Loogle!
Result
Found 17 declarations mentioning Fin.succAbove, Finset.univ and Finset.sum.
- Fin.sum_univ_succAbove 📋 Mathlib.Algebra.BigOperators.Fin
{M : Type u_2} [AddCommMonoid M] {n : ℕ} (f : Fin (n + 1) → M) (x : Fin (n + 1)) : ∑ i, f i = f x + ∑ i, f (x.succAbove i) - Matrix.det_succ_column_zero 📋 Mathlib.LinearAlgebra.Matrix.Determinant.Basic
{R : Type v} [CommRing R] {n : ℕ} (A : Matrix (Fin n.succ) (Fin n.succ) R) : A.det = ∑ i, (-1) ^ ↑i * A i 0 * (A.submatrix i.succAbove Fin.succ).det - Matrix.det_succ_row_zero 📋 Mathlib.LinearAlgebra.Matrix.Determinant.Basic
{R : Type v} [CommRing R] {n : ℕ} (A : Matrix (Fin n.succ) (Fin n.succ) R) : A.det = ∑ j, (-1) ^ ↑j * A 0 j * (A.submatrix Fin.succ j.succAbove).det - Matrix.det_succ_column 📋 Mathlib.LinearAlgebra.Matrix.Determinant.Basic
{R : Type v} [CommRing R] {n : ℕ} (A : Matrix (Fin n.succ) (Fin n.succ) R) (j : Fin n.succ) : A.det = ∑ i, (-1) ^ (↑i + ↑j) * A i j * (A.submatrix i.succAbove j.succAbove).det - Matrix.det_succ_row 📋 Mathlib.LinearAlgebra.Matrix.Determinant.Basic
{R : Type v} [CommRing R] {n : ℕ} (A : Matrix (Fin n.succ) (Fin n.succ) R) (i : Fin n.succ) : A.det = ∑ j, (-1) ^ (↑i + ↑j) * A i j * (A.submatrix i.succAbove j.succAbove).det - MeasureTheory.integral_divergence_of_hasFDerivAt_off_countable' 📋 Mathlib.MeasureTheory.Integral.DivergenceTheorem
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] {n : ℕ} (a b : Fin (n + 1) → ℝ) (hle : a ≤ b) (f : Fin (n + 1) → (Fin (n + 1) → ℝ) → E) (f' : Fin (n + 1) → (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E) (s : Set (Fin (n + 1) → ℝ)) (hs : s.Countable) (Hc : ∀ (i : Fin (n + 1)), ContinuousOn (f i) (Set.Icc a b)) (Hd : ∀ x ∈ (Set.univ.pi fun i => Set.Ioo (a i) (b i)) \ s, ∀ (i : Fin (n + 1)), HasFDerivAt (f i) (f' i x) x) (Hi : MeasureTheory.IntegrableOn (fun x => ∑ i, (f' i x) (Pi.single i 1)) (Set.Icc a b) MeasureTheory.volume) : ∫ (x : Fin (n + 1) → ℝ) in Set.Icc a b, ∑ i, (f' i x) (Pi.single i 1) = ∑ i, ((∫ (x : Fin n → ℝ) in Set.Icc (a ∘ i.succAbove) (b ∘ i.succAbove), f i (i.insertNth (b i) x)) - ∫ (x : Fin n → ℝ) in Set.Icc (a ∘ i.succAbove) (b ∘ i.succAbove), f i (i.insertNth (a i) x)) - MeasureTheory.integral_divergence_of_hasFDerivWithinAt_off_countable' 📋 Mathlib.MeasureTheory.Integral.DivergenceTheorem
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] {n : ℕ} (a b : Fin (n + 1) → ℝ) (hle : a ≤ b) (f : Fin (n + 1) → (Fin (n + 1) → ℝ) → E) (f' : Fin (n + 1) → (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] E) (s : Set (Fin (n + 1) → ℝ)) (hs : s.Countable) (Hc : ∀ (i : Fin (n + 1)), ContinuousOn (f i) (Set.Icc a b)) (Hd : ∀ x ∈ (Set.univ.pi fun i => Set.Ioo (a i) (b i)) \ s, ∀ (i : Fin (n + 1)), HasFDerivAt (f i) (f' i x) x) (Hi : MeasureTheory.IntegrableOn (fun x => ∑ i, (f' i x) (Pi.single i 1)) (Set.Icc a b) MeasureTheory.volume) : ∫ (x : Fin (n + 1) → ℝ) in Set.Icc a b, ∑ i, (f' i x) (Pi.single i 1) = ∑ i, ((∫ (x : Fin n → ℝ) in Set.Icc (a ∘ i.succAbove) (b ∘ i.succAbove), f i (i.insertNth (b i) x)) - ∫ (x : Fin n → ℝ) in Set.Icc (a ∘ i.succAbove) (b ∘ i.succAbove), f i (i.insertNth (a i) x)) - MeasureTheory.integral_divergence_of_hasFDerivAt_off_countable 📋 Mathlib.MeasureTheory.Integral.DivergenceTheorem
