Loogle!
Result
Found 3201 declarations mentioning Finsupp. Of these, 151 have a name containing "ind".
- Finsupp.single_eq_set_indicator π Mathlib.Data.Finsupp.Single
{Ξ± : Type u_1} {M : Type u_5} [Zero M] {a : Ξ±} {b : M} : (βfunβ | a => b) = {a}.indicator fun x => b - Finsupp.induction_linear π Mathlib.Algebra.Group.Finsupp
{ΞΉ : Type u_1} {M : Type u_3} [AddZeroClass M] {motive : (ΞΉ ββ M) β Prop} (f : ΞΉ ββ M) (zero : motive 0) (add : β (f g : ΞΉ ββ M), motive f β motive g β motive (f + g)) (single : β (a : ΞΉ) (b : M), motive funβ | a => b) : motive f - Finsupp.induction π Mathlib.Algebra.Group.Finsupp
{ΞΉ : Type u_1} {M : Type u_3} [AddZeroClass M] {motive : (ΞΉ ββ M) β Prop} (f : ΞΉ ββ M) (zero : motive 0) (single_add : β (a : ΞΉ) (b : M) (f : ΞΉ ββ M), a β f.support β b β 0 β motive f β motive ((funβ | a => b) + f)) : motive f - Finsupp.inductionβ π Mathlib.Algebra.Group.Finsupp
{ΞΉ : Type u_1} {M : Type u_3} [AddZeroClass M] {motive : (ΞΉ ββ M) β Prop} (f : ΞΉ ββ M) (zero : motive 0) (add_single : β (a : ΞΉ) (b : M) (f : ΞΉ ββ M), a β f.support β b β 0 β motive f β motive (f + funβ | a => b)) : motive f - Finsupp.induction_on_max π Mathlib.Algebra.Group.Finsupp
{ΞΉ : Type u_1} {M : Type u_3} [AddZeroClass M] [LinearOrder ΞΉ] {p : (ΞΉ ββ M) β Prop} (f : ΞΉ ββ M) (zero : p 0) (single_add : β (a : ΞΉ) (b : M) (f : ΞΉ ββ M), (β c β f.support, c < a) β b β 0 β p f β p ((funβ | a => b) + f)) : p f - Finsupp.induction_on_maxβ π Mathlib.Algebra.Group.Finsupp
{ΞΉ : Type u_1} {M : Type u_3} [AddZeroClass M] [LinearOrder ΞΉ] {p : (ΞΉ ββ M) β Prop} (f : ΞΉ ββ M) (zero : p 0) (add_single : β (a : ΞΉ) (b : M) (f : ΞΉ ββ M), (β c β f.support, c < a) β b β 0 β p f β p (f + funβ | a => b)) : p f - Finsupp.induction_on_min π Mathlib.Algebra.Group.Finsupp
{ΞΉ : Type u_1} {M : Type u_3} [AddZeroClass M] [LinearOrder ΞΉ] {p : (ΞΉ ββ M) β Prop} (f : ΞΉ ββ M) (zero : p 0) (single_add : β (a : ΞΉ) (b : M) (f : ΞΉ ββ M), (β c β f.support, a < c) β b β 0 β p f β p ((funβ | a => b) + f)) : p f - Finsupp.induction_on_minβ π Mathlib.Algebra.Group.Finsupp
{ΞΉ : Type u_1} {M : Type u_3} [AddZeroClass M] [LinearOrder ΞΉ] {p : (ΞΉ ββ M) β Prop} (f : ΞΉ ββ M) (h0 : p 0) (ha : β (a : ΞΉ) (b : M) (f : ΞΉ ββ M), (β c β f.support, a < c) β b β 0 β p f β p (f + funβ | a => b)) : p f - Finsupp.indicator π Mathlib.Data.Finsupp.Indicator
{ΞΉ : Type u_1} {Ξ± : Type u_2} [Zero Ξ±] (s : Finset ΞΉ) (f : (i : ΞΉ) β i β s β Ξ±) : ΞΉ ββ Ξ± - Finsupp.indicator_injective π Mathlib.Data.Finsupp.Indicator
{ΞΉ : Type u_1} {Ξ± : Type u_2} [Zero Ξ±] (s : Finset ΞΉ) : Function.Injective fun f => Finsupp.indicator s f - Finsupp.single_eq_indicator π Mathlib.Data.Finsupp.Indicator
{ΞΉ : Type u_1} {Ξ± : Type u_2} [Zero Ξ±] (i : ΞΉ) (b : Ξ±) : (funβ | i => b) = Finsupp.indicator {i} fun x x_1 => b - Finsupp.indicator_of_mem π Mathlib.Data.Finsupp.Indicator
{ΞΉ : Type u_1} {Ξ± : Type u_2} [Zero Ξ±] {s : Finset ΞΉ} {i : ΞΉ} (hi : i β s) (f : (i : ΞΉ) β i β s β Ξ±) : (Finsupp.indicator s f) i = f i hi - Finsupp.indicator_of_notMem π Mathlib.Data.Finsupp.Indicator
{ΞΉ : Type u_1} {Ξ± : Type u_2} [Zero Ξ±] {s : Finset ΞΉ} {i : ΞΉ} (hi : i β s) (f : (i : ΞΉ) β i β s β Ξ±) : (Finsupp.indicator s f) i = 0 - Finsupp.indicator_of_not_mem π Mathlib.Data.Finsupp.Indicator
{ΞΉ : Type u_1} {Ξ± : Type u_2} [Zero Ξ±] {s : Finset ΞΉ} {i : ΞΉ} (hi : i β s) (f : (i : ΞΉ) β i β s β Ξ±) : (Finsupp.indicator s f) i = 0 - Finsupp.indicator_apply π Mathlib.Data.Finsupp.Indicator
{ΞΉ : Type u_1} {Ξ± : Type u_2} [Zero Ξ±] (s : Finset ΞΉ) (f : (i : ΞΉ) β i β s β Ξ±) (i : ΞΉ) [DecidableEq ΞΉ] : (Finsupp.indicator s f) i = if hi : i β s then f i hi else 0 - Finsupp.indicator.eq_1 π Mathlib.Data.Finsupp.Indicator
