Loogle!
Result
Found 35 declarations mentioning Equiv, Eq and Finset.sum.
- Equiv.sum_comp π Mathlib.Algebra.BigOperators.Group.Finset.Defs
{ΞΉ : Type u_6} {ΞΊ : Type u_7} {Ξ± : Type u_8} [Fintype ΞΉ] [Fintype ΞΊ] [AddCommMonoid Ξ±] (e : ΞΉ β ΞΊ) (g : ΞΊ β Ξ±) : β i, g (e i) = β i, g i - Fintype.sum_equiv π Mathlib.Algebra.BigOperators.Group.Finset.Defs
{ΞΉ : Type u_6} {ΞΊ : Type u_7} {Ξ± : Type u_8} [Fintype ΞΉ] [Fintype ΞΊ] [AddCommMonoid Ξ±] (e : ΞΉ β ΞΊ) (f : ΞΉ β Ξ±) (g : ΞΊ β Ξ±) (h : β (x : ΞΉ), f x = g (e x)) : β x, f x = β x, g x - ofAdd_sum π Mathlib.Algebra.BigOperators.Group.Finset.Defs
{ΞΉ : Type u_1} {Ξ± : Type u_3} [AddCommMonoid Ξ±] (s : Finset ΞΉ) (f : ΞΉ β Ξ±) : Multiplicative.ofAdd (β i β s, f i) = β i β s, Multiplicative.ofAdd (f i) - ofMul_prod π Mathlib.Algebra.BigOperators.Group.Finset.Defs
{ΞΉ : Type u_1} {Ξ± : Type u_3} [CommMonoid Ξ±] (s : Finset ΞΉ) (f : ΞΉ β Ξ±) : Additive.ofMul (β i β s, f i) = β i β s, Additive.ofMul (f i) - toAdd_prod π Mathlib.Algebra.BigOperators.Group.Finset.Defs
{ΞΉ : Type u_1} {Ξ± : Type u_3} [AddCommMonoid Ξ±] (s : Finset ΞΉ) (f : ΞΉ β Multiplicative Ξ±) : Multiplicative.toAdd (β i β s, f i) = β i β s, Multiplicative.toAdd (f i) - toMul_sum π Mathlib.Algebra.BigOperators.Group.Finset.Defs
{ΞΉ : Type u_1} {Ξ± : Type u_3} [CommMonoid Ξ±] (s : Finset ΞΉ) (f : ΞΉ β Additive Ξ±) : Additive.toMul (β i β s, f i) = β i β s, Additive.toMul (f i) - Equiv.Perm.sum_comp' π Mathlib.Algebra.BigOperators.Group.Finset.Defs
{Ξ± : Type u_3} {Ξ² : Type u_4} [AddCommMonoid Ξ²] (Ο : Equiv.Perm Ξ±) (s : Finset Ξ±) (f : Ξ± β Ξ± β Ξ²) (hs : {a | Ο a β a} β βs) : β x β s, f (Ο x) x = β x β s, f x ((Equiv.symm Ο) x) - Finset.sum_equiv π Mathlib.Algebra.BigOperators.Group.Finset.Defs
{ΞΉ : Type u_6} {ΞΊ : Type u_7} {Ξ± : Type u_8} [AddCommMonoid Ξ±] {s : Finset ΞΉ} {t : Finset ΞΊ} {f : ΞΉ β Ξ±} {g : ΞΊ β Ξ±} (e : ΞΉ β ΞΊ) (hst : β (i : ΞΉ), i β s β e i β t) (hfg : β i β s, f i = g (e i)) : β i β s, f i = β i β t, g i - Finsupp.equivFunOnFinite_symm_eq_sum π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} [Fintype Ξ±] [AddCommMonoid M] (f : Ξ± β M) : Finsupp.equivFunOnFinite.symm f = β a, funβ | a => f a - finSigmaFinEquiv.eq_1 π Mathlib.Algebra.BigOperators.Fin
(n_2 : Fin 0 β β) : finSigmaFinEquiv = Equiv.equivOfIsEmpty ((i : Fin 0) Γ Fin (n_2 i)) (Fin (β i, n_2 i)) - finFunctionFinEquiv_apply π Mathlib.Algebra.BigOperators.Fin
{m n : β} (f : Fin n β Fin m) : β(finFunctionFinEquiv f) = β i, β(f i) * m ^ βi - finFunctionFinEquiv_apply_val π Mathlib.Algebra.BigOperators.Fin
