Loogle!
Result
Found 2705 declarations mentioning Finsupp. Of these, 132 have a name containing "ind".
- Finsupp.single_eq_set_indicator π Mathlib.Data.Finsupp.Single
{Ξ± : Type u_1} {M : Type u_5} [Zero M] {a : Ξ±} {b : M} : (βfunβ | a => b) = {a}.indicator fun x => b - Finsupp.induction_linear π Mathlib.Data.Finsupp.Single
{Ξ± : Type u_1} {M : Type u_5} [AddZeroClass M] {motive : (Ξ± ββ M) β Prop} (f : Ξ± ββ M) (zero : motive 0) (add : β (f g : Ξ± ββ M), motive f β motive g β motive (f + g)) (single : β (a : Ξ±) (b : M), motive funβ | a => b) : motive f - Finsupp.induction π Mathlib.Data.Finsupp.Single
{Ξ± : Type u_1} {M : Type u_5} [AddZeroClass M] {motive : (Ξ± ββ M) β Prop} (f : Ξ± ββ M) (zero : motive 0) (single_add : β (a : Ξ±) (b : M) (f : Ξ± ββ M), a β f.support β b β 0 β motive f β motive ((funβ | a => b) + f)) : motive f - Finsupp.inductionβ π Mathlib.Data.Finsupp.Single
{Ξ± : Type u_1} {M : Type u_5} [AddZeroClass M] {motive : (Ξ± ββ M) β Prop} (f : Ξ± ββ M) (zero : motive 0) (add_single : β (a : Ξ±) (b : M) (f : Ξ± ββ M), a β f.support β b β 0 β motive f β motive (f + funβ | a => b)) : motive f - Finsupp.induction_on_max π Mathlib.Data.Finsupp.Single
{Ξ± : Type u_1} {M : Type u_5} [AddZeroClass M] [LinearOrder Ξ±] {p : (Ξ± ββ M) β Prop} (f : Ξ± ββ M) (h0 : p 0) (ha : β (a : Ξ±) (b : M) (f : Ξ± ββ M), (β c β f.support, c < a) β b β 0 β p f β p ((funβ | a => b) + f)) : p f - Finsupp.induction_on_maxβ π Mathlib.Data.Finsupp.Single
{Ξ± : Type u_1} {M : Type u_5} [AddZeroClass M] [LinearOrder Ξ±] {p : (Ξ± ββ M) β Prop} (f : Ξ± ββ M) (h0 : p 0) (ha : β (a : Ξ±) (b : M) (f : Ξ± ββ M), (β c β f.support, c < a) β b β 0 β p f β p (f + funβ | a => b)) : p f - Finsupp.induction_on_min π Mathlib.Data.Finsupp.Single
{Ξ± : Type u_1} {M : Type u_5} [AddZeroClass M] [LinearOrder Ξ±] {p : (Ξ± ββ M) β Prop} (f : Ξ± ββ M) (h0 : p 0) (ha : β (a : Ξ±) (b : M) (f : Ξ± ββ M), (β c β f.support, a < c) β b β 0 β p f β p ((funβ | a => b) + f)) : p f - Finsupp.induction_on_minβ π Mathlib.Data.Finsupp.Single
{Ξ± : Type u_1} {M : Type u_5} [AddZeroClass M] [LinearOrder Ξ±] {p : (Ξ± ββ M) β Prop} (f : Ξ± ββ M) (h0 : p 0) (ha : β (a : Ξ±) (b : M) (f : Ξ± ββ M), (β c β f.support, a < c) β b β 0 β p f β p (f + funβ | a => b)) : p f - Finsupp.indicator π Mathlib.Data.Finsupp.Indicator
{ΞΉ : Type u_1} {Ξ± : Type u_2} [Zero Ξ±] (s : Finset ΞΉ) (f : (i : ΞΉ) β i β s β Ξ±) : ΞΉ ββ Ξ± - Finsupp.indicator_injective π Mathlib.Data.Finsupp.Indicator
{ΞΉ : Type u_1} {Ξ± : Type u_2} [Zero Ξ±] (s : Finset ΞΉ) : Function.Injective fun f => Finsupp.indicator s f - Finsupp.single_eq_indicator π Mathlib.Data.Finsupp.Indicator
{ΞΉ : Type u_1} {Ξ± : Type u_2} [Zero Ξ±] (i : ΞΉ) (b : Ξ±) : (funβ | i => b) = Finsupp.indicator {i} fun x x => b - Finsupp.indicator_of_mem π Mathlib.Data.Finsupp.Indicator
{ΞΉ : Type u_1} {Ξ± : Type u_2} [Zero Ξ±] {s : Finset ΞΉ} {i : ΞΉ} (hi : i β s) (f : (i : ΞΉ) β i β s β Ξ±) : (Finsupp.indicator s f) i = f i hi - Finsupp.indicator_of_not_mem π Mathlib.Data.Finsupp.Indicator
{ΞΉ : Type u_1} {Ξ± : Type u_2} [Zero Ξ±] {s : Finset ΞΉ} {i : ΞΉ} (hi : i β s) (f : (i : ΞΉ) β i β s β Ξ±) : (Finsupp.indicator s f) i = 0 - Finsupp.indicator_apply π Mathlib.Data.Finsupp.Indicator
{ΞΉ : Type u_1} {Ξ± : Type u_2} [Zero Ξ±] (s : Finset ΞΉ) (f : (i : ΞΉ) β i β s β Ξ±) (i : ΞΉ) [DecidableEq ΞΉ] : (Finsupp.indicator s f) i = if hi : i β s then f i hi else 0 - Finsupp.indicator.eq_1 π Mathlib.Data.Finsupp.Indicator
{ΞΉ : Type u_1} {Ξ± : Type u_2} [Zero Ξ±] (s : Finset ΞΉ) (f : (i : ΞΉ) β i β s β Ξ±) : Finsupp.indicator s f = { support := Finset.map (Function.Embedding.subtype fun x => x β s) {i | f βi β― β 0}, toFun := fun i => if H : i β s then f i H else 0, mem_support_toFun := β― } - Finsupp.prod_zero_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} {N : Type u_10} [Zero M] [CommMonoid N] {h : Ξ± β M β N} : Finsupp.prod 0 h = 1 - Finsupp.sum_zero_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} {N : Type u_10} [Zero M] [AddCommMonoid N] {h : Ξ± β M β N} : Finsupp.sum 0 h = 0 - Finsupp.indicator_eq_sum_single π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} [AddCommMonoid M] (s : Finset Ξ±) (f : Ξ± β M) : (Finsupp.indicator s fun x x_1 => f x) = β x β s, funβ | x => f x - Finsupp.prod_mapRange_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} {M' : Type u_9} {N : Type u_10} [Zero M] [Zero M'] [CommMonoid N] {f : M β M'} {hf : f 0 = 0} {g : Ξ± ββ M} {h : Ξ± β M' β N} (h0 : β (a : Ξ±), h a 0 = 1) : (Finsupp.mapRange f hf g).prod h = g.prod fun a b => h a (f b) - Finsupp.sum_mapRange_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} {M' : Type u_9} {N : Type u_10} [Zero M] [Zero M'] [AddCommMonoid N] {f : M β M'} {hf : f 0 = 0} {g : Ξ± ββ M} {h : Ξ± β M' β N} (h0 : β (a : Ξ±), h a 0 = 0) : (Finsupp.mapRange f hf g).sum h = g.sum fun a b => h a (f b) - Finsupp.prod_neg_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} {G : Type u_12} [SubtractionMonoid G] [CommMonoid M] {g : Ξ± ββ G} {h : Ξ± β G β M} (h0 : β (a : Ξ±), h a 0 = 1) : (-g).prod h = g.prod fun a b => h a (-b) - Finsupp.sum_neg_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} {G : Type u_12} [SubtractionMonoid G] [AddCommMonoid M] {g : Ξ± ββ G} {h : Ξ± β G β M} (h0 : β (a : Ξ±), h a 0 = 0) : (-g).sum h = g.sum fun a b => h a (-b) - Finsupp.indicator_eq_sum_attach_single π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} [AddCommMonoid M] {s : Finset Ξ±} (f : (a : Ξ±) β a β s β M) : Finsupp.indicator s f = β x β s.attach, funβ | βx => f βx β― - Finsupp.prod_finset_sum_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {ΞΉ : Type u_2} {M : Type u_8} {N : Type u_10} [AddCommMonoid M] [CommMonoid N] {s : Finset ΞΉ} {g : ΞΉ β Ξ± ββ M} {h : Ξ± β M β N} (h_zero : β (a : Ξ±), h a 0 = 1) (h_add : β (a : Ξ±) (bβ bβ : M), h a (bβ + bβ) = h a bβ * h a bβ) : β i β s, (g i).prod h = (β i β s, g i).prod h - Finsupp.sum_finset_sum_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {ΞΉ : Type u_2} {M : Type u_8} {N : Type u_10} [AddCommMonoid M] [AddCommMonoid N] {s : Finset ΞΉ} {g : ΞΉ β Ξ± ββ M} {h : Ξ± β M β N} (h_zero : β (a : Ξ±), h a 0 = 0) (h_add : β (a : Ξ±) (bβ bβ : M), h a (bβ + bβ) = h a bβ + h a bβ) : β i β s, (g i).sum h = (β i β s, g i).sum h - Finsupp.sum_sum_index' π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {ΞΉ : Type u_2} {A : Type u_4} {C : Type u_6} [AddCommMonoid A] [AddCommMonoid C] {t : ΞΉ β A β C} {s : Finset Ξ±} {f : Ξ± β ΞΉ ββ A} (h0 : β (i : ΞΉ), t i 0 = 0) (h1 : β (i : ΞΉ) (x y : A), t i (x + y) = t i x + t i y) : (β x β s, f x).sum t = β x β s, (f x).sum t - Finsupp.prod_add_index' π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} {N : Type u_10} [AddZeroClass M] [CommMonoid N] {f g : Ξ± ββ M} {h : Ξ± β M β N} (h_zero : β (a : Ξ±), h a 0 = 1) (h_add : β (a : Ξ±) (bβ bβ : M), h a (bβ + bβ) = h a bβ * h a bβ) : (f + g).prod h = f.prod h * g.prod h - Finsupp.prod_sum_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {Ξ² : Type u_7} {M : Type u_8} {N : Type u_10} {P : Type u_11} [Zero M] [AddCommMonoid N] [CommMonoid P] {f : Ξ± ββ M} {g : Ξ± β M β Ξ² ββ N} {h : Ξ² β N β P} (h_zero : β (a : Ξ²), h a 0 = 1) (h_add : β (a : Ξ²) (bβ bβ : N), h a (bβ + bβ) = h a bβ * h a bβ) : (f.sum g).prod h = f.prod fun a b => (g a b).prod h - Finsupp.sum_add_index' π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} {N : Type u_10} [AddZeroClass M] [AddCommMonoid N] {f g : Ξ± ββ M} {h : Ξ± β M β N} (h_zero : β (a : Ξ±), h a 0 = 0) (h_add : β (a : Ξ±) (bβ bβ : M), h a (bβ + bβ) = h a bβ + h a bβ) : (f + g).sum h = f.sum h + g.sum h - Finsupp.sum_sum_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {Ξ² : Type u_7} {M : Type u_8} {N : Type u_10} {P : Type u_11} [Zero M] [AddCommMonoid N] [AddCommMonoid P] {f : Ξ± ββ M} {g : Ξ± β M β Ξ² ββ N} {h : Ξ² β N β P} (h_zero : β (a : Ξ²), h a 0 = 0) (h_add : β (a : Ξ²) (bβ bβ : N), h a (bβ + bβ) = h a bβ + h a bβ) : (f.sum g).sum h = f.sum fun a b => (g a b).sum h - Finsupp.multiset_sum_sum_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} {N : Type u_10} [AddCommMonoid M] [AddCommMonoid N] (f : Multiset (Ξ± ββ M)) (h : Ξ± β M β N) (hβ : β (a : Ξ±), h a 0 = 0) (hβ : β (a : Ξ±) (bβ bβ : M), h a (bβ + bβ) = h a bβ + h a bβ) : f.sum.sum h = (Multiset.map (fun g => g.sum h) f).sum - Finsupp.prod_add_index_of_disjoint π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} [AddCommMonoid M] {f1 f2 : Ξ± ββ M} (hd : Disjoint f1.support f2.support) {Ξ² : Type u_16} [CommMonoid Ξ²] (g : Ξ± β M β Ξ²) : (f1 + f2).prod g = f1.prod g * f2.prod g - Finsupp.sum_add_index_of_disjoint π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} [AddCommMonoid M] {f1 f2 : Ξ± ββ M} (hd : Disjoint f1.support f2.support) {Ξ² : Type u_16} [AddCommMonoid Ξ²] (g : Ξ± β M β Ξ²) : (f1 + f2).sum g = f1.sum g + f2.sum g - Finsupp.sum_hom_add_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} {N : Type u_10} [AddZeroClass M] [AddCommMonoid N] {f g : Ξ± ββ M} (h : Ξ± β M β+ N) : ((f + g).sum fun x => β(h x)) = (f.sum fun x => β(h x)) + g.sum fun