Loogle!
Result
Found 22 declarations mentioning Fin.succAbove and Finset.univ.
- Fin.image_succAbove_univ ๐ Mathlib.Data.Fintype.Basic
{n : โ} (i : Fin (n + 1)) : Finset.image i.succAbove Finset.univ = {i}แถ - Fin.univ_succAbove ๐ Mathlib.Data.Fintype.Basic
(n : โ) (p : Fin (n + 1)) : Finset.univ = Finset.cons p (Finset.map p.succAboveEmb Finset.univ) โฏ - Fin.prod_univ_succAbove ๐ Mathlib.Algebra.BigOperators.Fin
{M : Type u_2} [CommMonoid M] {n : โ} (f : Fin (n + 1) โ M) (x : Fin (n + 1)) : โ i, f i = f x * โ i, f (x.succAbove i) - Fin.sum_univ_succAbove ๐ Mathlib.Algebra.BigOperators.Fin
{M : Type u_2} [AddCommMonoid M] {n : โ} (f : Fin (n + 1) โ M) (x : Fin (n + 1)) : โ i, f i = f x + โ i, f (x.succAbove i) - Matrix.det_succ_column_zero ๐ Mathlib.LinearAlgebra.Matrix.Determinant.Basic
{R : Type v} [CommRing R] {n : โ} (A : Matrix (Fin n.succ) (Fin n.succ) R) : A.det = โ i, (-1) ^ โi * A i 0 * (A.submatrix i.succAbove Fin.succ).det - Matrix.det_succ_row_zero ๐ Mathlib.LinearAlgebra.Matrix.Determinant.Basic
{R : Type v} [CommRing R] {n : โ} (A : Matrix (Fin n.succ) (Fin n.succ) R) : A.det = โ j, (-1) ^ โj * A 0 j * (A.submatrix Fin.succ j.succAbove).det - Matrix.det_succ_column ๐ Mathlib.LinearAlgebra.Matrix.Determinant.Basic
{R : Type v} [CommRing R] {n : โ} (A : Matrix (Fin n.succ) (Fin n.succ) R) (j : Fin n.succ) : A.det = โ i, (-1) ^ (โi + โj) * A i j * (A.submatrix i.succAbove j.succAbove).det - Matrix.det_succ_row ๐ Mathlib.LinearAlgebra.Matrix.Determinant.Basic
{R : Type v} [CommRing R] {n : โ} (A : Matrix (Fin n.succ) (Fin n.succ) R) (i : Fin n.succ) : A.det = โ j, (-1) ^ (โi + โj) * A i j * (A.submatrix i.succAbove j.succAbove).det - ContinuousMultilinearMap.norm_map_insertNth_le ๐ Mathlib.Analysis.NormedSpace.Multilinear.Curry
{๐ : Type u} {n : โ} {Ei : Fin n.succ โ Type wEi} {G : Type wG} [NontriviallyNormedField ๐] [(i : Fin n.succ) โ NormedAddCommGroup (Ei i)] [(i : Fin n.succ) โ NormedSpace ๐ (Ei i)] [NormedAddCommGroup G] [NormedSpace ๐ G] (f : ContinuousMultilinearMap ๐ Ei G) {i : Fin (n + 1)} (x : Ei i) (m : (j : Fin n) โ Ei (i.succAbove j)) : โf (i.insertNth x m)โ โค โfโ * โxโ * โ i_1, โm i_1โ - ContinuousLinearMap.norm_map_removeNth_le ๐ Mathlib.Analysis.NormedSpace.Multilinear.Curry
{๐ : Type u} {n : โ} {Ei : Fin n.succ โ Type wEi} {G : Type wG} [NontriviallyNormedField ๐] [(i : Fin n.succ) โ NormedAddCommGroup (Ei i)] [(i : Fin n.succ) โ NormedSpace ๐ (Ei i)] [NormedAddCommGroup G] [NormedSpace ๐ G] {i : Fin (n + 1)} (f : Ei i โL[๐] ContinuousMultilinearMap ๐ (fun j => Ei (i.succAbove j)) G) (m : (i : Fin n.succ) โ Ei i) : โ(f (m i)) (i.removeNth m)โ โค โfโ * โ j, โm jโ - MeasureTheory.integral_divergence_of_hasFDerivAt_off_countable' ๐ Mathlib.MeasureTheory.Integral.DivergenceTheorem
