Loogle!
Result
Found 9 declarations mentioning Real, HDiv.hDiv, Finset.prod and HPow.hPow.
- Real.harm_mean_le_geom_mean_weighted π Mathlib.Analysis.MeanInequalities
{ΞΉ : Type u} (s : Finset ΞΉ) (w z : ΞΉ β β) (hs : s.Nonempty) (hw : β i β s, 0 < w i) (hw' : β i β s, w i = 1) (hz : β i β s, 0 < z i) : (β i β s, w i / z i)β»ΒΉ β€ β i β s, z i ^ w i - Real.geom_mean_le_arith_mean π Mathlib.Analysis.MeanInequalities
{ΞΉ : Type u_1} (s : Finset ΞΉ) (w z : ΞΉ β β) (hw : β i β s, 0 β€ w i) (hw' : 0 < β i β s, w i) (hz : β i β s, 0 β€ z i) : (β i β s, z i ^ w i) ^ (β i β s, w i)β»ΒΉ β€ (β i β s, w i * z i) / β i β s, w i - Real.harm_mean_le_geom_mean π Mathlib.Analysis.MeanInequalities
{ΞΉ : Type u_1} (s : Finset ΞΉ) (hs : s.Nonempty) (w z : ΞΉ β β) (hw : β i β s, 0 < w i) (hw' : 0 < β i β s, w i) (hz : β i β s, 0 < z i) : (β i β s, w i) / β i β s, w i / z i β€ (β i β s, z i ^ w i) ^ (β i β s, w i)β»ΒΉ - integral_sin_pow_even π Mathlib.Analysis.SpecialFunctions.Integrals
(n : β) : β« (x : β) in 0 ..Real.pi, Real.sin x ^ (2 * n) = Real.pi * β i β Finset.range n, (2 * βi + 1) / (2 * βi + 2) - integral_sin_pow_odd π Mathlib.Analysis.SpecialFunctions.Integrals
(n : β) : β« (x : β) in 0 ..Real.pi, Real.sin x ^ (2 * n + 1) = 2 * β i β Finset.range n, (2 * βi + 2) / (2 * βi + 3) - GaussianFourier.integral_cexp_neg_sum_mul_add π Mathlib.Analysis.SpecialFunctions.Gaussian.FourierTransform
{ΞΉ : Type u_2} [Fintype ΞΉ] {b : ΞΉ β β} (hb : β (i : ΞΉ), 0 < (b i).re) (c : ΞΉ β β) : β« (v : ΞΉ β β), Complex.exp (-β i, b i * β(v i) ^ 2 + β i, c i * β(v i)) = β i, (βReal.pi / b i) ^ (1 / 2) * Complex.exp (c i ^ 2 / (4 * b i)) - MeasureTheory.lintegral_prod_lintegral_pow_le π Mathlib.Analysis.FunctionalSpaces.SobolevInequality
{ΞΉ : Type u_1} {A : ΞΉ β Type u_2} [(i : ΞΉ) β MeasurableSpace (A i)] (ΞΌ : (i : ΞΉ) β MeasureTheory.Measure (A i)) [DecidableEq ΞΉ] [Fintype ΞΉ] [β (i : ΞΉ), MeasureTheory.SigmaFinite (ΞΌ i)] {p : β} (hp : (β(Fintype.card ΞΉ)).HolderConjugate p) {f : ((a : ΞΉ) β A a) β ENNReal} (hf : Measurable f) : β«β» (x : (i : ΞΉ) β A i), β i, (β«β» (xα΅’ : A i), f (Function.update x i xα΅’) βΞΌ i) ^ (1 / (β(Fintype.card ΞΉ) - 1)) βMeasureTheory.Measure.pi ΞΌ β€ (β«β» (x : (i : ΞΉ) β A i), f x βMeasureTheory.Measure.pi ΞΌ) ^ p - Real.tendsto_euler_sin_prod π Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd
(x : β) : Filter.Tendsto (fun n => Real.pi * x * β j β Finset.range n, (1 - x ^ 2 / (βj + 1) ^ 2)) Filter.atTop (nhds (Real.sin (Real.pi * x))) - EulerSine.sin_pi_mul_eq π Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd
(z : β) (n : β) : Complex.sin (βReal.pi * z) = ((βReal.pi * z * β j β Finset.range n, (1 - z ^ 2 / (βj + 1) ^ 2)) * β« (x : β) in 0 ..Real.pi / 2, Complex.cos (2 * z * βx) * β(Real.cos x) ^ (2 * n)) / β(β« (x : β) in 0 ..Real.pi / 2, Real.cos x ^ (2 * n))
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision d796b90