Loogle!
Result
Found 57 declarations mentioning Real, Finset.prod and HPow.hPow.
- Real.rpow_sum_of_pos π Mathlib.Analysis.SpecialFunctions.Pow.Real
{ΞΉ : Type u_1} {a : β} (ha : 0 < a) (f : ΞΉ β β) (s : Finset ΞΉ) : a ^ β x β s, f x = β x β s, a ^ f x - Real.rpow_sum_of_nonneg π Mathlib.Analysis.SpecialFunctions.Pow.Real
{ΞΉ : Type u_1} {a : β} (ha : 0 β€ a) {s : Finset ΞΉ} {f : ΞΉ β β} (h : β x β s, 0 β€ f x) : a ^ β x β s, f x = β x β s, a ^ f x - NNReal.finset_prod_rpow π Mathlib.Analysis.SpecialFunctions.Pow.NNReal
{ΞΉ : Type u_1} (s : Finset ΞΉ) (f : ΞΉ β NNReal) (r : β) : β i β s, f i ^ r = (β i β s, f i) ^ r - ENNReal.prod_coe_rpow π Mathlib.Analysis.SpecialFunctions.Pow.NNReal
{ΞΉ : Type u_1} (s : Finset ΞΉ) (f : ΞΉ β NNReal) (r : β) : β i β s, β(f i) ^ r = β(β i β s, f i) ^ r - ENNReal.prod_rpow_of_nonneg π Mathlib.Analysis.SpecialFunctions.Pow.NNReal
{ΞΉ : Type u_1} {s : Finset ΞΉ} {f : ΞΉ β ENNReal} {r : β} (hr : 0 β€ r) : β i β s, f i ^ r = (β i β s, f i) ^ r - ENNReal.prod_rpow_of_ne_top π Mathlib.Analysis.SpecialFunctions.Pow.NNReal
{ΞΉ : Type u_1} {s : Finset ΞΉ} {f : ΞΉ β ENNReal} (hf : β i β s, f i β β€) (r : β) : β i β s, f i ^ r = (β i β s, f i) ^ r - Real.finset_prod_rpow π Mathlib.Analysis.SpecialFunctions.Pow.NNReal
{ΞΉ : Type u_1} (s : Finset ΞΉ) (f : ΞΉ β β) (hs : β i β s, 0 β€ f i) (r : β) : β i β s, f i ^ r = (β i β s, f i) ^ r - NNReal.geom_mean_le_arith_mean_weighted π Mathlib.Analysis.MeanInequalities
{ΞΉ : Type u} (s : Finset ΞΉ) (w z : ΞΉ β NNReal) (hw' : β i β s, w i = 1) : β i β s, z i ^ β(w i) β€ β i β s, w i * z i - Real.geom_mean_le_arith_mean_weighted π Mathlib.Analysis.MeanInequalities
{ΞΉ : Type u} (s : Finset ΞΉ) (w z : ΞΉ β β) (hw : β i β s, 0 β€ w i) (hw' : β i β s, w i = 1) (hz : β i β s, 0 β€ z i) : β i β s, z i ^ w i β€ β i β s, w i * z i - Real.geom_mean_weighted_of_constant π Mathlib.Analysis.MeanInequalities
{ΞΉ : Type u} (s : Finset ΞΉ) (w z : ΞΉ β β) (x : β) (hw : β i β s, 0 β€ w i) (hw' : β i β s, w i = 1) (hz : β i β s, 0 β€ z i) (hx : β i β s, w i β 0 β z i = x) : β i β s, z i ^ w i = x - Real.harm_mean_le_geom_mean_weighted π Mathlib.Analysis.MeanInequalities
{ΞΉ : Type u} (s : Finset ΞΉ) (w z : ΞΉ β β) (hs : s.Nonempty) (hw : β i β s, 0 < w i) (hw' : β i β s, w i = 1) (hz : β i β s, 0 < z i) : (β i β s, w i / z i)β»ΒΉ β€ β i β s, z i ^ w i - Real.geom_mean_eq_arith_mean_weighted_of_constant π Mathlib.Analysis.MeanInequalities