{ΞΉ : Type u_1} {Ξ± : Type u_2} [Zero Ξ±] (s : Finset ΞΉ) (f : (i : ΞΉ) β i β s β Ξ±) : Finsupp.indicator s f = { support := Finset.map (Function.Embedding.subtype fun x => x β s) {i | f βi β― β 0}, toFun := fun i => if H : i β s then f i H else 0, mem_support_toFun := β― } - Finsupp.prod_zero_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} {N : Type u_10} [Zero M] [CommMonoid N] {h : Ξ± β M β N} : Finsupp.prod 0 h = 1 - Finsupp.sum_zero_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} {N : Type u_10} [Zero M] [AddCommMonoid N] {h : Ξ± β M β N} : Finsupp.sum 0 h = 0 - Finsupp.indicator_eq_sum_single π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} [AddCommMonoid M] (s : Finset Ξ±) (f : Ξ± β M) : (Finsupp.indicator s fun x x_1 => f x) = β x β s, funβ | x => f x - Finsupp.prod_mapRange_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} {M' : Type u_9} {N : Type u_10} [Zero M] [Zero M'] [CommMonoid N] {f : M β M'} {hf : f 0 = 0} {g : Ξ± ββ M} {h : Ξ± β M' β N} (h0 : β (a : Ξ±), h a 0 = 1) : (Finsupp.mapRange f hf g).prod h = g.prod fun a b => h a (f b) - Finsupp.sum_mapRange_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} {M' : Type u_9} {N : Type u_10} [Zero M] [Zero M'] [AddCommMonoid N] {f : M β M'} {hf : f 0 = 0} {g : Ξ± ββ M} {h : Ξ± β M' β N} (h0 : β (a : Ξ±), h a 0 = 0) : (Finsupp.mapRange f hf g).sum h = g.sum fun a b => h a (f b) - Finsupp.prod_neg_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} {G : Type u_12} [SubtractionMonoid G] [CommMonoid M] {g : Ξ± ββ G} {h : Ξ± β G β M} (h0 : β (a : Ξ±), h a 0 = 1) : (-g).prod h = g.prod fun a b => h a (-b) - Finsupp.sum_neg_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} {G : Type u_12} [SubtractionMonoid G] [AddCommMonoid M] {g : Ξ± ββ G} {h : Ξ± β G β M} (h0 : β (a : Ξ±), h a 0 = 0) : (-g).sum h = g.sum fun a b => h a (-b) - Finsupp.indicator_eq_sum_attach_single π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} [AddCommMonoid M] {s : Finset Ξ±} (f : (a : Ξ±) β a β s β M) : Finsupp.indicator s f = β x β s.attach, funβ | βx => f βx β― - Finsupp.sum_sum_index' π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {ΞΉ : Type u_2} {A : Type u_4} {C : Type u_6} [AddCommMonoid A] [AddCommMonoid C] {t : ΞΉ β A β C} {s : Finset Ξ±} {f : Ξ± β ΞΉ ββ A} (h0 : β (i : ΞΉ), t i 0 = 0) (h1 : β (i : ΞΉ) (x y : A), t i (x + y) = t i x + t i y) : (β x β s, f x).sum t = β x β s, (f x).sum t - Finsupp.prod_finset_sum_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {ΞΉ : Type u_2} {M : Type u_8} {N : Type u_10} [AddCommMonoid M] [CommMonoid N] {s : Finset ΞΉ} {g : ΞΉ β Ξ± ββ M} {h : Ξ± β M β N} (h_zero : β (a : Ξ±), h a 0 = 1) (h_add : β (a : Ξ±) (bβ bβ : M), h a (bβ + bβ) = h a bβ * h a bβ) : β i β s, (g i).prod h = (β i β s, g i).prod h - Finsupp.sum_finset_sum_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {ΞΉ : Type u_2} {M : Type u_8} {N : Type u_10} [AddCommMonoid M] [AddCommMonoid N] {s : Finset ΞΉ} {g : ΞΉ β Ξ± ββ M} {h : Ξ± β M β N} (h_zero : β (a : Ξ±), h a 0 = 0) (h_add : β (a : Ξ±) (bβ bβ : M), h a (bβ + bβ) = h a bβ + h a bβ) : β i β s, (g i).sum h = (β i β s, g i).sum h - Finsupp.prod_sum_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {Ξ² : Type u_7} {M : Type u_8} {N : Type u_10} {P : Type u_11} [Zero M] [AddCommMonoid N] [CommMonoid P] {f : Ξ± ββ M} {g : Ξ± β M β Ξ² ββ N} {h : Ξ² β N β P} (h_zero : β (a : Ξ²), h a 0 = 1) (h_add : β (a : Ξ²) (bβ bβ : N), h a (bβ + bβ) = h a bβ * h a bβ) : (f.sum g).prod h = f.prod fun a b => (g a b).prod h - Finsupp.sum_sum_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {Ξ² : Type u_7} {M : Type u_8} {N : Type u_10} {P : Type u_11} [Zero M] [AddCommMonoid N] [AddCommMonoid P] {f : Ξ± ββ M} {g : Ξ± β M β Ξ² ββ N} {h : Ξ² β N β P} (h_zero : β (a : Ξ²), h a 0 = 0) (h_add : β (a : Ξ²) (bβ bβ : N), h a (bβ + bβ) = h a bβ + h a bβ) : (f.sum g).sum h = f.sum fun a b => (g a b).sum h - Finsupp.multiset_sum_sum_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} {N : Type u_10} [AddCommMonoid M] [AddCommMonoid N] (f : Multiset (Ξ± ββ M)) (h : Ξ± β M β N) (hβ : β (a : Ξ±), h a 0 = 0) (hβ : β (a : Ξ±) (bβ bβ : M), h a (bβ + bβ) = h a bβ + h a bβ) : f.sum.sum h = (Multiset.map (fun g => g.sum h) f).sum - Finsupp.prod_add_index' π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} {N : Type u_10} [AddZeroClass M] [CommMonoid N] {f g : Ξ± ββ M} {h : Ξ± β M β N} (h_zero : β (a : Ξ±), h a 0 = 1) (h_add : β (a : Ξ±) (bβ bβ : M), h a (bβ + bβ) = h a bβ * h a bβ) : (f + g).prod h = f.prod h * g.prod h - Finsupp.sum_add_index' π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} {N : Type