{E : Type u} [NormedAddCommGroup E] [NormedSpace โ E] {n : โ} (a b : Fin (n + 1) โ โ) (hle : a โค b) (f : Fin (n + 1) โ (Fin (n + 1) โ โ) โ E) (f' : Fin (n + 1) โ (Fin (n + 1) โ โ) โ (Fin (n + 1) โ โ) โL[โ] E) (s : Set (Fin (n + 1) โ โ)) (hs : s.Countable) (Hc : โ (i : Fin (n + 1)), ContinuousOn (f i) (Set.Icc a b)) (Hd : โ x โ (Set.univ.pi fun i => Set.Ioo (a i) (b i)) \ s, โ (i : Fin (n + 1)), HasFDerivAt (f i) (f' i x) x) (Hi : MeasureTheory.IntegrableOn (fun x => โ i, (f' i x) (Pi.single i 1)) (Set.Icc a b) MeasureTheory.volume) : โซ (x : Fin (n + 1) โ โ) in Set.Icc a b, โ i, (f' i x) (Pi.single i 1) = โ i, ((โซ (x : Fin n โ โ) in Set.Icc (a โ i.succAbove) (b โ i.succAbove), f i (i.insertNth (b i) x)) - โซ (x : Fin n โ โ) in Set.Icc (a โ i.succAbove) (b โ i.succAbove), f i (i.insertNth (a i) x)) - MeasureTheory.integral_divergence_of_hasFDerivWithinAt_off_countable' ๐ Mathlib.MeasureTheory.Integral.DivergenceTheorem
{E : Type u} [NormedAddCommGroup E] [NormedSpace โ E] {n : โ} (a b : Fin (n + 1) โ โ) (hle : a โค b) (f : Fin (n + 1) โ (Fin (n + 1) โ โ) โ E) (f' : Fin (n + 1) โ (Fin (n + 1) โ โ) โ (Fin (n + 1) โ โ) โL[โ] E) (s : Set (Fin (n + 1) โ โ)) (hs : s.Countable) (Hc : โ (i : Fin (n + 1)), ContinuousOn (f i) (Set.Icc a b)) (Hd : โ x โ (Set.univ.pi fun i => Set.Ioo (a i) (b i)) \ s, โ (i : Fin (n + 1)), HasFDerivAt (f i) (f' i x) x) (Hi : MeasureTheory.IntegrableOn (fun x => โ i, (f' i x) (Pi.single i 1)) (Set.Icc a b) MeasureTheory.volume) : โซ (x : Fin (n + 1) โ โ) in Set.Icc a b, โ i, (f' i x) (Pi.single i 1) = โ i, ((โซ (x : Fin n โ โ) in Set.Icc (a โ i.succAbove) (b โ i.succAbove), f i (i.insertNth (b i) x)) - โซ (x : Fin n โ โ) in Set.Icc (a โ i.succAbove) (b โ i.succAbove), f i (i.insertNth (a i) x)) - MeasureTheory.integral_divergence_of_hasFDerivAt_off_countable ๐ Mathlib.MeasureTheory.Integral.DivergenceTheorem
{E : Type u} [NormedAddCommGroup E] [NormedSpace โ E] {n : โ} (a b : Fin (n + 1) โ โ) (hle : a โค b) (f : (Fin (n + 1) โ โ) โ Fin (n + 1) โ E) (f' : (Fin (n + 1) โ โ) โ (Fin (n + 1) โ โ) โL[โ] Fin (n + 1) โ E) (s : Set (Fin (n + 1) โ โ)) (hs : s.Countable) (Hc : ContinuousOn f (Set.Icc a b)) (Hd : โ x โ (Set.univ.pi fun i => Set.Ioo (a i) (b i)) \ s, HasFDerivAt f (f' x) x) (Hi : MeasureTheory.IntegrableOn (fun x => โ i, (f' x) (Pi.single i 1) i) (Set.Icc a b) MeasureTheory.volume) : โซ (x : Fin (n + 1) โ โ) in Set.Icc a b, โ i, (f' x) (Pi.single i 1) i = โ i, ((โซ (x : Fin n โ โ) in Set.Icc (a โ i.succAbove) (b โ i.succAbove), f (i.insertNth (b i) x) i) - โซ (x : Fin n โ โ) in Set.Icc (a โ i.succAbove) (b โ i.succAbove), f (i.insertNth (a i) x) i) - MeasureTheory.integral_divergence_of_hasFDerivWithinAt_off_countable ๐ Mathlib.MeasureTheory.Integral.DivergenceTheorem