{ΞΉ : Type u} (s : Finset ΞΉ) (w z : ΞΉ β β) (x : β) (hw : β i β s, 0 β€ w i) (hw' : β i β s, w i = 1) (hz : β i β s, 0 β€ z i) (hx : β i β s, w i β 0 β z i = x) : β i β s, z i ^ w i = β i β s, w i * z i - Real.geom_mean_eq_arith_mean_weighted_iff' π Mathlib.Analysis.MeanInequalities
{ΞΉ : Type u} (s : Finset ΞΉ) (w z : ΞΉ β β) (hw : β i β s, 0 < w i) (hw' : β i β s, w i = 1) (hz : β i β s, 0 β€ z i) : β i β s, z i ^ w i = β i β s, w i * z i β β j β s, z j = β i β s, w i * z i - Real.geom_mean_lt_arith_mean_weighted_iff_of_pos π Mathlib.Analysis.MeanInequalities
{ΞΉ : Type u} (s : Finset ΞΉ) (w z : ΞΉ β β) (hw : β i β s, 0 < w i) (hw' : β i β s, w i = 1) (hz : β i β s, 0 β€ z i) : β i β s, z i ^ w i < β i β s, w i * z i β β j β s, β k β s, z j β z k - Real.geom_mean_le_arith_mean π Mathlib.Analysis.MeanInequalities
{ΞΉ : Type u_1} (s : Finset ΞΉ) (w z : ΞΉ β β) (hw : β i β s, 0 β€ w i) (hw' : 0 < β i β s, w i) (hz : β i β s, 0 β€ z i) : (β i β s, z i ^ w i) ^ (β i β s, w i)β»ΒΉ β€ (β i β s, w i * z i) / β i β s, w i - Real.geom_mean_eq_arith_mean_weighted_iff π Mathlib.Analysis.MeanInequalities
{ΞΉ : Type u} (s : Finset ΞΉ) (w z : ΞΉ β β) (hw : β i β s, 0 β€ w i) (hw' : β i β s, w i = 1) (hz : β i β s, 0 β€ z i) : β i β s, z i ^ w i = β i β s, w i * z i β β j β s, w j β 0 β z j = β i β s, w i * z i - Real.harm_mean_le_geom_mean π Mathlib.Analysis.MeanInequalities
{ΞΉ : Type u_1} (s : Finset ΞΉ) (hs : s.Nonempty) (w z : ΞΉ β β) (hw : β i β s, 0 < w i) (hw' : 0 < β i β s, w i) (hz : β i β s, 0 < z i) : (β i β s, w i) / β i β s, w i / z i β€ (β i β s, z i ^ w i) ^ (β i β s, w i)β»ΒΉ - ENNReal.lintegral_prod_norm_pow_le π Mathlib.MeasureTheory.Integral.MeanInequalities
{Ξ± : Type u_2} {ΞΉ : Type u_3} [MeasurableSpace Ξ±] {ΞΌ : MeasureTheory.Measure Ξ±} (s : Finset ΞΉ) {f : ΞΉ β Ξ± β ENNReal} (hf : β i β s, AEMeasurable (f i) ΞΌ) {p : ΞΉ β β} (hp : β i β s, p i = 1) (h2p : β i β s, 0 β€ p i) : β«β» (a : Ξ±), β i β s, f i a ^ p i βΞΌ β€ β i β s, (β«β» (a : Ξ±), f i a βΞΌ) ^ p i - ENNReal.lintegral_mul_prod_norm_pow_le π Mathlib.MeasureTheory.Integral.MeanInequalities
{Ξ± : Type u_2} {ΞΉ : Type u_3} [MeasurableSpace Ξ±] {ΞΌ : MeasureTheory.Measure Ξ±} (s : Finset ΞΉ) {g : Ξ± β ENNReal} {f : ΞΉ β Ξ± β ENNReal} (hg : AEMeasurable g ΞΌ) (hf : β i β s, AEMeasurable (f i) ΞΌ) (q : β) {p : ΞΉ β β} (hpq : q + β i β s, p i = 1) (hq : 0 β€ q) (hp : β i β s, 0 β€ p i) : β«β» (a : Ξ±), g a ^ q * β i β s, f i a ^ p i βΞΌ β€ (β«β» (a : Ξ±), g a βΞΌ) ^ q * β i β s, (β«β» (a : Ξ±), f i a βΞΌ) ^ p i - MultilinearMap.restr_norm_le π Mathlib.Analysis.NormedSpace.Multilinear.Basic