{m n : β} (f : Fin n β Fin m) : β(finFunctionFinEquiv f) = β i, β(f i) * m ^ βi - finPiFinEquiv_apply π Mathlib.Algebra.BigOperators.Fin
{m : β} {n : Fin m β β} (f : (i : Fin m) β Fin (n i)) : β(finPiFinEquiv f) = β i, β(f i) * β j, n (Fin.castLE β― j) - finSigmaFinEquiv_apply π Mathlib.Algebra.BigOperators.Fin
{m : β} {n : Fin m β β} (k : (i : Fin m) Γ Fin (n i)) : β(finSigmaFinEquiv k) = β i, n (Fin.castLE β― i) + βk.snd - finSigmaFinEquiv_one π Mathlib.Algebra.BigOperators.Fin
{n : Fin 1 β β} (ij : (i : Fin 1) Γ Fin (n i)) : β(finSigmaFinEquiv ij) = βij.snd - finSigmaFinEquiv.eq_2 π Mathlib.Algebra.BigOperators.Fin
(m_2 : β) (n_2 : Fin m_2.succ β β) : finSigmaFinEquiv = Trans.trans (Trans.trans (Trans.trans (Trans.trans finSumFinEquiv.sigmaCongrLeft.symm (Equiv.sumSigmaDistrib fun a => Fin (n_2 (finSumFinEquiv a)))) (finSigmaFinEquiv.sumCongr (Equiv.uniqueSigma fun i => Fin (n_2 (finSumFinEquiv (Sum.inr i)))))) finSumFinEquiv) (finCongr β―) - DFinsupp.sum_eq_sum_fintype π Mathlib.Data.DFinsupp.BigOperators
{ΞΉ : Type u} {Ξ³ : Type w} {Ξ² : ΞΉ β Type v} [DecidableEq ΞΉ] [Fintype ΞΉ] [(i : ΞΉ) β Zero (Ξ² i)] [(i : ΞΉ) β (x : Ξ² i) β Decidable (x β 0)] [AddCommMonoid Ξ³] (v : Ξ β (i : ΞΉ), Ξ² i) {f : (i : ΞΉ) β Ξ² i β Ξ³} (hf : β (i : ΞΉ), f i 0 = 0) : v.sum f = β i, f i (DFinsupp.equivFunOnFintype v i) - Sym.equivNatSumOfFintype π Mathlib.Data.Finsupp.Multiset
(Ξ± : Type u_1) [DecidableEq Ξ±] (n : β) [Fintype Ξ±] : Sym Ξ± n β { P // β i, P i = n } - Sym.coe_equivNatSumOfFintype_apply_apply π Mathlib.Data.Finsupp.Multiset
(Ξ± : Type u_1) [DecidableEq Ξ±] (n : β) [Fintype Ξ±] (s : Sym Ξ± n) (a : Ξ±) : β((Sym.equivNatSumOfFintype Ξ± n) s) a = Multiset.count a βs - Sym.coe_equivNatSumOfFintype_symm_apply π Mathlib.Data.Finsupp.Multiset
(Ξ± : Type u_1) [DecidableEq Ξ±] (n : β) [Fintype Ξ±] (P : { P // β i, P i = n }) : β((Sym.equivNatSumOfFintype Ξ± n).symm P) = β a, βP a β’ {a} - DirectSum.decompose_sum π Mathlib.Algebra.DirectSum.Decomposition
{ΞΉ : Type u_1} {M : Type u_3} {Ο : Type u_4} [DecidableEq ΞΉ] [AddCommMonoid M] [SetLike Ο M] [AddSubmonoidClass Ο M] (β³ : ΞΉ β Ο) [DirectSum.Decomposition β³] {ΞΉ' : Type u_5} (s : Finset ΞΉ') (f : ΞΉ' β M) : (DirectSum.decompose β³) (β i β s, f i) = β i β s, (DirectSum.decompose β³) (f i) - DirectSum.decompose_symm_sum π Mathlib.Algebra.DirectSum.Decomposition
{ΞΉ : Type u_1} {M : Type u_3} {Ο : Type u_4} [DecidableEq ΞΉ] [AddCommMonoid M] [SetLike Ο M] [AddSubmonoidClass Ο M] (β³ : ΞΉ β Ο) [DirectSum.Decomposition β³] {ΞΉ' : Type u_5} (s : Finset ΞΉ') (f : ΞΉ' β DirectSum ΞΉ fun i => β₯(β³ i)) : (DirectSum.decompose β³).symm (β i β s, f i) = β i β s, (DirectSum.decompose β³).symm (f i) - DirectSum.sum_support_decompose π Mathlib.Algebra.DirectSum.Decomposition