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] {n : ℕ} (a b : Fin (n + 1) → ℝ) (hle : a ≤ b) (f : (Fin (n + 1) → ℝ) → Fin (n + 1) → E) (f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] Fin (n + 1) → E) (s : Set (Fin (n + 1) → ℝ)) (hs : s.Countable) (Hc : ContinuousOn f (Set.Icc a b)) (Hd : ∀ x ∈ (Set.univ.pi fun i => Set.Ioo (a i) (b i)) \ s, HasFDerivAt f (f' x) x) (Hi : MeasureTheory.IntegrableOn (fun x => ∑ i, (f' x) (Pi.single i 1) i) (Set.Icc a b) MeasureTheory.volume) : ∫ (x : Fin (n + 1) → ℝ) in Set.Icc a b, ∑ i, (f' x) (Pi.single i 1) i = ∑ i, ((∫ (x : Fin n → ℝ) in Set.Icc (a ∘ i.succAbove) (b ∘ i.succAbove), f (i.insertNth (b i) x) i) - ∫ (x : Fin n → ℝ) in Set.Icc (a ∘ i.succAbove) (b ∘ i.succAbove), f (i.insertNth (a i) x) i) - MeasureTheory.integral_divergence_of_hasFDerivWithinAt_off_countable 📋 Mathlib.MeasureTheory.Integral.DivergenceTheorem
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] {n : ℕ} (a b : Fin (n + 1) → ℝ) (hle : a ≤ b) (f : (Fin (n + 1) → ℝ) → Fin (n + 1) → E) (f' : (Fin (n + 1) → ℝ) → (Fin (n + 1) → ℝ) →L[ℝ] Fin (n + 1) → E) (s : Set (Fin (n + 1) → ℝ)) (hs : s.Countable) (Hc : ContinuousOn f (Set.Icc a b)) (Hd : ∀ x ∈ (Set.univ.pi fun i => Set.Ioo (a i) (b i)) \ s, HasFDerivAt f (f' x) x) (Hi : MeasureTheory.IntegrableOn (fun x => ∑ i, (f' x) (Pi.single i 1) i) (Set.Icc a b) MeasureTheory.volume) : ∫ (x : Fin (n + 1) → ℝ) in Set.Icc a b, ∑ i, (f' x) (Pi.single i 1) i = ∑ i, ((∫ (x : Fin n → ℝ) in Set.Icc (a ∘ i.succAbove) (b ∘ i.succAbove), f (i.insertNth (b i) x) i) - ∫ (x : Fin n → ℝ) in Set.Icc (a ∘ i.succAbove) (b ∘ i.succAbove), f (i.insertNth (a i) x) i) - MeasureTheory.integral_divergence_of_hasFDerivAt_off_countable_of_equiv 📋 Mathlib.MeasureTheory.Integral.DivergenceTheorem
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] {n : ℕ} {F : Type u_1} [NormedAddCommGroup F] [NormedSpace ℝ F] [Preorder F] [MeasureTheory.MeasureSpace F] [BorelSpace F] (eL : F ≃L[ℝ] Fin (n + 1) → ℝ) (he_ord : ∀ (x y : F), eL x ≤ eL y ↔ x ≤ y) (he_vol : MeasureTheory.MeasurePreserving (⇑eL) MeasureTheory.volume MeasureTheory.volume) (f : Fin (n + 1) → F → E) (f' : Fin (n + 1) → F → F →L[ℝ] E) (s : Set F) (hs : s.Countable) (a b : F) (hle : a ≤ b) (Hc : ∀ (i : Fin (n + 1)), ContinuousOn (f i) (Set.Icc a b)) (Hd : ∀ x ∈ interior (Set.Icc a b) \ s, ∀ (i : Fin (n + 1)), HasFDerivAt (f i) (f' i x) x) (DF : F → E) (hDF : ∀ (x : F), DF x = ∑ i, (f' i x) (eL.symm (Pi.single i 1))) (Hi : MeasureTheory.IntegrableOn DF (Set.Icc a b) MeasureTheory.volume) : ∫ (x : F) in Set.Icc a b, DF x = ∑ i, ((∫ (x : Fin n → ℝ) in Set.Icc (eL a ∘ i.succAbove) (eL b ∘ i.succAbove), f i (eL.symm (i.insertNth (eL b i) x))) - ∫ (x : Fin n → ℝ) in Set.Icc (eL a ∘ i.succAbove) (eL b ∘ i.succAbove), f i (eL.symm (i.insertNth (eL a i) x))) - MeasureTheory.integral_divergence_of_hasFDerivWithinAt_off_countable_of_equiv 📋 Mathlib.MeasureTheory.Integral.DivergenceTheorem