{E : Type u} [NormedAddCommGroup E] [NormedSpace โ E] {n : โ} (a b : Fin (n + 1) โ โ) (hle : a โค b) (f : (Fin (n + 1) โ โ) โ Fin (n + 1) โ E) (f' : (Fin (n + 1) โ โ) โ (Fin (n + 1) โ โ) โL[โ] Fin (n + 1) โ E) (s : Set (Fin (n + 1) โ โ)) (hs : s.Countable) (Hc : ContinuousOn f (Set.Icc a b)) (Hd : โ x โ (Set.univ.pi fun i => Set.Ioo (a i) (b i)) \ s, HasFDerivAt f (f' x) x) (Hi : MeasureTheory.IntegrableOn (fun x => โ i, (f' x) (Pi.single i 1) i) (Set.Icc a b) MeasureTheory.volume) : โซ (x : Fin (n + 1) โ โ) in Set.Icc a b, โ i, (f' x) (Pi.single i 1) i = โ i, ((โซ (x : Fin n โ โ) in Set.Icc (a โ i.succAbove) (b โ i.succAbove), f (i.insertNth (b i) x) i) - โซ (x : Fin n โ โ) in Set.Icc (a โ i.succAbove) (b โ i.succAbove), f (i.insertNth (a i) x) i) - MeasureTheory.integral_divergence_of_hasFDerivAt_off_countable_of_equiv ๐ Mathlib.MeasureTheory.Integral.DivergenceTheorem
{E : Type u} [NormedAddCommGroup E] [NormedSpace โ E] {n : โ} {F : Type u_1} [NormedAddCommGroup F] [NormedSpace โ F] [Preorder F] [MeasureTheory.MeasureSpace F] [BorelSpace F] (eL : F โL[โ] Fin (n + 1) โ โ) (he_ord : โ (x y : F), eL x โค eL y โ x โค y) (he_vol : MeasureTheory.MeasurePreserving (โeL) MeasureTheory.volume MeasureTheory.volume) (f : Fin (n + 1) โ F โ E) (f' : Fin (n + 1) โ F โ F โL[โ] E) (s : Set F) (hs : s.Countable) (a b : F) (hle : a โค b) (Hc : โ (i : Fin (n + 1)), ContinuousOn (f i) (Set.Icc a b)) (Hd : โ x โ interior (Set.Icc a b) \ s, โ (i : Fin (n + 1)), HasFDerivAt (f i) (f' i x) x) (DF : F โ E) (hDF : โ (x : F), DF x = โ i, (f' i x) (eL.symm (Pi.single i 1))) (Hi : MeasureTheory.IntegrableOn DF (Set.Icc a b) MeasureTheory.volume) : โซ (x : F) in Set.Icc a b, DF x = โ i, ((โซ (x : Fin n โ โ) in Set.Icc (eL a โ i.succAbove) (eL b โ i.succAbove), f i (eL.symm (i.insertNth (eL b i) x))) - โซ (x : Fin n โ โ) in Set.Icc (eL a โ i.succAbove) (eL b โ i.succAbove), f i (eL.symm (i.insertNth (eL a i) x))) - MeasureTheory.integral_divergence_of_hasFDerivWithinAt_off_countable_of_equiv ๐ Mathlib.MeasureTheory.Integral.DivergenceTheorem