x => β(h x) - Finsupp.sum_sub_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {Ξ³ : Type u_3} {Ξ² : Type u_7} [AddGroup Ξ²] [AddCommGroup Ξ³] {f g : Ξ± ββ Ξ²} {h : Ξ± β Ξ² β Ξ³} (h_sub : β (a : Ξ±) (bβ bβ : Ξ²), h a (bβ - bβ) = h a bβ - h a bβ) : (f - g).sum h = f.sum h - g.sum h - Finsupp.prod_add_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} {N : Type u_10} [DecidableEq Ξ±] [AddZeroClass M] [CommMonoid N] {f g : Ξ± ββ M} {h : Ξ± β M β N} (h_zero : β a β f.support βͺ g.support, h a 0 = 1) (h_add : β a β f.support βͺ g.support, β (bβ bβ : M), h a (bβ + bβ) = h a bβ * h a bβ) : (f + g).prod h = f.prod h * g.prod h - Finsupp.sum_add_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} {N : Type u_10} [DecidableEq Ξ±] [AddZeroClass M] [AddCommMonoid N] {f g : Ξ± ββ M} {h : Ξ± β M β N} (h_zero : β a β f.support βͺ g.support, h a 0 = 0) (h_add : β a β f.support βͺ g.support, β (bβ bβ : M), h a (bβ + bβ) = h a bβ + h a bβ) : (f + g).sum h = f.sum h + g.sum h - Finsupp.prod_hom_add_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} {N : Type u_10} [AddZeroClass M] [CommMonoid N] {f g : Ξ± ββ M} (h : Ξ± β Multiplicative M β* N) : ((f + g).prod fun a b => (h a) (Multiplicative.ofAdd b)) = (f.prod fun a b => (h a) (Multiplicative.ofAdd b)) * g.prod fun a b => (h a) (Multiplicative.ofAdd b) - Finsupp.filter_eq_indicator π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_5} [Zero M] (p : Ξ± β Prop) [DecidablePred p] (f : Ξ± ββ M) : β(Finsupp.filter p f) = {x | p x}.indicator βf - Finsupp.prod_subtypeDomain_index π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_5} {N : Type u_7} [Zero M] {p : Ξ± β Prop} [CommMonoid N] {v : Ξ± ββ M} {h : Ξ± β M β N} (hp : β x β v.support, p x) : ((Finsupp.subtypeDomain p v).prod fun a b => h (βa) b) = v.prod h - Finsupp.sum_subtypeDomain_index π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_5} {N : Type u_7} [Zero M] {p : Ξ± β Prop} [AddCommMonoid N] {v : Ξ± ββ M} {h : Ξ± β M β N} (hp : β x β v.support, p x) : ((Finsupp.subtypeDomain p v).sum fun a b => h (βa) b) = v.sum h - Finsupp.prod_filter_index π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_5} {N : Type u_7} [Zero M] (p : Ξ± β Prop) [DecidablePred p] (f : Ξ± ββ M) [CommMonoid N] (g : Ξ± β M β N) : (Finsupp.filter p f).prod g = β x β (Finsupp.filter p f).support, g x (f x) - Finsupp.sum_filter_index π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_5} {N : Type u_7} [Zero M] (p : Ξ± β Prop) [DecidablePred p] (f : Ξ± ββ M) [AddCommMonoid N] (g : Ξ± β M β N) : (Finsupp.filter p f).sum g = β x β (Finsupp.filter p f).support, g x (f x) - Finsupp.prod_mapDomain_index_inj π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} {M : Type u_5} {N : Type u_7} [AddCommMonoid M] [CommMonoid N] {f : Ξ± β Ξ²} {s : Ξ± ββ M} {h : Ξ² β M β N} (hf : Function.Injective f) : (Finsupp.mapDomain f s).prod h = s.prod fun a b => h (f a) b - Finsupp.sum_mapDomain_index_inj π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} {M : Type u_5} {N : Type u_7} [AddCommMonoid M] [AddCommMonoid N] {f : Ξ± β Ξ²} {s : Ξ± ββ M} {h : Ξ² β M β N} (hf : Function.Injective f) : (Finsupp.mapDomain f s).sum h = s.sum fun a b => h (f a) b - Finsupp.sum_curry_index π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} {M : Type u_5} {N : Type u_7} [DecidableEq Ξ±] [Zero M] [AddCommMonoid N] (f : Ξ± Γ Ξ² ββ M) (g : Ξ± β Ξ² β M β N) : (f.curry.sum fun a f => f.sum (g a)) = f.sum fun p c => g p.1 p.2 c - Finsupp.sum_uncurry_index π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} {M : Type u_5} {N : Type u_7} [Zero M] [AddCommMonoid N] (f : Ξ± ββ Ξ² ββ M) (g : Ξ± Γ Ξ² β M β N) : (f.uncurry.sum fun p c => g p c) = f.sum fun a f => f.sum fun b => g (a, b) - Finsupp.sum_uncurry_index' π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} {M : Type u_5} {N : Type u_7} [Zero M] [AddCommMonoid N] (f : Ξ± ββ Ξ² ββ M) (g : Ξ± β Ξ² β M β N) : (f.uncurry.sum fun p c => g p.1 p.2 c) = f.sum fun a f => f.sum (g a) - Finsupp.prod_mapDomain_index π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} {M : Type u_5} {N : Type u_7} [AddCommMonoid M] [CommMonoid N] {f : Ξ± β Ξ²} {s : Ξ± ββ M} {h : Ξ² β M β N} (h_zero : β (b : Ξ²), h b 0 = 1) (h_add : β (b : Ξ²) (mβ mβ : M), h b (mβ + mβ) = h b mβ * h b mβ) : (Finsupp.mapDomain f s).prod h = s.prod fun a m => h (f a) m - Finsupp.sum_mapDomain_index π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} {M : Type u_5} {N : Type u_7} [AddCommMonoid M] [AddCommMonoid N] {f : Ξ± β Ξ²} {s : Ξ± ββ M} {h : Ξ² β