{π : Type u} {G : Type wG} {G' : Type wG'} [NontriviallyNormedField π] [SeminormedAddCommGroup G] [NormedSpace π G] [SeminormedAddCommGroup G'] [NormedSpace π G'] {k n : β} (f : MultilinearMap π (fun x => G) G') (s : Finset (Fin n)) (hk : s.card = k) (z : G) {C : β} (H : β (m : Fin n β G), βf mβ β€ C * β i, βm iβ) (v : Fin k β G) : β(f.restr s hk z) vβ β€ C * βzβ ^ (n - k) * β i, βv iβ - MultilinearMap.norm_image_sub_le_of_bound π Mathlib.Analysis.NormedSpace.Multilinear.Basic
{π : Type u} {ΞΉ : Type v} {E : ΞΉ β Type wE} {G : Type wG} [NontriviallyNormedField π] [(i : ΞΉ) β SeminormedAddCommGroup (E i)] [(i : ΞΉ) β NormedSpace π (E i)] [SeminormedAddCommGroup G] [NormedSpace π G] [Fintype ΞΉ] (f : MultilinearMap π E G) {C : β} (hC : 0 β€ C) (H : β (m : (i : ΞΉ) β E i), βf mβ β€ C * β i, βm iβ) (mβ mβ : (i : ΞΉ) β E i) : βf mβ - f mββ β€ C * β(Fintype.card ΞΉ) * max βmββ βmββ ^ (Fintype.card ΞΉ - 1) * βmβ - mββ - FormalMultilinearSeries.radius_right_inv_pos_of_radius_pos_aux1 π Mathlib.Analysis.Analytic.Inverse
(n : β) (p : β β β) (hp : β (k : β), 0 β€ p k) {r a : β} (hr : 0 β€ r) (ha : 0 β€ a) : β k β Finset.Ico 2 (n + 1), a ^ k * β c β {c | 1 < c.length}.toFinset, r ^ c.length * β j, p (c.blocksFun j) β€ β j β Finset.Ico 2 (n + 1), r ^ j * (β k β Finset.Ico 1 n, a ^ k * p k) ^ j - integral_sin_pow_even π Mathlib.Analysis.SpecialFunctions.Integrals
(n : β) : β« (x : β) in 0 ..Real.pi, Real.sin x ^ (2 * n) = Real.pi * β i β Finset.range n, (2 * βi + 1) / (2 * βi + 2) - integral_sin_pow_odd π Mathlib.Analysis.SpecialFunctions.Integrals
(n : β) : β« (x : β) in 0 ..Real.pi, Real.sin x ^ (2 * n + 1) = 2 * β i β Finset.range n, (2 * βi + 2) / (2 * βi + 3) - VectorFourier.fourierPowSMulRight_apply π Mathlib.Analysis.Fourier.FourierTransformDeriv
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] {V : Type u_2} {W : Type u_3} [NormedAddCommGroup V] [NormedSpace β V] [NormedAddCommGroup W] [NormedSpace β W] (L : V βL[β] W βL[β] β) {f : V β E} {v : V} {n : β} {m : Fin n β W} : (VectorFourier.fourierPowSMulRight L f v n) m = (-(2 * βReal.pi * Complex.I)) ^ n β’ (β i, (L v) (m i)) β’ f v - MeasureTheory.integral_fintype_prod_eq_pow π Mathlib.MeasureTheory.Integral.Pi
{π : Type u_1} [RCLike π] {E : Type u_2} (ΞΉ : Type u_3) [Fintype ΞΉ] (f : E β π) [MeasureTheory.MeasureSpace E] [MeasureTheory.SigmaFinite MeasureTheory.volume] : β« (x : ΞΉ β E), β i, f (x i) = (β« (x : E), f x) ^ Fintype.card ΞΉ - GaussianFourier.integral_cexp_neg_sum_mul_add π Mathlib.Analysis.SpecialFunctions.Gaussian.FourierTransform