u_10} [AddZeroClass M] [AddCommMonoid N] {f g : Ξ± ββ M} {h : Ξ± β M β N} (h_zero : β (a : Ξ±), h a 0 = 0) (h_add : β (a : Ξ±) (bβ bβ : M), h a (bβ + bβ) = h a bβ + h a bβ) : (f + g).sum h = f.sum h + g.sum h - Finsupp.prod_add_index_of_disjoint π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} [AddCommMonoid M] {f1 f2 : Ξ± ββ M} (hd : Disjoint f1.support f2.support) {Ξ² : Type u_16} [CommMonoid Ξ²] (g : Ξ± β M β Ξ²) : (f1 + f2).prod g = f1.prod g * f2.prod g - Finsupp.sum_add_index_of_disjoint π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} [AddCommMonoid M] {f1 f2 : Ξ± ββ M} (hd : Disjoint f1.support f2.support) {Ξ² : Type u_16} [AddCommMonoid Ξ²] (g : Ξ± β M β Ξ²) : (f1 + f2).sum g = f1.sum g + f2.sum g - Finsupp.sum_sub_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {Ξ³ : Type u_3} {Ξ² : Type u_7} [AddGroup Ξ²] [AddCommGroup Ξ³] {f g : Ξ± ββ Ξ²} {h : Ξ± β Ξ² β Ξ³} (h_sub : β (a : Ξ±) (bβ bβ : Ξ²), h a (bβ - bβ) = h a bβ - h a bβ) : (f - g).sum h = f.sum h - g.sum h - Finsupp.sum_hom_add_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} {N : Type u_10} [AddZeroClass M] [AddCommMonoid N] {f g : Ξ± ββ M} (h : Ξ± β M β+ N) : ((f + g).sum fun x => β(h x)) = (f.sum fun x => β(h x)) + g.sum fun x => β(h x) - Finsupp.prod_add_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} {N : Type u_10} [DecidableEq Ξ±] [AddZeroClass M] [CommMonoid N] {f g : Ξ± ββ M} {h : Ξ± β M β N} (h_zero : β a β f.support βͺ g.support, h a 0 = 1) (h_add : β a β f.support βͺ g.support, β (bβ bβ : M), h a (bβ + bβ) = h a bβ * h a bβ) : (f + g).prod h = f.prod h * g.prod h - Finsupp.sum_add_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} {N : Type u_10} [DecidableEq Ξ±] [AddZeroClass M] [AddCommMonoid N] {f g : Ξ± ββ M} {h : Ξ± β M β N} (h_zero : β a β f.support βͺ g.support, h a 0 = 0) (h_add : β a β f.support βͺ g.support, β (bβ bβ : M), h a (bβ + bβ) = h a bβ + h a bβ) : (f + g).sum h = f.sum h + g.sum h - Finsupp.prod_hom_add_index π Mathlib.Algebra.BigOperators.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_8} {N : Type u_10} [AddZeroClass M] [CommMonoid N] {f g : Ξ± ββ M} (h : Ξ± β Multiplicative M β* N) : ((f + g).prod fun a b => (h a) (Multiplicative.ofAdd b)) = (f.prod fun a b => (h a) (Multiplicative.ofAdd b)) * g.prod fun a b => (h a) (Multiplicative.ofAdd b) - Finsupp.filter_eq_indicator π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_5} [Zero M] (p : Ξ± β Prop) [DecidablePred p] (f : Ξ± ββ M) : β(Finsupp.filter p f) = {x | p x}.indicator βf - Finsupp.prod_subtypeDomain_index π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_5} {N : Type u_7} [Zero M] {p : Ξ± β Prop} [CommMonoid N] {v : Ξ± ββ M} {h : Ξ± β M β N} (hp : β x β v.support, p x) : ((Finsupp.subtypeDomain p v).prod fun a b => h (βa) b) = v.prod h - Finsupp.sum_subtypeDomain_index π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_5} {N : Type u_7} [Zero M] {p : Ξ± β Prop} [AddCommMonoid N] {v : Ξ± ββ M} {h : Ξ± β M β N} (hp : β x β v.support, p x) : ((Finsupp.subtypeDomain p v).sum fun a b => h (βa) b) = v.sum h - Finsupp.prod_filter_index π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_5} {N : Type u_7} [Zero M] (p : Ξ± β Prop) [DecidablePred p] (f : Ξ± ββ M) [CommMonoid N] (g : Ξ± β M β N) : (Finsupp.filter p f).prod g = β x β (Finsupp.filter p f).support, g x (f x) - Finsupp.sum_filter_index π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {M : Type u_5} {N : Type u_7} [Zero M] (p : Ξ± β Prop) [DecidablePred p] (f : Ξ± ββ M) [AddCommMonoid N] (g : Ξ± β M β N) : (Finsupp.filter p f).sum g = β x β (Finsupp.filter p f).support, g x (f x) - Finsupp.prod_mapDomain_index_inj π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} {M : Type u_5} {N : Type u_7} [AddCommMonoid M] [CommMonoid N] {f : Ξ± β Ξ²} {s : Ξ± ββ M} {h : Ξ² β M β N} (hf : Function.Injective f) : (Finsupp.mapDomain f s).prod h = s.prod fun a b => h (f a) b - Finsupp.sum_mapDomain_index_inj π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} {M : Type u_5} {N : Type u_7} [AddCommMonoid M] [AddCommMonoid N] {f : Ξ± β Ξ²} {s : Ξ± ββ M} {h : Ξ² β M β N} (hf : Function.Injective f) : (Finsupp.mapDomain f s).sum h = s.sum fun a b => h (f a) b - Finsupp.sum_curry_index π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} {M : Type u_5} {N : Type u_7} [DecidableEq Ξ±] [Zero M] [AddCommMonoid N] (f : Ξ± Γ Ξ² ββ M) (g : Ξ± β Ξ² β M β N) : (f.curry.sum fun a f => f.sum (g a)) = f.sum fun p c => g p.1 p.2 c - Finsupp.sum_uncurry_index π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} {M : Type u_5} {N : Type u_7} [Zero M] [AddCommMonoid N] (f : Ξ± ββ Ξ² ββ M) (g : Ξ± Γ Ξ² β M β N) : (f.uncurry.sum fun p c => g p c) = f.sum fun a f => f.sum fun b => g (a, b) - Finsupp.sum_uncurry_index' π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} {M : Type u_5} {N : Type u_7} [Zero M] [AddCommMonoid N] (f : Ξ± ββ Ξ² ββ M) (g : Ξ± β Ξ² β M β N) : (f.uncurry.sum fun p c => g p.1 p.2 c) = f.sum fun a f => f.sum (g a) - Finsupp.prod_mapDomain_index π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} {M : Type u_5} {N : Type u_7} [AddCommMonoid M] [CommMonoid N] {f : Ξ± β Ξ²} {s : Ξ± ββ M} {h : Ξ² β M β N} (h_zero : β (b : Ξ²), h b 0 = 1) (h_add : β (b : Ξ²) (mβ mβ : M), h b (mβ + mβ) = h b mβ * h b mβ) : (Finsupp.mapDomain f s).prod h = s.prod fun a m => h (f a) m - Finsupp.sum_mapDomain_index π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} {M : Type u_5} {N : Type u_7} [AddCommMonoid M] [AddCommMonoid N] {f : Ξ± β Ξ²} {s : Ξ± ββ M} {h : Ξ² β M β N} (h_zero : β (b : Ξ²), h b 0 = 0) (h_add : β (b : Ξ²) (mβ mβ : M), h b (mβ + mβ) = h b mβ + h b mβ) : (Finsupp.mapDomain f s).sum h = s.sum fun a m => h (f a) m - Finsupp.sum_mapDomain_index_addMonoidHom π Mathlib.Data.Finsupp.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} {M : Type u_5} {N : Type u_7} [AddCommMonoid M] [AddCommMonoid N] {f : Ξ± β Ξ²} {s : Ξ± ββ M} (h : Ξ² β M β+ N) : ((Finsupp.mapDomain f s).sum fun b m => (h b) m) = s.sum fun a m => (h (f a)) m - Finsupp.sum_smul_index' π Mathlib.Data.Finsupp.SMul
{Ξ± : Type u_1} {M : Type u_3} {N : Type u_4} {R : Type u_6} [Zero M] [SMulZeroClass R M] [AddCommMonoid N] {g : Ξ± ββ M} {b : R} {h : Ξ± β M β N} (h0 : β (i : Ξ±), h i 0 = 0) : (b β’ g).sum h = g.sum fun i c => h i (b β’ c) - Finsupp.sum_smul_index π Mathlib.Data.Finsupp.SMul
{Ξ± : Type u_1} {M : Type u_3} {R : Type u_6} [MulZeroClass R] [AddCommMonoid M] {g : Ξ± ββ R} {b : R} {h : Ξ± β R β M} (h0 : β (i : Ξ±), h i 0 = 0) : (b β’ g).sum h = g.sum fun i a => h i (b * a) - Finsupp.sum_smul_index_addMonoidHom π Mathlib.Data.Finsupp.SMul
{Ξ± : Type u_1} {M : Type u_3} {N : Type u_4} {R : Type u_6} [AddZeroClass M] [AddCommMonoid N] [SMulZeroClass R M] {g : Ξ± ββ M} {b : R} {h : Ξ± β M β+ N} : ((b β’ g).sum fun a => β(h a)) = g.sum fun i c => (h i) (b β’ c) - Finsupp.sum_smul_index_linearMap' π Mathlib.LinearAlgebra.Finsupp.LSum
{Ξ± : Type u_1} {R : Type u_3} {M : Type u_5} {Mβ : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid Mβ] [Module R Mβ] {v : Ξ± ββ M} {c : R} {h : Ξ± β M ββ[R] Mβ} : ((c β’ v).sum fun a => β(h a)) = c β’ v.sum fun a => β(h a) - Finsupp.sum_smul_index_semilinearMap' π Mathlib.LinearAlgebra.Finsupp.LSum
{Ξ± : Type u_1} {R : Type u_3} {Rβ : Type u_4} {M : Type u_5} {Mβ : Type u_6} [Semiring R] [Semiring Rβ] [AddCommMonoid M] [Module R M] [AddCommMonoid Mβ] [Module Rβ Mβ] {Ο : R β+* Rβ} {v : Ξ± ββ M} {c : R} {h : Ξ± β M βββ[Ο] Mβ} : ((c β’ v).sum fun a => β(h a)) = Ο c β’ v.sum fun a => β(h a) - Finsupp.prod_option_index π Mathlib.Data.Finsupp.Option
{Ξ± : Type u_1} {M : Type u_2} {N : Type u_3} [AddZeroClass M] [CommMonoid N] (f : Option Ξ± ββ M) (b : Option Ξ± β M β N) (h_zero : β (o : Option Ξ±), b o 0 = 1) (h_add : β (o : Option Ξ±) (mβ mβ : M), b o (mβ + mβ) = b o mβ * b o mβ) : f.prod b = b none (f none) * f.some.prod fun a => b (some a) - Finsupp.sum_option_index π Mathlib.Data.Finsupp.Option
{Ξ± : Type u_1} {M : Type u_2} {N : Type u_3} [AddZeroClass M] [AddCommMonoid N] (f : Option Ξ± ββ M) (b : Option Ξ± β M β N) (h_zero : β (o : Option Ξ±), b o 0 = 0) (h_add : β (o : Option Ξ±) (mβ mβ : M), b o (mβ + mβ) = b o mβ + b o mβ) : f.sum b = b none (f none) + f.some.sum fun a => b (some a) - Finsupp.sum_option_index_smul π Mathlib.Data.Finsupp.Option
