Loogle!
Result
Found 16 declarations mentioning Real, Finset.prod, HPow.hPow and Finset.sum.
- Real.rpow_sum_of_pos π Mathlib.Analysis.SpecialFunctions.Pow.Real
{ΞΉ : Type u_1} {a : β} (ha : 0 < a) (f : ΞΉ β β) (s : Finset ΞΉ) : a ^ β x β s, f x = β x β s, a ^ f x - Real.rpow_sum_of_nonneg π Mathlib.Analysis.SpecialFunctions.Pow.Real
{ΞΉ : Type u_1} {a : β} (ha : 0 β€ a) {s : Finset ΞΉ} {f : ΞΉ β β} (h : β x β s, 0 β€ f x) : a ^ β x β s, f x = β x β s, a ^ f x - NNReal.geom_mean_le_arith_mean_weighted π Mathlib.Analysis.MeanInequalities
{ΞΉ : Type u} (s : Finset ΞΉ) (w z : ΞΉ β NNReal) (hw' : β i β s, w i = 1) : β i β s, z i ^ β(w i) β€ β i β s, w i * z i - Real.geom_mean_le_arith_mean_weighted π Mathlib.Analysis.MeanInequalities
{ΞΉ : Type u} (s : Finset ΞΉ) (w z : ΞΉ β β) (hw : β i β s, 0 β€ w i) (hw' : β i β s, w i = 1) (hz : β i β s, 0 β€ z i) : β i β s, z i ^ w i β€ β i β s, w i * z i - Real.geom_mean_weighted_of_constant π Mathlib.Analysis.MeanInequalities
{ΞΉ : Type u} (s : Finset ΞΉ) (w z : ΞΉ β β) (x : β) (hw : β i β s, 0 β€ w i) (hw' : β i β s, w i = 1) (hz : β i β s, 0 β€ z i) (hx : β i β s, w i β 0 β z i = x) : β i β s, z i ^ w i = x - Real.harm_mean_le_geom_mean_weighted π Mathlib.Analysis.MeanInequalities
{ΞΉ : Type u} (s : Finset ΞΉ) (w z : ΞΉ β β) (hs : s.Nonempty) (hw : β i β s, 0 < w i) (hw' : β i β s, w i = 1) (hz : β i β s, 0 < z i) : (β i β s, w i / z i)β»ΒΉ β€ β i β s, z i ^ w i - Real.geom_mean_eq_arith_mean_weighted_of_constant π Mathlib.Analysis.MeanInequalities
{ΞΉ : Type u} (s : Finset ΞΉ) (w z : ΞΉ β β) (x : β) (hw : β i β s, 0 β€ w i) (hw' : β i β s, w i = 1) (hz : β i β s, 0 β€ z i) (hx : β i β s, w i β 0 β z i = x) : β i β s, z i ^ w i = β i β s, w i * z i - Real.geom_mean_eq_arith_mean_weighted_iff' π Mathlib.Analysis.MeanInequalities
{ΞΉ : Type u} (s : Finset ΞΉ) (w z : ΞΉ β β) (hw : β i β s, 0 < w i) (hw' : β i β s, w i = 1) (hz : β i β s, 0 β€ z i) : β i β s, z i ^ w i = β i β s, w i * z i β β j β s, z j = β i β s, w i * z i - Real.geom_mean_lt_arith_mean_weighted_iff_of_pos π Mathlib.Analysis.MeanInequalities
{ΞΉ : Type u} (s : Finset ΞΉ) (w z : ΞΉ β β) (hw : β i β s, 0 < w i) (hw' : β i β s, w i = 1) (hz : β i β s, 0 β€ z i) : β i β s, z i ^ w i < β i β s, w i * z i β β j β s, β k β s, z j β z k - Real.geom_mean_le_arith_mean π Mathlib.Analysis.MeanInequalities