{ΞΉ : Type u_1} {M : Type u_3} {Ο : Type u_4} [DecidableEq ΞΉ] [AddCommMonoid M] [SetLike Ο M] [AddSubmonoidClass Ο M] (β³ : ΞΉ β Ο) [DirectSum.Decomposition β³] [(i : ΞΉ) β (x : β₯(β³ i)) β Decidable (x β 0)] (r : M) : β i β DFinsupp.support ((DirectSum.decompose β³) r), β(((DirectSum.decompose β³) r) i) = r - Finset.Nat.sigmaAntidiagonalTupleEquivTuple_symm_apply_fst π Mathlib.Data.Fin.Tuple.NatAntidiagonal
(k : β) (x : Fin k β β) : ((Finset.Nat.sigmaAntidiagonalTupleEquivTuple k).symm x).fst = β i, x i - Finset.Nat.sigmaAntidiagonalTupleEquivTuple_symm_apply_snd_coe π Mathlib.Data.Fin.Tuple.NatAntidiagonal
(k : β) (x : Fin k β β) (aβ : Fin k) : β((Finset.Nat.sigmaAntidiagonalTupleEquivTuple k).symm x).snd aβ = x aβ - HahnModule.coeff_smul π Mathlib.RingTheory.HahnSeries.Multiplication
{Ξ : Type u_1} {Ξ' : Type u_2} {R : Type u_3} {V : Type u_5} [PartialOrder Ξ] [AddCommMonoid V] [SMul R V] [PartialOrder Ξ'] [VAdd Ξ Ξ'] [IsOrderedCancelVAdd Ξ Ξ'] [Zero R] (x : HahnSeries Ξ R) (y : HahnModule Ξ' R V) (a : Ξ') : ((HahnModule.of R).symm (x β’ y)).coeff a = β ij β Finset.VAddAntidiagonal β― β― a, x.coeff ij.1 β’ ((HahnModule.of R).symm y).coeff ij.2 - HahnModule.smul_coeff π Mathlib.RingTheory.HahnSeries.Multiplication
{Ξ : Type u_1} {Ξ' : Type u_2} {R : Type u_3} {V : Type u_5} [PartialOrder Ξ] [AddCommMonoid V] [SMul R V] [PartialOrder Ξ'] [VAdd Ξ Ξ'] [IsOrderedCancelVAdd Ξ Ξ'] [Zero R] (x : HahnSeries Ξ R) (y : HahnModule Ξ' R V) (a : Ξ') : ((HahnModule.of R).symm (x β’ y)).coeff a = β ij β Finset.VAddAntidiagonal β― β― a, x.coeff ij.1 β’ ((HahnModule.of R).symm y).coeff ij.2 - HahnModule.coeff_smul_right π Mathlib.RingTheory.HahnSeries.Multiplication
{Ξ : Type u_1} {Ξ' : Type u_2} {R : Type u_3} {V : Type u_5} [PartialOrder Ξ] [PartialOrder Ξ'] [VAdd Ξ Ξ'] [IsOrderedCancelVAdd Ξ Ξ'] [AddCommMonoid V] [Zero R] [SMulZeroClass R V] {x : HahnSeries Ξ R} {y : HahnModule Ξ' R V} {a : Ξ'} {s : Set Ξ'} (hs : s.IsPWO) (hys : ((HahnModule.of R).symm y).support β s) : ((HahnModule.of R).symm (x β’ y)).coeff a = β ij β Finset.VAddAntidiagonal β― hs a, x.coeff ij.1 β’ ((HahnModule.of R).symm y).coeff ij.2 - HahnModule.smul_coeff_right π Mathlib.RingTheory.HahnSeries.Multiplication