{Ξ± : Type u_1} {M : Type u_2} {R : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] (f : Option Ξ± ββ R) (b : Option Ξ± β M) : (f.sum fun o r => r β’ b o) = f none β’ b none + f.some.sum fun a r => r β’ b (some a) - Finsupp.linearCombination_single_index π Mathlib.LinearAlgebra.Finsupp.LinearCombination
(Ξ± : Type u_1) (M : Type u_2) (R : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] (c : M) (a : Ξ±) (f : Ξ± ββ R) [DecidableEq Ξ±] : (Finsupp.linearCombination R (Pi.single a c)) f = f a β’ c - Module.Basis.reindex.eq_1 π Mathlib.LinearAlgebra.Basis.Defs
{ΞΉ : Type u_1} {ΞΉ' : Type u_2} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] (b : Module.Basis ΞΉ R M) (e : ΞΉ β ΞΉ') : b.reindex e = { repr := b.repr βͺβ«β Finsupp.domLCongr e } - Module.Basis.repr_reindex π Mathlib.LinearAlgebra.Basis.Defs
{ΞΉ : Type u_1} {ΞΉ' : Type u_2} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] (b : Module.Basis ΞΉ R M) (x : M) (e : ΞΉ β ΞΉ') : (b.reindex e).repr x = Finsupp.mapDomain (βe) (b.repr x) - Module.Basis.repr_reindex_apply π Mathlib.LinearAlgebra.Basis.Defs
{ΞΉ : Type u_1} {ΞΉ' : Type u_2} {R : Type u_3} {M : Type u_6} [Semiring R] [AddCommMonoid M] [Module R M] (b : Module.Basis ΞΉ R M) (x : M) (e : ΞΉ β ΞΉ') (i' : ΞΉ') : ((b.reindex e).repr x) i' = (b.repr x) (e.symm i') - Module.Basis.reindexRange_repr_self π Mathlib.LinearAlgebra.Basis.Defs
{ΞΉ : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Module.Basis ΞΉ R M) (i : ΞΉ) : b.reindexRange.repr (b i) = funβ | β¨b i, β―β© => 1 - Module.Basis.reindexFinsetRange_repr_self π Mathlib.LinearAlgebra.Basis.Defs
{ΞΉ : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Module.Basis ΞΉ R M) [Fintype ΞΉ] [DecidableEq M] (i : ΞΉ) : b.reindexFinsetRange.repr (b i) = funβ | β¨b i, β―β© => 1 - Module.Basis.reindexRange_repr' π Mathlib.LinearAlgebra.Basis.Defs
{ΞΉ : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Module.Basis ΞΉ R M) (x : M) {bi : M} {i : ΞΉ} (h : b i = bi) : (b.reindexRange.repr x) β¨bi, β―β© = (b.repr x) i - Module.Basis.reindexRange_repr π Mathlib.LinearAlgebra.Basis.Defs
{ΞΉ : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Module.Basis ΞΉ R M) (x : M) (i : ΞΉ) (h : b i β Set.range βb := β―) : (b.reindexRange.repr x) β¨b i, hβ© = (b.repr x) i - Module.Basis.reindexFinsetRange_repr π Mathlib.LinearAlgebra.Basis.Defs
{ΞΉ : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] (b : Module.Basis ΞΉ R M) [Fintype ΞΉ] [DecidableEq M] (x : M) (i : ΞΉ) (h : b i β Finset.image (βb) Finset.univ := β―) : (b.reindexFinsetRange.repr x) β¨b i, hβ© = (b.repr x) i - LinearIndependent.repr π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) : β₯(Submodule.span R (Set.range v)) ββ[R] ΞΉ ββ R - LinearIndependent.linearCombinationEquiv π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) : (ΞΉ ββ R) ββ[R] β₯(Submodule.span R (Set.range v)) - LinearIndependent.repr.congr_simp π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) : hv.repr = hv.repr - LinearIndependent.linearCombinationEquiv.congr_simp π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) : hv.linearCombinationEquiv = hv.linearCombinationEquiv - LinearIndependent.finsuppLinearCombination_injective π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] : LinearIndependent R v β Function.Injective β(Finsupp.linearCombination R v) - LinearIndependent.linearCombination_injective π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] : LinearIndependent R v β Function.Injective β(Finsupp.linearCombination R v) - linearIndependent_iff_injective_finsuppLinearCombination π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] : LinearIndependent R v β Function.Injective β(Finsupp.linearCombination R v) - linearIndependent_iff_injective_linearCombination π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] : LinearIndependent R v β Function.Injective β(Finsupp.linearCombination R v) - LinearIndependent.eq_1 π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} (R : Type u_2) {M : Type u_4} (v : ΞΉ β M) [Semiring R] [AddCommMonoid M] [Module R M] : LinearIndependent R v = Function.Injective β(Finsupp.linearCombination R v) - LinearIndependent.linearCombination_comp_repr