{ΞΉ : Type u_1} (s : Finset ΞΉ) (w z : ΞΉ β β) (hw : β i β s, 0 β€ w i) (hw' : 0 < β i β s, w i) (hz : β i β s, 0 β€ z i) : (β i β s, z i ^ w i) ^ (β i β s, w i)β»ΒΉ β€ (β i β s, w i * z i) / β i β s, w i - Real.geom_mean_eq_arith_mean_weighted_iff π Mathlib.Analysis.MeanInequalities
{ΞΉ : Type u} (s : Finset ΞΉ) (w z : ΞΉ β β) (hw : β i β s, 0 β€ w i) (hw' : β i β s, w i = 1) (hz : β i β s, 0 β€ z i) : β i β s, z i ^ w i = β i β s, w i * z i β β j β s, w j β 0 β z j = β i β s, w i * z i - Real.harm_mean_le_geom_mean π Mathlib.Analysis.MeanInequalities
{ΞΉ : Type u_1} (s : Finset ΞΉ) (hs : s.Nonempty) (w z : ΞΉ β β) (hw : β i β s, 0 < w i) (hw' : 0 < β i β s, w i) (hz : β i β s, 0 < z i) : (β i β s, w i) / β i β s, w i / z i β€ (β i β s, z i ^ w i) ^ (β i β s, w i)β»ΒΉ - ENNReal.lintegral_prod_norm_pow_le π Mathlib.MeasureTheory.Integral.MeanInequalities
{Ξ± : Type u_2} {ΞΉ : Type u_3} [MeasurableSpace Ξ±] {ΞΌ : MeasureTheory.Measure Ξ±} (s : Finset ΞΉ) {f : ΞΉ β Ξ± β ENNReal} (hf : β i β s, AEMeasurable (f i) ΞΌ) {p : ΞΉ β β} (hp : β i β s, p i = 1) (h2p : β i β s, 0 β€ p i) : β«β» (a : Ξ±), β i β s, f i a ^ p i βΞΌ β€ β i β s, (β«β» (a : Ξ±), f i a βΞΌ) ^ p i - ENNReal.lintegral_mul_prod_norm_pow_le π Mathlib.MeasureTheory.Integral.MeanInequalities
{Ξ± : Type u_2} {ΞΉ : Type u_3} [MeasurableSpace Ξ±] {ΞΌ : MeasureTheory.Measure Ξ±} (s : Finset ΞΉ) {g : Ξ± β ENNReal} {f : ΞΉ β Ξ± β ENNReal} (hg : AEMeasurable g ΞΌ) (hf : β i β s, AEMeasurable (f i) ΞΌ) (q : β) {p : ΞΉ β β} (hpq : q + β i β s, p i = 1) (hq : 0 β€ q) (hp : β i β s, 0 β€ p i) : β«β» (a : Ξ±), g a ^ q * β i β s, f i a ^ p i βΞΌ β€ (β«β» (a : Ξ±), g a βΞΌ) ^ q * β i β s, (β«β» (a : Ξ±), f i a βΞΌ) ^ p i - FormalMultilinearSeries.radius_right_inv_pos_of_radius_pos_aux1 π Mathlib.Analysis.Analytic.Inverse
(n : β) (p : β β β) (hp : β (k : β), 0 β€ p k) {r a : β} (hr : 0 β€ r) (ha : 0 β€ a) : β k β Finset.Ico 2 (n + 1), a ^ k * β c β {c | 1 < c.length}.toFinset, r ^ c.length * β j, p (c.blocksFun j) β€ β j β Finset.Ico 2 (n + 1), r ^ j * (β k β Finset.Ico 1 n, a ^ k * p k) ^ j - GaussianFourier.integral_cexp_neg_sum_mul_add π Mathlib.Analysis.SpecialFunctions.Gaussian.FourierTransform
{ΞΉ : Type u_2} [Fintype ΞΉ] {b : ΞΉ β β} (hb : β (i : ΞΉ), 0 < (b i).re) (c : ΞΉ β β) : β« (v : ΞΉ β β), Complex.exp (-β i, b i * β(v i) ^ 2 + β i, c i * β(v i)) = β i, (βReal.pi / b i) ^ (1 / 2) * Complex.exp (c i ^ 2 / (4 * b i))
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision d796b90