq xβ = match xβ with | 0 => {Tree.nil} | n.succ => (Finset.antidiagonal n).attach.biUnion fun ijh => Tree.pairwiseNode (Tree.treesOfNumNodesEq (βijh).1) (Tree.treesOfNumNodesEq (βijh).2) - MvPowerSeries.coeff_mul π Mathlib.RingTheory.MvPowerSeries.Basic
{Ο : Type u_1} {R : Type u_2} [Semiring R] (n : Ο ββ β) (Ο Ο : MvPowerSeries Ο R) [DecidableEq Ο] : (MvPowerSeries.coeff n) (Ο * Ο) = β p β Finset.antidiagonal n, (MvPowerSeries.coeff p.1) Ο * (MvPowerSeries.coeff p.2) Ο - PowerSeries.coeff_mul π Mathlib.RingTheory.PowerSeries.Basic
{R : Type u_1} [Semiring R] (n : β) (Ο Ο : PowerSeries R) : (PowerSeries.coeff n) (Ο * Ο) = β p β Finset.antidiagonal n, (PowerSeries.coeff p.1) Ο * (PowerSeries.coeff p.2) Ο - Nat.castChoose_eq π Mathlib.Data.Nat.Factorial.NatCast
{A : Type u_1} [CommSemiring A] {m : β} {k : β Γ β} (hm : IsUnit βm.factorial) (hk : k β Finset.antidiagonal m) : β(m.choose k.1) = βm.factorial * Ring.inverse βk.1.factorial * Ring.inverse βk.2.factorial - MvPowerSeries.inv.aux.eq_1 π Mathlib.RingTheory.MvPowerSeries.Inverse
{Ο : Type u_1} {R : Type u_2} [Ring R] (a : R) (Ο : MvPowerSeries Ο R) (xβ : Ο ββ β) : MvPowerSeries.inv.aux a Ο xβ = if xβ = 0 then a else -a * β x β Finset.antidiagonal xβ, if x_1 : x.2 < xβ then (MvPowerSeries.coeff x.1) Ο * MvPowerSeries.inv.aux a Ο x.2 else 0 - MvPowerSeries.inv.aux.eq_def π Mathlib.RingTheory.MvPowerSeries.Inverse
{Ο : Type u_1} {R : Type u_2} [Ring R] (a : R) (Ο : MvPowerSeries Ο R) (xβ : Ο ββ β) : MvPowerSeries.inv.aux a Ο xβ = have n := xβ; if n = 0 then a else -a * β x β Finset.antidiagonal n, if x_1 : x.2 < n then (MvPowerSeries.coeff x.1) Ο * MvPowerSeries.inv.aux a Ο x.2 else 0 - MvPowerSeries.coeff_inv_aux π Mathlib.RingTheory.MvPowerSeries.Inverse
{Ο : Type u_1} {R : Type u_2} [Ring R] [DecidableEq Ο] (n : Ο ββ β) (a : R) (Ο : MvPowerSeries Ο R) : (MvPowerSeries.coeff n) (MvPowerSeries.inv.aux a Ο) = if n = 0 then a else -a * β x β Finset.antidiagonal n, if x.2 < n then (MvPowerSeries.coeff x.1) Ο * (MvPowerSeries.coeff x.2) (MvPowerSeries.inv.aux a Ο) else 0 - MvPowerSeries.coeff_invOfUnit π Mathlib.RingTheory.MvPowerSeries.Inverse
{Ο : Type u_1} {R : Type u_2} [Ring R] [DecidableEq Ο] (n : Ο ββ β) (Ο : MvPowerSeries Ο R) (u : RΛ£) : (MvPowerSeries.coeff n) (Ο.invOfUnit u) = if n = 0 then βuβ»ΒΉ else -βuβ»ΒΉ * β x β Finset.antidiagonal n, if x.2 < n then (MvPowerSeries.coeff x.1) Ο * (MvPowerSeries.coeff x.2) (Ο.invOfUnit u) else 0 - MvPowerSeries.coeff_inv π Mathlib.RingTheory.MvPowerSeries.Inverse
{Ο : Type u_1} {k : Type u_3} [Field k] [DecidableEq Ο] (n : Ο ββ β) (Ο : MvPowerSeries Ο k) : (MvPowerSeries.coeff n) Οβ»ΒΉ = if n = 0 then (MvPowerSeries.constantCoeff Ο)β»ΒΉ else -(MvPowerSeries.constantCoeff Ο)β»ΒΉ * β x β Finset.antidiagonal n, if x.2 < n then (MvPowerSeries.coeff x.1) Ο * (MvPowerSeries.coeff x.2) Οβ»ΒΉ else 0 - PowerSeries.coeff_inv_aux π Mathlib.RingTheory.PowerSeries.Inverse