π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) : Finsupp.linearCombination R v ββ hv.repr = (Submodule.span R (Set.range v)).subtype - linearIndependent_iff π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Ring R] [AddCommGroup M] [Module R M] : LinearIndependent R v β β (l : ΞΉ ββ R), (Finsupp.linearCombination R v) l = 0 β l = 0 - linearIndependent_iffβ π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] : LinearIndependent R v β β (lβ lβ : ΞΉ ββ R), (Finsupp.linearCombination R v) lβ = (Finsupp.linearCombination R v) lβ β lβ = lβ - LinearIndependent.repr.eq_1 π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) : hv.repr = βhv.linearCombinationEquiv.symm - LinearIndependent.span_repr_eq π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) [Nontrivial R] (x : β₯(Submodule.span R (Set.range v))) : Span.repr R (Set.range v) x = Finsupp.equivMapDomain (Equiv.ofInjective v β―) (hv.repr x) - LinearIndependent.repr_eq_single π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) (i : ΞΉ) (x : β₯(Submodule.span R (Set.range v))) (hx : βx = v i) : hv.repr x = funβ | i => 1 - linearIndependent_iff_ker π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Ring R] [AddCommGroup M] [Module R M] : LinearIndependent R v β LinearMap.ker (Finsupp.linearCombination R v) = β₯ - LinearIndependent.linearCombination_repr π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) (x : β₯(Submodule.span R (Set.range v))) : (Finsupp.linearCombination R v) (hv.repr x) = βx - linearIndepOn_iff π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {s : Set ΞΉ} {M : Type u_4} {v : ΞΉ β M} [Ring R] [AddCommGroup M] [Module R M] : LinearIndepOn R v s β β l β Finsupp.supported R R s, (Finsupp.linearCombination R v) l = 0 β l = 0 - LinearIndependent.repr_eq π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) {l : ΞΉ ββ R} {x : β₯(Submodule.span R (Set.range v))} (eq : (Finsupp.linearCombination R v) l = βx) : hv.repr x = l - LinearIndependent.repr_range π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) : LinearMap.range hv.repr = β€ - linearIndepOn_iff_disjoint π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {s : Set ΞΉ} {M : Type u_4} {v : ΞΉ β M} [Ring R] [AddCommGroup M] [Module R M] : LinearIndepOn R v s β Disjoint (Finsupp.supported R R s) (LinearMap.ker (Finsupp.linearCombination R v)) - LinearIndependent.linearCombinationEquiv_apply_coe π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) (aβ : ΞΉ ββ R) : β(hv.linearCombinationEquiv aβ) = (Finsupp.linearCombination R v) aβ - LinearIndependent.repr_ker π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) : LinearMap.ker hv.repr = β₯ - linearIndepOn_iffβ π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {s : Set ΞΉ} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] : LinearIndepOn R v s β β f β Finsupp.supported R R s, β g β Finsupp.supported R R s, (Finsupp.linearCombination R v) f = (Finsupp.linearCombination R v) g β f = g - linearIndependent_comp_subtypeβ π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {s : Set ΞΉ} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] : LinearIndepOn R v s β β f β Finsupp.supported R R s, β g β Finsupp.supported R R s, (Finsupp.linearCombination R v) f = (Finsupp.linearCombination R v) g β f = g - linearIndependent_subtypeβ π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {s : Set ΞΉ} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] : LinearIndepOn R v s β β f β Finsupp.supported R R s, β g β Finsupp.supported R R s, (Finsupp.linearCombination R v) f = (Finsupp.linearCombination R v) g β f = g - linearIndepOn_iff_linearCombinationOnβ π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {s : Set ΞΉ} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] : LinearIndepOn R v s β Function.Injective β(Finsupp.linearCombinationOn ΞΉ M R v s) - linearIndependent_iff_linearCombinationOnβ π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {s : Set ΞΉ} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] : LinearIndepOn R v s β Function.Injective β(Finsupp.linearCombinationOn ΞΉ M R v s) - linearIndepOn_iff_linearCombinationOn π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {s : Set ΞΉ} {M : Type u_4} {v : ΞΉ β M} [Ring R] [AddCommGroup M] [Module R M] : LinearIndepOn R v s β LinearMap.ker (Finsupp.linearCombinationOn ΞΉ M R v s) = β₯ - LinearIndependent.linearCombinationEquiv_symm_apply π Mathlib.LinearAlgebra.LinearIndependent.Defs