{Ξ : Type u_1} {Ξ' : Type u_2} {R : Type u_3} {V : Type u_5} [PartialOrder Ξ] [PartialOrder Ξ'] [VAdd Ξ Ξ'] [IsOrderedCancelVAdd Ξ Ξ'] [AddCommMonoid V] [Zero R] [SMulZeroClass R V] {x : HahnSeries Ξ R} {y : HahnModule Ξ' R V} {a : Ξ'} {s : Set Ξ'} (hs : s.IsPWO) (hys : ((HahnModule.of R).symm y).support β s) : ((HahnModule.of R).symm (x β’ y)).coeff a = β ij β Finset.VAddAntidiagonal β― hs a, x.coeff ij.1 β’ ((HahnModule.of R).symm y).coeff ij.2 - HahnModule.coeff_smul_left π Mathlib.RingTheory.HahnSeries.Multiplication
{Ξ : Type u_1} {Ξ' : Type u_2} {R : Type u_3} {V : Type u_5} [PartialOrder Ξ] [PartialOrder Ξ'] [VAdd Ξ Ξ'] [IsOrderedCancelVAdd Ξ Ξ'] [AddCommMonoid V] [Zero R] [SMulWithZero R V] {x : HahnSeries Ξ R} {y : HahnModule Ξ' R V} {a : Ξ'} {s : Set Ξ} (hs : s.IsPWO) (hxs : x.support β s) : ((HahnModule.of R).symm (x β’ y)).coeff a = β ij β Finset.VAddAntidiagonal hs β― a, x.coeff ij.1 β’ ((HahnModule.of R).symm y).coeff ij.2 - HahnModule.smul_coeff_left π Mathlib.RingTheory.HahnSeries.Multiplication
{Ξ : Type u_1} {Ξ' : Type u_2} {R : Type u_3} {V : Type u_5} [PartialOrder Ξ] [PartialOrder Ξ'] [VAdd Ξ Ξ'] [IsOrderedCancelVAdd Ξ Ξ'] [AddCommMonoid V] [Zero R] [SMulWithZero R V] {x : HahnSeries Ξ R} {y : HahnModule Ξ' R V} {a : Ξ'} {s : Set Ξ} (hs : s.IsPWO) (hxs : x.support β s) : ((HahnModule.of R).symm (x β’ y)).coeff a = β ij β Finset.VAddAntidiagonal hs β― a, x.coeff ij.1 β’ ((HahnModule.of R).symm y).coeff ij.2 - CStarMatrix.toCLM_apply_eq_sum π Mathlib.Analysis.CStarAlgebra.CStarMatrix
{m : Type u_1} {n : Type u_2} {A : Type u_5} [Fintype m] [NonUnitalCStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {M : CStarMatrix m n A} {v : WithCStarModule A (m β A)} : (CStarMatrix.toCLM M) v = (WithCStarModule.equiv A (n β A)).symm fun j => β i, v i * M i j - Finset.equivBitIndices_symm_apply π Mathlib.Combinatorics.Colex
(s : Finset β) : Finset.equivBitIndices.symm s = β i β s, 2 ^ i - AddSubgroup.leftTransversals.diff.eq_1 π Mathlib.GroupTheory.Transfer
{G : Type u_1} [AddGroup G] {H : AddSubgroup G} {A : Type u_2} [AddCommGroup A] (Ο : β₯H β+ A) (S T : H.LeftTransversal) [H.FiniteIndex] : AddSubgroup.leftTransversals.diff Ο S T = β q, Ο β¨-β(β―.leftQuotientEquiv q) + β(β―.leftQuotientEquiv q), β―β© - NumberField.Units.dirichletUnitTheorem.sum_logEmbedding_component π Mathlib.NumberTheory.NumberField.Units.DirichletTheorem
{K : Type u_1} [Field K] [NumberField K] (x : (NumberField.RingOfIntegers K)Λ£) : β w, (NumberField.Units.logEmbedding K) (Additive.ofMul x) w = -βNumberField.Units.dirichletUnitTheorem.wβ.mult * Real.log (NumberField.Units.dirichletUnitTheorem.wβ ((algebraMap (NumberField.RingOfIntegers K) K) βx))
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 4cb993b