M β N} (h_zero : β (b : Ξ²), h b 0 = 0) (h_add : β (b : Ξ²) (mβ mβ : M), h b (mβ + mβ) = h b mβ + h b mβ) : (Finsupp.mapDomain f s).sum h = s.sum fun a m => h (f a) m - Finsupp.sum_mapDomain_index_addMonoidHom π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} {M : Type u_5} {N : Type u_7} [AddCommMonoid M] [AddCommMonoid N] {f : Ξ± β Ξ²} {s : Ξ± ββ M} (h : Ξ² β M β+ N) : ((Finsupp.mapDomain f s).sum fun b m => (h b) m) = s.sum fun a m => (h (f a)) m - Finsupp.prod_option_index π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_5} {N : Type u_7} [AddZeroClass M] [CommMonoid N] (f : Option Ξ± ββ M) (b : Option Ξ± β M β N) (h_zero : β (o : Option Ξ±), b o 0 = 1) (h_add : β (o : Option Ξ±) (mβ mβ : M), b o (mβ + mβ) = b o mβ * b o mβ) : f.prod b = b none (f none) * f.some.prod fun a => b (some a) - Finsupp.sum_option_index π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_5} {N : Type u_7} [AddZeroClass M] [AddCommMonoid N] (f : Option Ξ± ββ M) (b : Option Ξ± β M β N) (h_zero : β (o : Option Ξ±), b o 0 = 0) (h_add : β (o : Option Ξ±) (mβ mβ : M), b o (mβ + mβ) = b o mβ + b o mβ) : f.sum b = b none (f none) + f.some.sum fun a => b (some a) - Finsupp.sum_option_index_smul π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_5} {R : Type u_11} [Semiring R] [AddCommMonoid M] [Module R M] (f : Option Ξ± ββ R) (b : Option Ξ± β M) : (f.sum fun o r => r β’ b o) = f none β’ b none + f.some.sum fun a r => r β’ b (some a) - Finsupp.sum_smul_index' π Mathlib.Data.Finsupp.SMul
{Ξ± : Type u_1} {M : Type u_3} {N : Type u_4} {R : Type u_6} [Zero M] [SMulZeroClass R M] [AddCommMonoid N] {g : Ξ± ββ M} {b : R} {h : Ξ± β M β N} (h0 : β (i : Ξ±), h i 0 = 0) : (b β’ g).sum h = g.sum fun i c => h i (b β’ c) - Finsupp.sum_smul_index π Mathlib.Data.Finsupp.SMul
{Ξ± : Type u_1} {M : Type u_3} {R : Type u_6} [MulZeroClass R] [AddCommMonoid M] {g : Ξ± ββ R} {b : R} {h : Ξ± β R β M} (h0 : β (i : Ξ±), h i 0 = 0) : (b β’ g).sum h = g.sum fun i a => h i (b * a) - Finsupp.sum_smul_index_addMonoidHom π Mathlib.Data.Finsupp.SMul
{Ξ± : Type u_1} {M : Type u_3} {N : Type u_4} {R : Type u_6} [AddZeroClass M] [AddCommMonoid N] [SMulZeroClass R M] {g : Ξ± ββ M} {b : R} {h : Ξ± β M β+ N} : ((b β’ g).sum fun a => β(h a)) = g.sum fun i c => (h i) (b β’ c) - Finsupp.sum_smul_index_linearMap' π Mathlib.LinearAlgebra.Finsupp.LSum
{Ξ± : Type u_1} {R : Type u_3} {M : Type u_5} {Mβ : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid Mβ] [Module R Mβ] {v : Ξ± ββ M} {c : R} {h : Ξ± β M ββ[R] Mβ} : ((c β’ v).sum fun a => β(h a)) = c β’ v.sum fun a => β(h a) - Finsupp.sum_smul_index_semilinearMap' π Mathlib.LinearAlgebra.Finsupp.LSum
{Ξ± : Type u_1} {R : Type u_3} {Rβ : Type u_4} {M : Type u_5} {Mβ : Type u_6} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [Module R M] [AddCommMonoid Mβ] [Module Rβ Mβ] {Ο : R β+* Rβ} {v : Ξ± ββ M} {c : R} {h : Ξ± β M βββ[Ο] Mβ} : ((c β’ v).sum fun a => β(h a)) = Ο c β’ v.sum fun a => β(h a) - Finsupp.linearCombination_single_index π Mathlib.LinearAlgebra.Finsupp.LinearCombination
(Ξ± : Type u_1) (M : Type u_2) (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] (c : M) (a : Ξ±) (f : Ξ± ββ R) [DecidableEq Ξ±] : (Finsupp.linearCombination R (Pi.single a c)) f = f a β’ c - Basis.reindex.eq_1 π Mathlib.LinearAlgebra.Basis.Defs
{ΞΉ : Type u_1} {ΞΉ' : Type u_2} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ΞΉ R M) (e : ΞΉ β ΞΉ') : b.reindex e = { repr := b.repr βͺβ«β Finsupp.domLCongr e } - Basis.repr_reindex π Mathlib.LinearAlgebra.Basis.Defs
{ΞΉ : Type u_1} {ΞΉ' : Type u_2} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ΞΉ R M) (x : M) (e : ΞΉ β ΞΉ') : (b.reindex e).repr x = Finsupp.mapDomain (βe) (b.repr x) - Basis.repr_reindex_apply π Mathlib.LinearAlgebra.Basis.Defs
{ΞΉ : Type u_1} {ΞΉ' : Type u_2} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ΞΉ R M) (x : M) (e : ΞΉ β ΞΉ') (i' : ΞΉ') : ((b.reindex e).repr x) i' = (b.repr x) (e.symm i') - Basis.reindexRange_repr_self π Mathlib.LinearAlgebra.Basis.Defs
{ΞΉ : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ΞΉ R M) (i : ΞΉ) : b.reindexRange.repr (b i) = funβ | β¨b i, β―β© => 1 - Basis.reindexFinsetRange_repr_self π Mathlib.LinearAlgebra.Basis.Defs
{ΞΉ : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ΞΉ R M) [Fintype ΞΉ] [DecidableEq M] (i : ΞΉ) : b.reindexFinsetRange.repr (b i) = funβ | β¨b i, β―β© => 1 - Basis.reindexRange_repr' π Mathlib.LinearAlgebra.Basis.Defs