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] (hv : LinearIndependent R v) (aβ : β₯(Submodule.span R (Set.range v))) : hv.linearCombinationEquiv.symm aβ = ((LinearEquiv.ofInjective (LinearMap.codRestrict (Submodule.span R (Set.range v)) (Finsupp.linearCombination R v) β―) β―).toEquiv.trans (LinearEquiv.ofTop (LinearMap.range (LinearMap.codRestrict (Submodule.span R (Set.range v)) (Finsupp.linearCombination R v) β―)) β―).toEquiv).invFun aβ - LinearIndependent.linearCombination_ne_of_notMem_support π Mathlib.LinearAlgebra.LinearIndependent.Basic
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] [Nontrivial R] (hv : LinearIndependent R v) {x : ΞΉ} (f : ΞΉ ββ R) (h : x β f.support) : (Finsupp.linearCombination R v) f β v x - LinearIndependent.linearCombination_ne_of_not_mem_support π Mathlib.LinearAlgebra.LinearIndependent.Basic
{ΞΉ : Type u'} {R : Type u_2} {M : Type u_4} {v : ΞΉ β M} [Semiring R] [AddCommMonoid M] [Module R M] [Nontrivial R] (hv : LinearIndependent R v) {x : ΞΉ} (f : ΞΉ ββ R) (h : x β f.support) : (Finsupp.linearCombination R v) f β v x - Finsupp.linearIndependent_single_one π Mathlib.LinearAlgebra.Finsupp.VectorSpace
(R : Type u_1) (ΞΉ : Type u_3) [Semiring R] : LinearIndependent R fun i => funβ | i => 1 - Finsupp.linearIndependent_single π Mathlib.LinearAlgebra.Finsupp.VectorSpace
{R : Type u_1} {M : Type u_2} {ΞΉ : Type u_3} [Semiring R] [AddCommMonoid M] [Module R M] {Ο : ΞΉ β Type u_4} (f : (i : ΞΉ) β Ο i β M) (hf : β (i : ΞΉ), LinearIndependent R (f i)) : LinearIndependent R fun ix => funβ | ix.fst => f ix.fst ix.snd - Finsupp.linearIndependent_single_iff π Mathlib.LinearAlgebra.Finsupp.VectorSpace
{R : Type u_1} {M : Type u_2} {ΞΉ : Type u_3} [Semiring R] [AddCommMonoid M] [Module R M] {Ο : ΞΉ β Type u_4} {f : (i : ΞΉ) β Ο i β M} : (LinearIndependent R fun ix => funβ | ix.fst => f ix.fst ix.snd) β β (i : ΞΉ), LinearIndependent R (f i) - Finsupp.linearIndependent_single_of_ne_zero π Mathlib.LinearAlgebra.Finsupp.VectorSpace
{R : Type u_1} {M : Type u_2} {ΞΉ : Type u_3} [Ring R] [AddCommGroup M] [Module R M] [NoZeroSMulDivisors R M] {v : ΞΉ β M} (hv : β (i : ΞΉ), v i β 0) : LinearIndependent R fun i => funβ | i => v i - union_support_maximal_linearIndependent_eq_range_basis π Mathlib.LinearAlgebra.Basis.Cardinality
{R : Type u} {M : Type v} [Semiring R] [AddCommMonoid M] [Nontrivial R] [Module R M] {ΞΉ : Type w} (b : Module.Basis ΞΉ R M) {ΞΊ : Type w'} (v : ΞΊ β M) (ind : LinearIndependent R v) (m : ind.Maximal) : β k, β(b.repr (v k)).support = Set.univ - Finsupp.sum_le_sum_index π Mathlib.Data.Finsupp.Order
{ΞΉ : Type u_1} {Ξ± : Type u_3} {Ξ² : Type u_4} [Zero Ξ±] [Preorder Ξ±] [AddCommMonoid Ξ²] [PartialOrder Ξ²] [IsOrderedAddMonoid Ξ²] [DecidableEq ΞΉ] {fβ fβ : ΞΉ ββ Ξ±} {h : ΞΉ β Ξ± β Ξ²} (hf : fβ β€ fβ) (hh : β i β fβ.support βͺ fβ.support, Monotone (h i)) (hhβ : β i β fβ.support βͺ fβ.support, h i 0 = 0) : fβ.sum h β€ fβ.sum h - MvPolynomial.induction_on' π Mathlib.Algebra.MvPolynomial.Basic
{R : Type u} {Ο : Type u_1} [CommSemiring R] {P : MvPolynomial Ο R β Prop} (p : MvPolynomial Ο R) (monomial : β (u : Ο ββ β) (a : R), P ((MvPolynomial.monomial u) a)) (add : β (p q : MvPolynomial Ο R), P p β P q β P (p + q)) : P p - MvPolynomial.induction_on_monomial π Mathlib.Algebra.MvPolynomial.Basic
{R : Type u} {Ο : Type u_1} [CommSemiring R] {motive : MvPolynomial Ο R β Prop} (C : β (a : R), motive (MvPolynomial.C a)) (mul_X : β (p : MvPolynomial Ο R) (n : Ο), motive p β motive (p * MvPolynomial.X n)) (s : Ο ββ β) (a : R) : motive ((MvPolynomial.monomial s) a) - MvPolynomial.induction_on''' π Mathlib.Algebra.MvPolynomial.Basic
{R : Type u} {Ο : Type u_1} [CommSemiring R] {motive : MvPolynomial Ο R β Prop} (p : MvPolynomial Ο R) (C : β (a : R), motive (MvPolynomial.C a)) (monomial_add : β (a : Ο ββ β) (b : R) (f : MvPolynomial Ο R), a β f.support β b β 0 β motive f β motive ((MvPolynomial.monomial a) b + f)) : motive p - MvPolynomial.monomial_add_induction_on π Mathlib.Algebra.MvPolynomial.Basic