{R : Type u_1} [Ring R] (n : β) (a : R) (Ο : PowerSeries R) : (PowerSeries.coeff n) (PowerSeries.inv.aux a Ο) = if n = 0 then a else -a * β x β Finset.antidiagonal n, if x.2 < n then (PowerSeries.coeff x.1) Ο * (PowerSeries.coeff x.2) (PowerSeries.inv.aux a Ο) else 0 - PowerSeries.coeff_invOfUnit π Mathlib.RingTheory.PowerSeries.Inverse
{R : Type u_1} [Ring R] (n : β) (Ο : PowerSeries R) (u : RΛ£) : (PowerSeries.coeff n) (Ο.invOfUnit u) = if n = 0 then βuβ»ΒΉ else -βuβ»ΒΉ * β x β Finset.antidiagonal n, if x.2 < n then (PowerSeries.coeff x.1) Ο * (PowerSeries.coeff x.2) (Ο.invOfUnit u) else 0 - PowerSeries.coeff_inv π Mathlib.RingTheory.PowerSeries.Inverse
{k : Type u_2} [Field k] (n : β) (Ο : PowerSeries k) : (PowerSeries.coeff n) Οβ»ΒΉ = if n = 0 then (PowerSeries.constantCoeff Ο)β»ΒΉ else -(PowerSeries.constantCoeff Ο)β»ΒΉ * β x β Finset.antidiagonal n, if x.2 < n then (PowerSeries.coeff x.1) Ο * (PowerSeries.coeff x.2) Οβ»ΒΉ else 0 - bernoulli'_spec' π Mathlib.NumberTheory.Bernoulli
(n : β) : β k β Finset.antidiagonal n, β((k.1 + k.2).choose k.2) / (βk.2 + 1) * bernoulli' k.1 = 1 - bernoulli_spec' π Mathlib.NumberTheory.Bernoulli
(n : β) : β k β Finset.antidiagonal n, β((k.1 + k.2).choose k.2) / (βk.2 + 1) * bernoulli k.1 = if n = 0 then 1 else 0 - DividedPowers.exp_add' π Mathlib.RingTheory.DividedPowers.Basic
{A : Type u_1} [CommSemiring A] {a b : A} (dp : β β A β A) (dp_add : β (n : β), dp n (a + b) = β k β Finset.antidiagonal n, dp k.1 a * dp k.2 b) : (PowerSeries.mk fun n => dp n (a + b)) = (PowerSeries.mk fun n => dp n a) * PowerSeries.mk fun n => dp n b - DividedPowers.dpow_add π Mathlib.RingTheory.DividedPowers.Basic
{A : Type u_1} [CommSemiring A] {I : Ideal A} (self : DividedPowers I) {n : β} {x y : A} : x β I β y β I β self.dpow n (x + y) = β k β Finset.antidiagonal n, self.dpow k.1 x * self.dpow k.2 y - DividedPowers.dpow_sum' π Mathlib.RingTheory.DividedPowers.Basic
{A : Type u_1} [CommSemiring A] {M : Type u_2} [AddCommMonoid M] {I : AddSubmonoid M} (dpow : β β M β A) (dpow_zero : β {x : M}, x β I β dpow 0 x = 1) (dpow_add : β {n : β} {x y : M}, x β I β y β I β dpow n (x + y) = β k β Finset.antidiagonal n, dpow k.1 x * dpow k.2 y) (dpow_eval_zero : β {n : β}, n β 0 β dpow n 0 = 0) {ΞΉ : Type u_3} [DecidableEq ΞΉ] {s : Finset ΞΉ} {x : ΞΉ β M} (hx : β i β s, x i β I) {n : β} : dpow n (s.sum x) = β k β s.sym n, β i β s, dpow (Multiset.count i βk) (x i) - DividedPowers.mk π Mathlib.RingTheory.DividedPowers.Basic
{A : Type u_1} [CommSemiring A] {I : Ideal A} (dpow : β β A β A) (dpow_null : β {n : β} {x : A}, x β I β dpow n x = 0) (dpow_zero : β {x : A}, x β I β dpow 0 x = 1) (dpow_one : β {x : A}, x β I β dpow 1 x = x) (dpow_mem : β {n : β} {x : A}, n β 0 β x β I β dpow n x β I) (dpow_add : β {n : β} {x y : A}, x β I β y β I β dpow n (x + y) = β k β Finset.antidiagonal n, dpow k.1 x * dpow k.2 y) (dpow_mul : β {n : β} {a x : A}, x β I β dpow n (a * x) = a ^ n * dpow n x) (mul_dpow : β {m n : β} {x : A}, x β I β dpow m x * dpow n x = β((m + n).choose m) * dpow (m + n) x) (dpow_comp : β {m n : β} {x : A}, n β 0 β x β I β dpow m (dpow n x) = β(m.uniformBell n) * dpow (m * n) x) : DividedPowers I - DividedPowers.mk.sizeOf_spec π Mathlib.RingTheory.DividedPowers.Basic