{ΞΉ : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ΞΉ R M) (x : M) {bi : M} {i : ΞΉ} (h : b i = bi) : (b.reindexRange.repr x) β¨bi, β―β© = (b.repr x) i - Basis.reindexRange_repr π Mathlib.LinearAlgebra.Basis.Defs
{ΞΉ : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ΞΉ R M) (x : M) (i : ΞΉ) (h : b i β Set.range βb := β―) : (b.reindexRange.repr x) β¨b i, hβ© = (b.repr x) i - Basis.reindexFinsetRange_repr π Mathlib.LinearAlgebra.Basis.Defs
{ΞΉ : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ΞΉ R M) [Fintype ΞΉ] [DecidableEq M] (x : M) (i : ΞΉ) (h : b i β Finset.image (βb) Finset.univ := β―) : (b.reindexFinsetRange.repr x) β¨b i, hβ© = (b.repr x) i - LinearIndependent.repr π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) : β₯(Submodule.span R (Set.range v)) ββ[R] ΞΉ ββ R - LinearIndependent.linearCombinationEquiv π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) : (ΞΉ ββ R) ββ[R] β₯(Submodule.span R (Set.range v)) - LinearIndependent.finsuppLinearCombination_injective π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] : LinearIndependent R v β Function.Injective β(Finsupp.linearCombination R v) - LinearIndependent.linearCombination_injective π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] : LinearIndependent R v β Function.Injective β(Finsupp.linearCombination R v) - linearIndependent_iff_injective_finsuppLinearCombination π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] : LinearIndependent R v β Function.Injective β(Finsupp.linearCombination R v) - linearIndependent_iff_injective_linearCombination π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] : LinearIndependent R v β Function.Injective β(Finsupp.linearCombination R v) - LinearIndependent.eq_1 π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} (R : Type u_2) {M : Type u_4} (v : ΞΉ β M) [Semiring R] [AddCommMonoid M] [Module R M] : LinearIndependent R v = Function.Injective β(Finsupp.linearCombination R v) - LinearIndependent.linearCombination_comp_repr π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) : Finsupp.linearCombination R v ββ hv.repr = (Submodule.span R (Set.range v)).subtype - linearIndependent_iff π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Ring R] [AddCommGroup M] [Module R M] : LinearIndependent R v β β (l : ΞΉ ββ R), (Finsupp.linearCombination R v) l = 0 β l = 0 - linearIndependent_iffβ π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] : LinearIndependent R v β β (lβ lβ : ΞΉ ββ R), (Finsupp.linearCombination R v) lβ = (Finsupp.linearCombination R v) lβ β lβ = lβ - LinearIndependent.repr.eq_1 π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) : hv.repr = βhv.linearCombinationEquiv.symm - LinearIndependent.span_repr_eq π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) [Nontrivial R] (x : β₯(Submodule.span R (Set.range v))) : Span.repr R (Set.range v) x = Finsupp.equivMapDomain (Equiv.ofInjective v β―) (hv.repr x) - LinearIndependent.repr_eq_single π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) (i : ΞΉ) (x : β₯(Submodule.span R (Set.range v))) (hx : βx = v i) : hv.repr x = funβ | i => 1 - linearIndependent_iff_ker π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Ring R] [AddCommGroup M] [Module R M] : LinearIndependent R v β LinearMap.ker (Finsupp.linearCombination R v) = β₯ - linearIndepOn_iff π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {s : Set ΞΉ} {M : Type u_4} {v : ΞΉ β M} [Ring R] [AddCommGroup M] [Module R M] : LinearIndepOn R v s β β l β Finsupp.supported R R s, (Finsupp.linearCombination R v) l = 0 β l = 0 - linearIndependent_comp_subtype π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {s : Set ΞΉ} {M : Type u_4} {v : ΞΉ β M} [Ring R] [AddCommGroup M] [Module R M] : LinearIndepOn R v s β β l β Finsupp.supported R R s, (Finsupp.linearCombination R v) l = 0 β l = 0 - linearIndependent_subtype π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {s : Set ΞΉ} {M : Type u_4} {v : ΞΉ β M} [Ring R] [AddCommGroup M] [Module R M] : LinearIndepOn R v s β β l β Finsupp.supported R R s, (Finsupp.linearCombination R v) l = 0 β l = 0 - LinearIndependent.linearCombination_repr π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) (x : β₯(Submodule.span R (Set.range v))) : (Finsupp.linearCombination R v) (hv.repr x) = βx - LinearIndependent.repr_eq π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) {l : ΞΉ ββ R} {x : β₯(Submodule.span R (Set.range v))} (eq : (Finsupp.linearCombination R v) l = βx) : hv.repr x = l - LinearIndependent.repr_range π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) : LinearMap.range hv.repr = β€ - linearIndepOn_iff_disjoint π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {s : Set ΞΉ} {M : Type u_4} {v : ΞΉ β M} [Ring R] [AddCommGroup M] [Module R M] : LinearIndepOn R v s β Disjoint (Finsupp.supported R R s) (LinearMap.ker (Finsupp.linearCombination R v)) - linearIndependent_comp_subtype_disjoint π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {s : Set ΞΉ} {M : Type u_4} {v : ΞΉ β M} [Ring R] [AddCommGroup M] [Module R M] : LinearIndepOn R v s β Disjoint (Finsupp.supported R R s) (LinearMap.ker (Finsupp.linearCombination R v)) - linearIndependent_subtype_disjoint π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {s : Set ΞΉ} {M : Type u_4} {v : ΞΉ β M} [Ring R] [AddCommGroup M] [Module R M] : LinearIndepOn R v s β Disjoint (Finsupp.supported R R s) (LinearMap.ker (Finsupp.linearCombination R v)) - LinearIndependent.linearCombinationEquiv_apply_coe π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) (l : ΞΉ ββ R) : β(hv.linearCombinationEquiv l) = (Finsupp.linearCombination R v) l - LinearIndependent.repr_ker π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) : LinearMap.ker hv.repr = β₯ - linearIndepOn_iffβ π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {s : Set ΞΉ} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] : LinearIndepOn R v s β β f β Finsupp.supported R R s, β g β Finsupp.supported R R s, (Finsupp.linearCombination R v) f = (Finsupp.linearCombination R v) g β f = g - linearIndependent_comp_subtypeβ π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {s : Set ΞΉ} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] : LinearIndepOn R v s β β f β Finsupp.supported R R s, β g β Finsupp.supported R R s, (Finsupp.linearCombination R v) f = (Finsupp.linearCombination R v) g β f = g - linearIndependent_subtypeβ π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {s : Set ΞΉ} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] : LinearIndepOn R v s β β f β Finsupp.supported R R s, β g β Finsupp.supported R R s, (Finsupp.linearCombination R v) f = (Finsupp.linearCombination R v) g β f = g - linearIndepOn_iff_linearCombinationOnβ π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {s : Set ΞΉ} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] : LinearIndepOn R v s β Function.Injective β(Finsupp.linearCombinationOn ΞΉ M R v s) - linearIndependent_iff_linearCombinationOnβ π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {s : Set ΞΉ} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] : LinearIndepOn R v s β Function.Injective β(Finsupp.linearCombinationOn ΞΉ M R v s) - linearIndepOn_iff_linearCombinationOn π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {s : Set ΞΉ} {M : Type u_4} {v : ΞΉ β M} [Ring R] [AddCommGroup M] [Module R M] : LinearIndepOn R v s β LinearMap.ker (Finsupp.linearCombinationOn ΞΉ M R v s) = β₯ - linearIndependent_iff_linearCombinationOn π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {s : Set ΞΉ} {M : Type u_4} {v : ΞΉ β M} [Ring R] [AddCommGroup M] [Module R M] : LinearIndepOn R v s β LinearMap.ker (Finsupp.linearCombinationOn ΞΉ M R v s) = β₯ - LinearIndependent.linearCombinationEquiv_symm_apply π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) (aβ : β₯(Submodule.span R (Set.range v))) : hv.linearCombinationEquiv.symm aβ = ((LinearEquiv.ofInjective (LinearMap.codRestrict (Submodule.span R (Set.range v)) (Finsupp.linearCombination R v) β―) β―).toEquiv.trans (LinearEquiv.ofTop (LinearMap.range (LinearMap.codRestrict (Submodule.span R (Set.range v)) (Finsupp.linearCombination R v) β―)) β―).toEquiv).invFun aβ - LinearIndependent.linearCombination_ne_of_not_mem_support π Mathlib.LinearAlgebra.LinearIndependent.Basic
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] [Nontrivial R] (hv : LinearIndependent R v) {x : ΞΉ} (f : ΞΉ ββ R) (h : x β f.support) : (Finsupp.linearCombination R v) f β v x - Finsupp.linearIndependent_single_one π Mathlib.LinearAlgebra.Finsupp.VectorSpace
(R : Type u_1) (ΞΉ : Type u_3) [Semiring R] : LinearIndependent R fun i => funβ | i => 1 - Finsupp.linearIndependent_single π Mathlib.LinearAlgebra.Finsupp.VectorSpace
{R : Type u_1} {M : Type u_2} {ΞΉ : Type u_3} [Semiring R] [AddCommMonoid M] [Module R M] {Ο : ΞΉ β Type u_4} (f : (i : ΞΉ) β Ο i β M) (hf : β (i : ΞΉ), LinearIndependent R (f i)) : LinearIndependent R fun ix => funβ | ix.fst => f ix.fst ix.snd - Finsupp.linearIndependent_single_iff π Mathlib.LinearAlgebra.Finsupp.VectorSpace