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] {n : ℕ} {F : Type u_1} [NormedAddCommGroup F] [NormedSpace ℝ F] [Preorder F] [MeasureTheory.MeasureSpace F] [BorelSpace F] (eL : F ≃L[ℝ] Fin (n + 1) → ℝ) (he_ord : ∀ (x y : F), eL x ≤ eL y ↔ x ≤ y) (he_vol : MeasureTheory.MeasurePreserving (⇑eL) MeasureTheory.volume MeasureTheory.volume) (f : Fin (n + 1) → F → E) (f' : Fin (n + 1) → F → F →L[ℝ] E) (s : Set F) (hs : s.Countable) (a b : F) (hle : a ≤ b) (Hc : ∀ (i : Fin (n + 1)), ContinuousOn (f i) (Set.Icc a b)) (Hd : ∀ x ∈ interior (Set.Icc a b) \ s, ∀ (i : Fin (n + 1)), HasFDerivAt (f i) (f' i x) x) (DF : F → E) (hDF : ∀ (x : F), DF x = ∑ i, (f' i x) (eL.symm (Pi.single i 1))) (Hi : MeasureTheory.IntegrableOn DF (Set.Icc a b) MeasureTheory.volume) : ∫ (x : F) in Set.Icc a b, DF x = ∑ i, ((∫ (x : Fin n → ℝ) in Set.Icc (eL a ∘ i.succAbove) (eL b ∘ i.succAbove), f i (eL.symm (i.insertNth (eL b i) x))) - ∫ (x : Fin n → ℝ) in Set.Icc (eL a ∘ i.succAbove) (eL b ∘ i.succAbove), f i (eL.symm (i.insertNth (eL a i) x))) - Matrix.submatrix_succAbove_det_eq_negOnePow_submatrix_succAbove_det' 📋 Mathlib.LinearAlgebra.Matrix.Determinant.Misc
{R : Type u_1} [CommRing R] {n : ℕ} (M : Matrix (Fin n) (Fin (n + 1)) R) (hv : ∀ (i : Fin n), ∑ j, M i j = 0) (j₁ j₂ : Fin (n + 1)) : (M.submatrix id j₁.succAbove).det = (↑↑j₁ - ↑↑j₂).negOnePow • (M.submatrix id j₂.succAbove).det - Matrix.submatrix_succAbove_det_eq_negOnePow_submatrix_succAbove_det 📋 Mathlib.LinearAlgebra.Matrix.Determinant.Misc
{R : Type u_1} [CommRing R] {n : ℕ} (M : Matrix (Fin (n + 1)) (Fin n) R) (hv : ∑ j, M j = 0) (j₁ j₂ : Fin (n + 1)) : (M.submatrix j₁.succAbove id).det = (↑↑j₁ - ↑↑j₂).negOnePow • (M.submatrix j₂.succAbove id).det - Matrix.det_eq_sum_column_mul_submatrix_succAbove_succAbove_det 📋 Mathlib.LinearAlgebra.Matrix.Determinant.Misc
{R : Type u_1} [CommRing R] {n : ℕ} (M : Matrix (Fin (n + 1)) (Fin (n + 1)) R) (i₀ j₀ : Fin (n + 1)) (hv : ∀ (j : Fin (n + 1)), j ≠ j₀ → ∑ i, M i j = 0) : M.det = ((-1) ^ (↑i₀ + ↑j₀) * ∑ i, M i j₀) * (M.submatrix i₀.succAbove j₀.succAbove).det - Matrix.det_eq_sum_row_mul_submatrix_succAbove_succAbove_det 📋 Mathlib.LinearAlgebra.Matrix.Determinant.Misc
{R : Type u_1} [CommRing R] {n : ℕ} (M : Matrix (Fin (n + 1)) (Fin (n + 1)) R) (i₀ j₀ : Fin (n + 1)) (hv : ∀ (i : Fin (n + 1)), i ≠ i₀ → ∑ j, M i j = 0) : M.det = ((-1) ^ (↑i₀ + ↑j₀) * ∑ j, M i₀ j) * (M.submatrix i₀.succAbove j₀.succAbove).det - groupCohomology.resolution.d_of 📋 Mathlib.RepresentationTheory.GroupCohomology.Resolution
{k : Type u} [CommRing k] {G : Type u} {n : ℕ} (c : Fin (n + 1) → G) : ((groupCohomology.resolution.d k G n) fun₀ | c => 1) = ∑ p, fun₀ | c ∘ p.succAbove => (-1) ^ ↑p - groupCohomology.resolution.d.eq_1 📋 Mathlib.RepresentationTheory.GroupCohomology.Resolution
(k : Type u) [CommRing k] (G : Type u) (n : ℕ) : groupCohomology.resolution.d k G n = (Finsupp.lift ((Fin n → G) →₀ k) k (Fin (n + 1) → G)) fun g => ∑ p, fun₀ | g ∘ p.succAbove => (-1) ^ ↑p
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65