{A : Type u_1} [CommSemiring A] {I : Ideal A} [SizeOf A] (dpow : β β A β A) (dpow_null : β {n : β} {x : A}, x β I β dpow n x = 0) (dpow_zero : β {x : A}, x β I β dpow 0 x = 1) (dpow_one : β {x : A}, x β I β dpow 1 x = x) (dpow_mem : β {n : β} {x : A}, n β 0 β x β I β dpow n x β I) (dpow_add : β {n : β} {x y : A}, x β I β y β I β dpow n (x + y) = β k β Finset.antidiagonal n, dpow k.1 x * dpow k.2 y) (dpow_mul : β {n : β} {a x : A}, x β I β dpow n (a * x) = a ^ n * dpow n x) (mul_dpow : β {m n : β} {x : A}, x β I β dpow m x * dpow n x = β((m + n).choose m) * dpow (m + n) x) (dpow_comp : β {m n : β} {x : A}, n β 0 β x β I β dpow m (dpow n x) = β(m.uniformBell n) * dpow (m * n) x) : sizeOf { dpow := dpow, dpow_null := dpow_null, dpow_zero := dpow_zero, dpow_one := dpow_one, dpow_mem := dpow_mem, dpow_add := dpow_add, dpow_mul := dpow_mul, mul_dpow := mul_dpow, dpow_comp := dpow_comp } = 1 - DividedPowers.mk.injEq π Mathlib.RingTheory.DividedPowers.Basic
{A : Type u_1} [CommSemiring A] {I : Ideal A} (dpow : β β A β A) (dpow_null : β {n : β} {x : A}, x β I β dpow n x = 0) (dpow_zero : β {x : A}, x β I β dpow 0 x = 1) (dpow_one : β {x : A}, x β I β dpow 1 x = x) (dpow_mem : β {n : β} {x : A}, n β 0 β x β I β dpow n x β I) (dpow_add : β {n : β} {x y : A}, x β I β y β I β dpow n (x + y) = β k β Finset.antidiagonal n, dpow k.1 x * dpow k.2 y) (dpow_mul : β {n : β} {a x : A}, x β I β dpow n (a * x) = a ^ n * dpow n x) (mul_dpow : β {m n : β} {x : A}, x β I β dpow m x * dpow n x = β((m + n).choose m) * dpow (m + n) x) (dpow_comp : β {m n : β} {x : A}, n β 0 β x β I β dpow m (dpow n x) = β(m.uniformBell n) * dpow (m * n) x) (dpowβ : β β A β A) (dpow_nullβ : β {n : β} {x : A}, x β I β dpowβ n x = 0) (dpow_zeroβ : β {x : A}, x β I β dpowβ 0 x = 1) (dpow_oneβ : β {x : A}, x β I β dpowβ 1 x = x) (dpow_memβ : β {n : β} {x : A}, n β 0 β x β I β dpowβ n x β I) (dpow_addβ : β {n : β} {x y : A}, x β I β y β I β dpowβ n (x + y) = β k β Finset.antidiagonal n, dpowβ k.1 x * dpowβ k.2 y) (dpow_mulβ : β {n : β} {a x : A}, x β I β dpowβ n (a * x) = a ^ n * dpowβ n x) (mul_dpowβ : β {m n : β} {x : A}, x β I β dpowβ m x * dpowβ n x = β((m + n).choose m) * dpowβ (m + n) x) (dpow_compβ : β {m n : β} {x : A}, n β 0 β x β I β dpowβ m (dpowβ n x) = β(m.uniformBell n) * dpowβ (m * n) x) : ({ dpow := dpow, dpow_null := dpow_null, dpow_zero := dpow_zero, dpow_one := dpow_one, dpow_mem := dpow_mem, dpow_add := dpow_add, dpow_mul := dpow_mul, mul_dpow := mul_dpow, dpow_comp := dpow_comp } = { dpow := dpowβ, dpow_null := dpow_nullβ, dpow_zero := dpow_zeroβ, dpow_one := dpow_oneβ, dpow_mem := dpow_memβ, dpow_add := dpow_addβ, dpow_mul := dpow_mulβ, mul_dpow := mul_dpowβ, dpow_comp := dpow_compβ }) = (dpow = dpowβ) - DividedPowers.mk.congr_simp π Mathlib.RingTheory.DividedPowers.Basic