{R : Type u_1} {M : Type u_2} {ΞΉ : Type u_3} [Semiring R] [AddCommMonoid M] [Module R M] {Ο : ΞΉ β Type u_4} {f : (i : ΞΉ) β Ο i β M} : (LinearIndependent R fun ix => funβ | ix.fst => f ix.fst ix.snd) β β (i : ΞΉ), LinearIndependent R (f i) - Finsupp.linearIndependent_single_of_ne_zero π Mathlib.LinearAlgebra.Finsupp.VectorSpace
{R : Type u_1} {M : Type u_2} {ΞΉ : Type u_3} [Ring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M] {v : ΞΉ β M} (hv : β (i : ΞΉ), v i β 0) : LinearIndependent R fun i => funβ | i => v i - union_support_maximal_linearIndependent_eq_range_basis π Mathlib.LinearAlgebra.Basis.Cardinality
{R : Type u} {M : Type v} [Semiring R] [AddCommMonoid M] [Nontrivial R] [Module R M] {ΞΉ : Type w} (b : Basis ΞΉ R M) {ΞΊ : Type w'} (v : ΞΊ β M) (ind : LinearIndependent R v) (m : ind.Maximal) : β k, β(b.repr (v k)).support = Set.univ - Finsupp.sum_le_sum_index π Mathlib.Data.Finsupp.Order
{ΞΉ : Type u_1} {Ξ± : Type u_3} {Ξ² : Type u_4} [Zero Ξ±] [Preorder Ξ±] [AddCommMonoid Ξ²] [PartialOrder Ξ²] [IsOrderedAddMonoid Ξ²] [DecidableEq ΞΉ] {fβ fβ : ΞΉ ββ Ξ±} {h : ΞΉ β Ξ± β Ξ²} (hf : fβ β€ fβ) (hh : β i β fβ.support βͺ fβ.support, Monotone (h i)) (hhβ : β i β fβ.support βͺ fβ.support, h i 0 = 0) : fβ.sum h β€ fβ.sum h - MvPolynomial.induction_on' π Mathlib.Algebra.MvPolynomial.Basic
{R : Type u} {Ο : Type u_1} [CommSemiring R] {P : MvPolynomial Ο R β Prop} (p : MvPolynomial Ο R) (monomial : β (u : Ο ββ β) (a : R), P ((MvPolynomial.monomial u) a)) (add : β (p q : MvPolynomial Ο R), P p β P q β P (p + q)) : P p - MvPolynomial.induction_on_monomial π Mathlib.Algebra.MvPolynomial.Basic
{R : Type u} {Ο : Type u_1} [CommSemiring R] {motive : MvPolynomial Ο R β Prop} (C : β (a : R), motive (MvPolynomial.C a)) (mul_X : β (p : MvPolynomial Ο R) (n : Ο), motive p β motive (p * MvPolynomial.X n)) (s : Ο ββ β) (a : R) : motive ((MvPolynomial.monomial s) a) - MvPolynomial.induction_on''' π Mathlib.Algebra.MvPolynomial.Basic
{R : Type u} {Ο : Type u_1} [CommSemiring R] {motive : MvPolynomial Ο R β Prop} (p : MvPolynomial Ο R) (C : β (a : R), motive (MvPolynomial.C a)) (monomial_add : β (a : Ο ββ β) (b : R) (f : MvPolynomial Ο R), a β f.support β b β 0 β motive f β motive ((MvPolynomial.monomial a) b + f)) : motive p - MvPolynomial.monomial_add_induction_on π Mathlib.Algebra.MvPolynomial.Basic
{R : Type u} {Ο : Type u_1} [CommSemiring R] {motive : MvPolynomial Ο R β Prop} (p : MvPolynomial Ο R) (C : β (a : R), motive (MvPolynomial.C a)) (monomial_add : β (a : Ο ββ β) (b : R) (f : MvPolynomial Ο R), a β f.support β b β 0 β motive f β motive ((MvPolynomial.monomial a) b + f)) : motive p - MvPolynomial.monomial_sum_index π Mathlib.Algebra.MvPolynomial.Basic
{R : Type u} {Ο : Type u_1} [CommSemiring R] {Ξ± : Type u_2} (s : Finset Ξ±) (f : Ξ± β Ο ββ β) (a : R) : (MvPolynomial.monomial (β i β s, f i)) a = MvPolynomial.C a * β i β s, (MvPolynomial.monomial (f i)) 1 - MvPolynomial.monomial_finsupp_sum_index π Mathlib.Algebra.MvPolynomial.Basic
{R : Type u} {Ο : Type u_1} [CommSemiring R] {Ξ± : Type u_2} {Ξ² : Type u_3} [Zero Ξ²] (f : Ξ± ββ Ξ²) (g : Ξ± β Ξ² β Ο ββ β) (a : R) : (MvPolynomial.monomial (f.sum g)) a = MvPolynomial.C a * f.prod fun a b => (MvPolynomial.monomial (g a b)) 1 - MvPolynomial.induction_on'' π Mathlib.Algebra.MvPolynomial.Basic
{R : Type u} {Ο : Type u_1} [CommSemiring R] {motive : MvPolynomial Ο R β Prop} (p : MvPolynomial Ο R) (C : β (a : R), motive (MvPolynomial.C a)) (monomial_add : β (a : Ο ββ β) (b : R) (f : MvPolynomial Ο R), a β f.support β b β 0 β motive f β motive ((MvPolynomial.monomial a) b) β motive ((MvPolynomial.monomial a) b + f)) (mul_X : β (p : MvPolynomial Ο R) (n : Ο), motive p β motive (p * MvPolynomial.X n)) : motive p - basisOfLinearIndependentOfCardEqFinrank_repr_apply π Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ΞΉ : Type u_1} [Nonempty ΞΉ] [Fintype ΞΉ] {b : ΞΉ β V} (lin_ind : LinearIndependent K b) (card_eq : Fintype.card ΞΉ = Module.finrank K V) (aβ : V) : (basisOfLinearIndependentOfCardEqFinrank lin_ind card_eq).repr aβ = lin_ind.repr ((LinearMap.codRestrict (Submodule.span K (Set.range b)) LinearMap.id β―) aβ) - setBasisOfLinearIndependentOfCardEqFinrank_repr_apply π Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {s : Set V} [Nonempty βs] [Fintype βs] (lin_ind : LinearIndependent K Subtype.val) (card_eq : s.toFinset.card = Module.finrank K V) (aβ : V) : (setBasisOfLinearIndependentOfCardEqFinrank lin_ind card_eq).repr aβ = lin_ind.repr ((LinearMap.codRestrict (Submodule.span K (Set.range Subtype.val)) LinearMap.id β―) aβ) - finsetBasisOfLinearIndependentOfCardEqFinrank_repr_apply π Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {s : Finset V} (hs : s.Nonempty) (lin_ind : LinearIndependent K Subtype.val) (card_eq : s.card = Module.finrank K V) (aβ : V) : (finsetBasisOfLinearIndependentOfCardEqFinrank hs lin_ind card_eq).repr aβ = lin_ind.repr ((LinearMap.codRestrict (Submodule.span K (Set.range Subtype.val)) LinearMap.id β―) aβ) - Nat.factorization_eq_zero_of_remainder π Mathlib.Data.Nat.Factorization.Defs