{E : Type u} [NormedAddCommGroup E] [NormedSpace โ E] {n : โ} {F : Type u_1} [NormedAddCommGroup F] [NormedSpace โ F] [Preorder F] [MeasureTheory.MeasureSpace F] [BorelSpace F] (eL : F โL[โ] Fin (n + 1) โ โ) (he_ord : โ (x y : F), eL x โค eL y โ x โค y) (he_vol : MeasureTheory.MeasurePreserving (โeL) MeasureTheory.volume MeasureTheory.volume) (f : Fin (n + 1) โ F โ E) (f' : Fin (n + 1) โ F โ F โL[โ] E) (s : Set F) (hs : s.Countable) (a b : F) (hle : a โค b) (Hc : โ (i : Fin (n + 1)), ContinuousOn (f i) (Set.Icc a b)) (Hd : โ x โ interior (Set.Icc a b) \ s, โ (i : Fin (n + 1)), HasFDerivAt (f i) (f' i x) x) (DF : F โ E) (hDF : โ (x : F), DF x = โ i, (f' i x) (eL.symm (Pi.single i 1))) (Hi : MeasureTheory.IntegrableOn DF (Set.Icc a b) MeasureTheory.volume) : โซ (x : F) in Set.Icc a b, DF x = โ i, ((โซ (x : Fin n โ โ) in Set.Icc (eL a โ i.succAbove) (eL b โ i.succAbove), f i (eL.symm (i.insertNth (eL b i) x))) - โซ (x : Fin n โ โ) in Set.Icc (eL a โ i.succAbove) (eL b โ i.succAbove), f i (eL.symm (i.insertNth (eL a i) x))) - Matrix.submatrix_succAbove_det_eq_negOnePow_submatrix_succAbove_det' ๐ Mathlib.LinearAlgebra.Matrix.Determinant.Misc
{R : Type u_1} [CommRing R] {n : โ} (M : Matrix (Fin n) (Fin (n + 1)) R) (hv : โ (i : Fin n), โ j, M i j = 0) (jโ jโ : Fin (n + 1)) : (M.submatrix id jโ.succAbove).det = (โโjโ - โโjโ).negOnePow โข (M.submatrix id jโ.succAbove).det - Matrix.submatrix_succAbove_det_eq_negOnePow_submatrix_succAbove_det ๐ Mathlib.LinearAlgebra.Matrix.Determinant.Misc
{R : Type u_1} [CommRing R] {n : โ} (M : Matrix (Fin (n + 1)) (Fin n) R) (hv : โ j, M j = 0) (jโ jโ : Fin (n + 1)) : (M.submatrix jโ.succAbove id).det = (โโjโ - โโjโ).negOnePow โข (M.submatrix jโ.succAbove id).det - Matrix.det_eq_sum_column_mul_submatrix_succAbove_succAbove_det ๐ Mathlib.LinearAlgebra.Matrix.Determinant.Misc
{R : Type u_1} [CommRing R] {n : โ} (M : Matrix (Fin (n + 1)) (Fin (n + 1)) R) (iโ jโ : Fin (n + 1)) (hv : โ (j : Fin (n + 1)), j โ jโ โ โ i, M i j = 0) : M.det = ((-1) ^ (โiโ + โjโ) * โ i, M i jโ) * (M.submatrix iโ.succAbove jโ.succAbove).det - Matrix.det_eq_sum_row_mul_submatrix_succAbove_succAbove_det ๐ Mathlib.LinearAlgebra.Matrix.Determinant.Misc
{R : Type u_1} [CommRing R] {n : โ} (M : Matrix (Fin (n + 1)) (Fin (n + 1)) R) (iโ jโ : Fin (n + 1)) (hv : โ (i : Fin (n + 1)), i โ iโ โ โ j, M i j = 0) : M.det = ((-1) ^ (โiโ + โjโ) * โ j, M iโ j) * (M.submatrix iโ.succAbove jโ.succAbove).det - groupCohomology.resolution.d_of ๐ Mathlib.RepresentationTheory.GroupCohomology.Resolution
{k : Type u} [CommRing k] {G : Type u} {n : โ} (c : Fin (n + 1) โ G) : ((groupCohomology.resolution.d k G n) funโ | c => 1) = โ p, funโ | c โ p.succAbove => (-1) ^ โp - groupCohomology.resolution.d.eq_1 ๐ Mathlib.RepresentationTheory.GroupCohomology.Resolution
(k : Type u) [CommRing k] (G : Type u) (n : โ) : groupCohomology.resolution.d k G n = (Finsupp.lift ((Fin n โ G) โโ k) k (Fin (n + 1) โ G)) fun g => โ p, funโ | g โ p.succAbove => (-1) ^ โp
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65