{ΞΉ : Type u_2} [Fintype ΞΉ] {b : ΞΉ β β} (hb : β (i : ΞΉ), 0 < (b i).re) (c : ΞΉ β β) : β« (v : ΞΉ β β), Complex.exp (-β i, b i * β(v i) ^ 2 + β i, c i * β(v i)) = β i, (βReal.pi / b i) ^ (1 / 2) * Complex.exp (c i ^ 2 / (4 * b i)) - MeasureTheory.GridLines.T_univ π Mathlib.Analysis.FunctionalSpaces.SobolevInequality
{ΞΉ : Type u_1} {A : ΞΉ β Type u_2} [(i : ΞΉ) β MeasurableSpace (A i)] (ΞΌ : (i : ΞΉ) β MeasureTheory.Measure (A i)) [DecidableEq ΞΉ] {p : β} [Fintype ΞΉ] [β (i : ΞΉ), MeasureTheory.SigmaFinite (ΞΌ i)] (f : ((i : ΞΉ) β A i) β ENNReal) (x : (i : ΞΉ) β A i) : MeasureTheory.GridLines.T ΞΌ p f Finset.univ x = β«β» (x : (i : ΞΉ) β A i), f x ^ (1 - (β(Fintype.card ΞΉ) - 1) * p) * β i, (β«β» (t : A i), f (Function.update x i t) βΞΌ i) ^ p βMeasureTheory.Measure.pi ΞΌ - MeasureTheory.lintegral_prod_lintegral_pow_le π Mathlib.Analysis.FunctionalSpaces.SobolevInequality
{ΞΉ : Type u_1} {A : ΞΉ β Type u_2} [(i : ΞΉ) β MeasurableSpace (A i)] (ΞΌ : (i : ΞΉ) β MeasureTheory.Measure (A i)) [DecidableEq ΞΉ] [Fintype ΞΉ] [β (i : ΞΉ), MeasureTheory.SigmaFinite (ΞΌ i)] {p : β} (hp : (β(Fintype.card ΞΉ)).HolderConjugate p) {f : ((a : ΞΉ) β A a) β ENNReal} (hf : Measurable f) : β«β» (x : (i : ΞΉ) β A i), β i, (β«β» (xα΅’ : A i), f (Function.update x i xα΅’) βΞΌ i) ^ (1 / (β(Fintype.card ΞΉ) - 1)) βMeasureTheory.Measure.pi ΞΌ β€ (β«β» (x : (i : ΞΉ) β A i), f x βMeasureTheory.Measure.pi ΞΌ) ^ p - MeasureTheory.GridLines.T.eq_1 π Mathlib.Analysis.FunctionalSpaces.SobolevInequality
{ΞΉ : Type u_1} {A : ΞΉ β Type u_2} [(i : ΞΉ) β MeasurableSpace (A i)] (ΞΌ : (i : ΞΉ) β MeasureTheory.Measure (A i)) [DecidableEq ΞΉ] (p : β) (f : ((i : ΞΉ) β A i) β ENNReal) (s : Finset ΞΉ) : MeasureTheory.GridLines.T ΞΌ p f s = β«β―β«β»_s, f ^ (1 - (βs.card - 1) * p) * β i β s, (β«β―β«β»_{i}, f βΞΌ) ^ p βΞΌ - MeasureTheory.lintegral_mul_prod_lintegral_pow_le π Mathlib.Analysis.FunctionalSpaces.SobolevInequality
{ΞΉ : Type u_1} {A : ΞΉ β Type u_2} [(i : ΞΉ) β MeasurableSpace (A i)] (ΞΌ : (i : ΞΉ) β MeasureTheory.Measure (A i)) [DecidableEq ΞΉ] [Fintype ΞΉ] [β (i : ΞΉ), MeasureTheory.SigmaFinite (ΞΌ i)] {p : β} (hpβ : 0 β€ p) (hp : (β(Fintype.card ΞΉ) - 1) * p β€ 1) {f : ((i : ΞΉ) β A i) β ENNReal} (hf : Measurable f) : β«β» (x : (i : ΞΉ) β A i), f x ^ (1 - (β(Fintype.card ΞΉ) - 1) * p) * β i, (β«β» (xα΅’ : A i), f (Function.update x i xα΅’) βΞΌ i) ^ p βMeasureTheory.Measure.pi ΞΌ β€ (β«β» (x : (i : ΞΉ) β A i), f x βMeasureTheory.Measure.pi ΞΌ) ^ (1 + p) - Real.tendsto_euler_sin_prod π Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd
(x : β) : Filter.Tendsto (fun n => Real.pi * x * β j β Finset.range n, (1 - x ^ 2 / (βj + 1) ^ 2)) Filter.atTop (nhds (Real.sin (Real.pi * x))) - EulerSine.sin_pi_mul_eq π Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd
(z : β) (n : β) : Complex.sin (βReal.pi * z) = ((βReal.pi * z * β j β Finset.range n, (1 - z ^ 2 / (βj + 1) ^ 2)) * β« (x : β) in 0 ..Real.pi / 2, Complex.cos (2 * z * βx) * β(Real.cos x) ^ (2 * n)) / β(β« (x : β) in 0 ..Real.pi / 2, Real.cos x ^ (2 * n)) - norm_torusIntegral_le_of_norm_le_const π Mathlib.MeasureTheory.Integral.TorusIntegral
{n : β} {E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] {f : (Fin n β β) β E} {c : Fin n β β} {R : Fin n β β} {C : β} (hf : β (ΞΈ : Fin n β β), βf (torusMap c R ΞΈ)β β€ C) : ββ― (x : Fin n β β) in T(c, R), f xβ β€ ((2 * Real.pi) ^ n * β i, |R i|) * C - NumberField.InfinitePlace.prod_eq_abs_norm π Mathlib.NumberTheory.NumberField.InfinitePlace.Basic
{K : Type u_2} [Field K] [NumberField K] (x : K) : β w, w x ^ w.mult = β|(Algebra.norm β) x| - NumberField.mixedEmbedding.norm_apply π Mathlib.NumberTheory.NumberField.CanonicalEmbedding.Basic
{K : Type u_1} [Field K] [NumberField K] (x : NumberField.mixedEmbedding.mixedSpace K) : NumberField.mixedEmbedding.norm x = β w, (NumberField.mixedEmbedding.normAtPlace w) x ^ w.mult - NumberField.mixedEmbedding.norm.eq_1 π Mathlib.NumberTheory.NumberField.CanonicalEmbedding.Basic
{K : Type u_1} [Field K] [NumberField K] : NumberField.mixedEmbedding.norm = { toFun := fun x => β w, (NumberField.mixedEmbedding.normAtPlace w) x ^ w.mult, map_zero' := β―, map_one' := β―, map_mul' := β― } - NumberField.mixedEmbedding.convexBodyLT_volume π Mathlib.NumberTheory.NumberField.CanonicalEmbedding.ConvexBody
(K : Type u_1) [Field K] (f : NumberField.InfinitePlace K β NNReal) [NumberField K] : MeasureTheory.volume (NumberField.mixedEmbedding.convexBodyLT K f) = β(NumberField.mixedEmbedding.convexBodyLTFactor K) * β(β w, f w ^ w.mult) - NumberField.mixedEmbedding.convexBodyLT'_volume π Mathlib.NumberTheory.NumberField.CanonicalEmbedding.ConvexBody
(K : Type u_1) [Field K] (f : NumberField.InfinitePlace K β NNReal) (wβ : { w // w.IsComplex }) [NumberField K] : MeasureTheory.volume (NumberField.mixedEmbedding.convexBodyLT' K f wβ) = β(NumberField.mixedEmbedding.convexBodyLT'Factor K) * β(β w, f w ^ w.mult) - EulerProduct.prod_primesBelow_tsum_eq_tsum_smoothNumbers π Mathlib.NumberTheory.EulerProduct.Basic