{p r : β} (i : β) (hr : Β¬p β£ r) : (p * i + r).factorization p = 0 - Nat.factorization_eq_zero_iff_remainder π Mathlib.Data.Nat.Factorization.Basic
{p r : β} (i : β) (pp : Nat.Prime p) (hr0 : r β 0) : Β¬p β£ r β (p * i + r).factorization p = 0 - MvPolynomial.bindβ_monomial_one π Mathlib.Algebra.MvPolynomial.Monad
{Ο : Type u_1} {R : Type u_3} {S : Type u_4} [CommSemiring R] [CommSemiring S] (f : R β+* MvPolynomial Ο S) (d : Ο ββ β) : (MvPolynomial.bindβ f) ((MvPolynomial.monomial d) 1) = (MvPolynomial.monomial d) 1 - MvPolynomial.bindβ_monomial π Mathlib.Algebra.MvPolynomial.Monad
{Ο : Type u_1} {Ο : Type u_2} {R : Type u_3} [CommSemiring R] (f : Ο β MvPolynomial Ο R) (d : Ο ββ β) (r : R) : (MvPolynomial.bindβ f) ((MvPolynomial.monomial d) r) = MvPolynomial.C r * β i β d.support, f i ^ d i - MvPolynomial.bindβ_monomial π Mathlib.Algebra.MvPolynomial.Monad
{Ο : Type u_1} {R : Type u_3} {S : Type u_4} [CommSemiring R] [CommSemiring S] (f : R β+* MvPolynomial Ο S) (d : Ο ββ β) (r : R) : (MvPolynomial.bindβ f) ((MvPolynomial.monomial d) r) = f r * (MvPolynomial.monomial d) 1 - Finsupp.weight_single_index π Mathlib.Data.Finsupp.Weight
{Ο : Type u_1} {M : Type u_2} {R : Type u_3} [Semiring R] [AddCommMonoid M] [Module R M] [DecidableEq Ο] (s : Ο) (c : M) (f : Ο ββ R) : (Finsupp.weight (Pi.single s c)) f = f s β’ c - Algebra.Presentation.reindex_relation π Mathlib.RingTheory.Presentation
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.Presentation R S) {ΞΉ : Type u_1} {ΞΊ : Type u_2} (e : ΞΉ β P.vars) (f : ΞΊ β P.rels) (aβ : ΞΊ) : (P.reindex e f).relation aβ = (β(MvPolynomial.rename βe.symm) β P.relation β βf) aβ - Submodule.LinearDisjoint.linearIndependent_left_of_flat π Mathlib.LinearAlgebra.LinearDisjoint
{R : Type u} {S : Type v} [CommRing R] [Ring S] [Algebra R S] {M N : Submodule R S} (H : M.LinearDisjoint N) [Module.Flat R β₯N] {ΞΉ : Type u_1} {m : ΞΉ β β₯M} (hm : LinearIndependent R m) : LinearMap.ker (Submodule.mulLeftMap N m) = β₯ - Submodule.LinearDisjoint.linearIndependent_right_of_flat π Mathlib.LinearAlgebra.LinearDisjoint
{R : Type u} {S : Type v} [CommRing R] [Ring S] [Algebra R S] {M N : Submodule R S} (H : M.LinearDisjoint N) [Module.Flat R β₯M] {ΞΉ : Type u_1} {n : ΞΉ β β₯N} (hn : LinearIndependent R n) : LinearMap.ker (M.mulRightMap n) = β₯ - Subalgebra.LinearDisjoint.mulRightMap_ker_eq_bot_iff_linearIndependent π Mathlib.RingTheory.LinearDisjoint
{R : Type u} {S : Type v} [CommRing R] [Ring S] [Algebra R S] (A B : Subalgebra R S) {ΞΉ : Type u_1} (b : ΞΉ β β₯B) : LinearMap.ker ((Subalgebra.toSubmodule A).mulRightMap b) = β₯ β LinearIndependent (β₯A) (βB.val β b) - Subalgebra.LinearDisjoint.mulLeftMap_ker_eq_bot_iff_linearIndependent_op π Mathlib.RingTheory.LinearDisjoint
{R : Type u} {S : Type v} [CommRing R] [Ring S] [Algebra R S] (A B : Subalgebra R S) {ΞΉ : Type u_1} (a : ΞΉ β β₯A) : LinearMap.ker (Submodule.mulLeftMap (Subalgebra.toSubmodule B) a) = β₯ β LinearIndependent (β₯B.op) (MulOpposite.op β βA.val β a) - Rep.coindFunctorIso_inv_app_hom_hom_apply_coe π Mathlib.RepresentationTheory.Coinduced
{k G H : Type u} [CommRing k] [Monoid G] [Monoid H] (Ο : G β* H) (X : Rep k G) (a : (Action.res (ModuleCat k) Ο).obj (Rep.leftRegular k H) βΆ X) (h : H) : β((ModuleCat.Hom.hom ((Rep.coindFunctorIso Ο).inv.app X).hom) a) h = (CategoryTheory.ConcreteCategory.hom a.hom) funβ | h => 1 - Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply π Mathlib.RepresentationTheory.Coinduced
{k G H : Type u} [CommRing k] [Monoid G] [Monoid H] (Ο : G β* H) (X : Rep k G) (f : β₯(Representation.coindV Ο X.Ο)) (d : H ββ k) : (ModuleCat.Hom.hom ((ModuleCat.Hom.hom ((Rep.coindFunctorIso Ο).hom.app X).hom) f).hom) d = d.sum fun i c => c β’ βf i - Rep.coindVLEquiv_apply_hom π Mathlib.RepresentationTheory.Coinduced
{k G H : Type u} [CommRing k] [Monoid G] [Monoid H] (Ο : G β* H) (A : Rep k G) (f : β₯(Representation.coindV Ο A.Ο)) : ((Rep.coindVLEquiv Ο A) f).hom = ModuleCat.ofHom (Finsupp.linearCombination k βf)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision f167e8d