{A : Type u_1} [CommSemiring A] {I : Ideal A} (dpow dpowβ : β β A β A) (e_dpow : dpow = dpowβ) (dpow_null : β {n : β} {x : A}, x β I β dpow n x = 0) (dpow_zero : β {x : A}, x β I β dpow 0 x = 1) (dpow_one : β {x : A}, x β I β dpow 1 x = x) (dpow_mem : β {n : β} {x : A}, n β 0 β x β I β dpow n x β I) (dpow_add : β {n : β} {x y : A}, x β I β y β I β dpow n (x + y) = β k β Finset.antidiagonal n, dpow k.1 x * dpow k.2 y) (dpow_mul : β {n : β} {a x : A}, x β I β dpow n (a * x) = a ^ n * dpow n x) (mul_dpow : β {m n : β} {x : A}, x β I β dpow m x * dpow n x = β((m + n).choose m) * dpow (m + n) x) (dpow_comp : β {m n : β} {x : A}, n β 0 β x β I β dpow m (dpow n x) = β(m.uniformBell n) * dpow (m * n) x) : { dpow := dpow, dpow_null := dpow_null, dpow_zero := dpow_zero, dpow_one := dpow_one, dpow_mem := dpow_mem, dpow_add := dpow_add, dpow_mul := dpow_mul, mul_dpow := mul_dpow, dpow_comp := dpow_comp } = { dpow := dpowβ, dpow_null := β―, dpow_zero := β―, dpow_one := β―, dpow_mem := β―, dpow_add := β―, dpow_mul := β―, mul_dpow := β―, dpow_comp := β― } - DividedPowers.OfInvertibleFactorial.dpow_add_of_lt π Mathlib.RingTheory.DividedPowers.RatAlgebra
{A : Type u_1} [CommSemiring A] {I : Ideal A} [DecidablePred fun x => x β I] {n : β} (hn_fac : IsUnit β(n - 1).factorial) {m : β} (hmn : m < n) {x y : A} (hx : x β I) (hy : y β I) : DividedPowers.OfInvertibleFactorial.dpow I m (x + y) = β k β Finset.antidiagonal m, DividedPowers.OfInvertibleFactorial.dpow I k.1 x * DividedPowers.OfInvertibleFactorial.dpow I k.2 y - DividedPowers.OfInvertibleFactorial.dpow_add π Mathlib.RingTheory.DividedPowers.RatAlgebra
{A : Type u_1} [CommSemiring A] {I : Ideal A} [DecidablePred fun x => x β I] {n : β} (hn_fac : IsUnit β(n - 1).factorial) (hnI : I ^ n = 0) {m : β} {x : A} (hx : x β I) {y : A} (hy : y β I) : DividedPowers.OfInvertibleFactorial.dpow I m (x + y) = β k β Finset.antidiagonal m, DividedPowers.OfInvertibleFactorial.dpow I k.1 x * DividedPowers.OfInvertibleFactorial.dpow I k.2 y - MvPolynomial.sum_antidiagonal_card_esymm_psum_eq_zero π Mathlib.RingTheory.MvPolynomial.Symmetric.NewtonIdentities
(Ο : Type u_1) [Fintype Ο] (R : Type u_2) [CommRing R] : β a β Finset.antidiagonal (Fintype.card Ο), (-1) ^ a.1 * MvPolynomial.esymm Ο R a.1 * MvPolynomial.psum Ο R a.2 = 0 - MvPolynomial.mul_esymm_eq_sum π Mathlib.RingTheory.MvPolynomial.Symmetric.NewtonIdentities
(Ο : Type u_1) [Fintype Ο] (R : Type u_2) [CommRing R] (k : β) : βk * MvPolynomial.esymm Ο R k = (-1) ^ (k + 1) * β a β Finset.antidiagonal k with a.1 < k, (-1) ^ a.1 * MvPolynomial.esymm Ο R a.1 * MvPolynomial.psum Ο R a.2 - MvPolynomial.psum_eq_mul_esymm_sub_sum π Mathlib.RingTheory.MvPolynomial.Symmetric.NewtonIdentities
(Ο : Type u_1) [Fintype Ο] (R : Type u_2) [CommRing R] (k : β) (h : 0 < k) : MvPolynomial.psum Ο R k = (-1) ^ (k + 1) * βk * MvPolynomial.esymm Ο R k - β a β Finset.antidiagonal k with a.1 β Set.Ioo 0 k, (-1) ^ a.1 * MvPolynomial.esymm Ο R a.1 * MvPolynomial.psum Ο R a.2
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision 1c119a3