{R : Type u_1} [NormedCommRing R] {f : β β R} [CompleteSpace R] (hfβ : f 1 = 1) (hmul : β {m n : β}, m.Coprime n β f (m * n) = f m * f n) (hsum : Summable fun x => βf xβ) (N : β) : β p β N.primesBelow, β' (n : β), f (p ^ n) = β' (m : βN.smoothNumbers), f βm - EulerProduct.prod_filter_prime_tsum_eq_tsum_factoredNumbers π Mathlib.NumberTheory.EulerProduct.Basic
{R : Type u_1} [NormedCommRing R] {f : β β R} [CompleteSpace R] (hfβ : f 1 = 1) (hmul : β {m n : β}, m.Coprime n β f (m * n) = f m * f n) (hsum : Summable fun x => βf xβ) (s : Finset β) : β p β s with Nat.Prime p, β' (n : β), f (p ^ n) = β' (m : β(Nat.factoredNumbers s)), f βm - EulerProduct.eulerProduct π Mathlib.NumberTheory.EulerProduct.Basic
{R : Type u_1} [NormedCommRing R] {f : β β R} [CompleteSpace R] (hfβ : f 1 = 1) (hmul : β {m n : β}, m.Coprime n β f (m * n) = f m * f n) (hsum : Summable fun x => βf xβ) (hfβ : f 0 = 0) : Filter.Tendsto (fun n => β p β n.primesBelow, β' (e : β), f (p ^ e)) Filter.atTop (nhds (β' (n : β), f n)) - EulerProduct.summable_and_hasSum_smoothNumbers_prod_primesBelow_tsum π Mathlib.NumberTheory.EulerProduct.Basic
{R : Type u_1} [NormedCommRing R] {f : β β R} [CompleteSpace R] (hfβ : f 1 = 1) (hmul : β {m n : β}, m.Coprime n β f (m * n) = f m * f n) (hsum : β {p : β}, Nat.Prime p β Summable fun n => βf (p ^ n)β) (N : β) : (Summable fun m => βf βmβ) β§ HasSum (fun m => f βm) (β p β N.primesBelow, β' (n : β), f (p ^ n)) - EulerProduct.summable_and_hasSum_factoredNumbers_prod_filter_prime_tsum π Mathlib.NumberTheory.EulerProduct.Basic
{R : Type u_1} [NormedCommRing R] {f : β β R} [CompleteSpace R] (hfβ : f 1 = 1) (hmul : β {m n : β}, m.Coprime n β f (m * n) = f m * f n) (hsum : β {p : β}, Nat.Prime p β Summable fun n => βf (p ^ n)β) (s : Finset β) : (Summable fun m => βf βmβ) β§ HasSum (fun m => f βm) (β p β s with Nat.Prime p, β' (n : β), f (p ^ n)) - ArithmeticFunction.IsMultiplicative.eulerProduct π Mathlib.NumberTheory.EulerProduct.Basic
{R : Type u_1} [NormedCommRing R] [CompleteSpace R] {f : ArithmeticFunction R} (hf : f.IsMultiplicative) (hsum : Summable fun x => βf xβ) : Filter.Tendsto (fun n => β p β n.primesBelow, β' (e : β), f (p ^ e)) Filter.atTop (nhds (β' (n : β), f n)) - riemannZeta_eulerProduct π Mathlib.NumberTheory.EulerProduct.DirichletLSeries
{s : β} (hs : 1 < s.re) : Filter.Tendsto (fun n => β p β n.primesBelow, (1 - βp ^ (-s))β»ΒΉ) Filter.atTop (nhds (riemannZeta s)) - dirichletLSeries_eulerProduct π Mathlib.NumberTheory.EulerProduct.DirichletLSeries
{s : β} {N : β} (Ο : DirichletCharacter β N) (hs : 1 < s.re) : Filter.Tendsto (fun n => β p β n.primesBelow, (1 - Ο βp * βp ^ (-s))β»ΒΉ) Filter.atTop (nhds (LSeries (fun n => Ο βn) s)) - DirichletCharacter.LSeries_eulerProduct π Mathlib.NumberTheory.EulerProduct.DirichletLSeries
{s : β} {N : β} (Ο : DirichletCharacter β N) (hs : 1 < s.re) : Filter.Tendsto (fun n => β p β n.primesBelow, (1 - Ο βp * βp ^ (-s))β»ΒΉ) Filter.atTop (nhds (LSeries (fun n => Ο βn) s)) - DirichletCharacter.LSeries_changeLevel π Mathlib.NumberTheory.EulerProduct.DirichletLSeries
{M N : β} [NeZero N] (hMN : M β£ N) (Ο : DirichletCharacter β M) {s : β} (hs : 1 < s.re) : LSeries (fun n => ((DirichletCharacter.changeLevel hMN) Ο) βn) s = LSeries (fun n => Ο βn) s * β p β N.primeFactors, (1 - Ο βp * βp ^ (-s)) - NumberField.mixedEmbedding.volume_eq_two_pi_pow_mul_integral π Mathlib.NumberTheory.NumberField.CanonicalEmbedding.PolarCoord
{K : Type u_1} [Field K] {A : Set (NumberField.mixedEmbedding.mixedSpace K)} [NumberField K] (hA : NumberField.mixedEmbedding.normAtComplexPlaces β»ΒΉ' (NumberField.mixedEmbedding.normAtComplexPlaces '' A) = A) (hm : MeasurableSet A) : MeasureTheory.volume A = ENNReal.ofReal (2 * Real.pi) ^ NumberField.InfinitePlace.nrComplexPlaces K * β«β» (x : NumberField.mixedEmbedding.realSpace K) in NumberField.mixedEmbedding.normAtComplexPlaces '' A, β w, ENNReal.ofReal (x βw) - NumberField.mixedEmbedding.volume_eq_two_pow_mul_two_pi_pow_mul_integral π Mathlib.NumberTheory.NumberField.CanonicalEmbedding.PolarCoord
{K : Type u_1} [Field K] {A : Set (NumberField.mixedEmbedding.mixedSpace K)} [NumberField K] (hA : NumberField.mixedEmbedding.normAtAllPlaces β»ΒΉ' (NumberField.mixedEmbedding.normAtAllPlaces '' A) = A) (hm : MeasurableSet A) : MeasureTheory.volume A = 2 ^ NumberField.InfinitePlace.nrRealPlaces K * ENNReal.ofReal (2 * Real.pi) ^ NumberField.InfinitePlace.nrComplexPlaces K * β«β» (x : NumberField.mixedEmbedding.realSpace K) in NumberField.mixedEmbedding.normAtAllPlaces '' A, β w, ENNReal.ofReal (x βw) - NumberField.mixedEmbedding.fundamentalCone.prod_expMapBasis_pow π Mathlib.NumberTheory.NumberField.CanonicalEmbedding.NormLeOne
{K : Type u_1} [Field K] [NumberField K] (x : NumberField.mixedEmbedding.realSpace K) : β w, βNumberField.mixedEmbedding.fundamentalCone.expMapBasis x w ^ w.mult = Real.exp (x NumberField.Units.dirichletUnitTheorem.wβ) ^ Module.finrank β K - NumberField.mixedEmbedding.fundamentalCone.abs_det_fderiv_expMapBasis π Mathlib.NumberTheory.NumberField.CanonicalEmbedding.NormLeOne
(K : Type u_1) [Field K] [NumberField K] (x : NumberField.mixedEmbedding.realSpace K) : |(NumberField.mixedEmbedding.fundamentalCone.fderiv_expMapBasis K x).det| = Real.exp (x NumberField.Units.dirichletUnitTheorem.wβ * β(Module.finrank β K)) * (β w, βNumberField.mixedEmbedding.fundamentalCone.expMapBasis x βw)β»ΒΉ * 2β»ΒΉ ^ NumberField.InfinitePlace.nrComplexPlaces K * β(Module.finrank β K) * NumberField.Units.regulator K - NumberField.mixedEmbedding.fundamentalCone.expMapBasis_apply' π Mathlib.NumberTheory.NumberField.CanonicalEmbedding.NormLeOne
{K : Type u_1} [Field K] [NumberField K] (x : NumberField.mixedEmbedding.realSpace K) : βNumberField.mixedEmbedding.fundamentalCone.expMapBasis x = Real.exp (x NumberField.Units.dirichletUnitTheorem.wβ) β’ fun w => β i, w ((algebraMap (NumberField.RingOfIntegers K) K) β(NumberField.Units.fundSystem K (NumberField.mixedEmbedding.fundamentalCone.equivFinRank.symm i))) ^ x βi - NumberField.mixedEmbedding.fundamentalCone.setLIntegral_expMapBasis_image π Mathlib.NumberTheory.NumberField.CanonicalEmbedding.NormLeOne
{K : Type u_1} [Field K] [NumberField K] {s : Set (NumberField.mixedEmbedding.realSpace K)} (hs : MeasurableSet s) {f : (NumberField.InfinitePlace K β β) β ENNReal} (hf : Measurable f) : β«β» (x : NumberField.mixedEmbedding.realSpace K) in βNumberField.mixedEmbedding.fundamentalCone.expMapBasis '' s, f x = 2β»ΒΉ ^ NumberField.InfinitePlace.nrComplexPlaces K * ENNReal.ofReal (NumberField.Units.regulator K) * β(Module.finrank β K) * β«β» (x : NumberField.mixedEmbedding.realSpace K) in s, ENNReal.ofReal (Real.exp (x NumberField.Units.dirichletUnitTheorem.wβ * β(Module.finrank β K))) * (β i, ENNReal.ofReal (βNumberField.mixedEmbedding.fundamentalCone.expMapBasis (fun w => x w) βi))β»ΒΉ * f (βNumberField.mixedEmbedding.fundamentalCone.expMapBasis x) - NumberField.mixedEmbedding.fundamentalCone.prod_deriv_expMap_single π Mathlib.NumberTheory.NumberField.CanonicalEmbedding.NormLeOne
{K : Type u_1} [Field K] [NumberField K] (x : NumberField.mixedEmbedding.realSpace K) : β w, NumberField.mixedEmbedding.fundamentalCone.deriv_expMap_single w ((NumberField.mixedEmbedding.fundamentalCone.completeBasis K).equivFun.symm x w) = Real.exp (x NumberField.Units.dirichletUnitTheorem.wβ) ^ Module.finrank β K * (β w, βNumberField.mixedEmbedding.fundamentalCone.expMapBasis x βw)β»ΒΉ * 2β»ΒΉ ^ NumberField.InfinitePlace.nrComplexPlaces K - NumberField.prod_abs_eq_one π Mathlib.NumberTheory.NumberField.ProductFormula
{K : Type u_1} [Field K] [NumberField K] {x : K} (h_x_nezero : x β 0) : (β w, w x ^ w.mult) * βαΆ (w : NumberField.FinitePlace K), w x = 1
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision d796b90