{R : Type u} {Ο : Type u_1} [CommSemiring R] {motive : MvPolynomial Ο R β Prop} (p : MvPolynomial Ο R) (C : β (a : R), motive (MvPolynomial.C a)) (monomial_add : β (a : Ο ββ β) (b : R) (f : MvPolynomial Ο R), a β f.support β b β 0 β motive f β motive ((MvPolynomial.monomial a) b + f)) : motive p - MvPolynomial.monomial_sum_index π Mathlib.Algebra.MvPolynomial.Basic
{R : Type u} {Ο : Type u_1} [CommSemiring R] {Ξ± : Type u_2} (s : Finset Ξ±) (f : Ξ± β Ο ββ β) (a : R) : (MvPolynomial.monomial (β i β s, f i)) a = MvPolynomial.C a * β i β s, (MvPolynomial.monomial (f i)) 1 - MvPolynomial.monomial_finsupp_sum_index π Mathlib.Algebra.MvPolynomial.Basic
{R : Type u} {Ο : Type u_1} [CommSemiring R] {Ξ± : Type u_2} {Ξ² : Type u_3} [Zero Ξ²] (f : Ξ± ββ Ξ²) (g : Ξ± β Ξ² β Ο ββ β) (a : R) : (MvPolynomial.monomial (f.sum g)) a = MvPolynomial.C a * f.prod fun a b => (MvPolynomial.monomial (g a b)) 1 - MvPolynomial.induction_on'' π Mathlib.Algebra.MvPolynomial.Basic
{R : Type u} {Ο : Type u_1} [CommSemiring R] {motive : MvPolynomial Ο R β Prop} (p : MvPolynomial Ο R) (C : β (a : R), motive (MvPolynomial.C a)) (monomial_add : β (a : Ο ββ β) (b : R) (f : MvPolynomial Ο R), a β f.support β b β 0 β motive f β motive ((MvPolynomial.monomial a) b) β motive ((MvPolynomial.monomial a) b + f)) (mul_X : β (p : MvPolynomial Ο R) (n : Ο), motive p β motive (p * MvPolynomial.X n)) : motive p - Nat.factorization_eq_zero_of_remainder π Mathlib.Data.Nat.Factorization.Defs
{p r : β} (i : β) (hr : Β¬p β£ r) : (p * i + r).factorization p = 0 - Nat.factorization_eq_zero_iff_remainder π Mathlib.Data.Nat.Factorization.Basic
{p r : β} (i : β) (pp : Nat.Prime p) (hr0 : r β 0) : Β¬p β£ r β (p * i + r).factorization p = 0 - basisOfLinearIndependentOfCardEqFinrank_repr_apply π Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {ΞΉ : Type u_1} [Nonempty ΞΉ] [Fintype ΞΉ] {b : ΞΉ β V} (lin_ind : LinearIndependent K b) (card_eq : Fintype.card ΞΉ = Module.finrank K V) (aβ : V) : (basisOfLinearIndependentOfCardEqFinrank lin_ind card_eq).repr aβ = lin_ind.repr ((LinearMap.codRestrict (Submodule.span K (Set.range b)) LinearMap.id β―) aβ) - setBasisOfLinearIndependentOfCardEqFinrank_repr_apply π Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {s : Set V} [Nonempty βs] [Fintype βs] (lin_ind : LinearIndependent K Subtype.val) (card_eq : s.toFinset.card = Module.finrank K V) (aβ : V) : (setBasisOfLinearIndependentOfCardEqFinrank lin_ind card_eq).repr aβ = lin_ind.repr ((LinearMap.codRestrict (Submodule.span K (Set.range Subtype.val)) LinearMap.id β―) aβ) - finsetBasisOfLinearIndependentOfCardEqFinrank_repr_apply π Mathlib.LinearAlgebra.FiniteDimensional.Lemmas
{K : Type u} {V : Type v} [DivisionRing K] [AddCommGroup V] [Module K V] {s : Finset V} (hs : s.Nonempty) (lin_ind : LinearIndependent K Subtype.val) (card_eq : s.card = Module.finrank K V) (aβ : V) : (finsetBasisOfLinearIndependentOfCardEqFinrank hs lin_ind card_eq).repr aβ = lin_ind.repr ((LinearMap.codRestrict (Submodule.span K (Set.range Subtype.val)) LinearMap.id β―) aβ) - MvPolynomial.bindβ_monomial_one π Mathlib.Algebra.MvPolynomial.Monad
{Ο : Type u_1} {R : Type u_3} {S : Type u_4} [CommSemiring R] [CommSemiring S] (f : R β+* MvPolynomial Ο S) (d : Ο ββ β) : (MvPolynomial.bindβ f) ((MvPolynomial.monomial d) 1) = (MvPolynomial.monomial d) 1 - MvPolynomial.bindβ_monomial π Mathlib.Algebra.MvPolynomial.Monad
{Ο : Type u_1} {Ο : Type u_2} {R : Type u_3} [CommSemiring R] (f : Ο β MvPolynomial Ο R) (d : Ο ββ β) (r : R) : (MvPolynomial.bindβ f) ((MvPolynomial.monomial d) r) = MvPolynomial.C r * β i β d.support, f i ^ d i - MvPolynomial.bindβ_monomial π Mathlib.Algebra.MvPolynomial.Monad
{Ο : Type u_1} {R : Type u_3} {S : Type u_4} [CommSemiring R] [CommSemiring S] (f : R β+* MvPolynomial Ο S) (d : Ο ββ β) (r : R) : (MvPolynomial.bindβ f) ((MvPolynomial.monomial d) r) = f r * (MvPolynomial.monomial d) 1 - Finsupp.weight_single_index π Mathlib.Data.Finsupp.Weight
{Ο : Type u_1} {M : Type u_2} {R : Type u_3} [Semiring R] [AddCommMonoid M] [Module R M] [DecidableEq Ο] (s : Ο) (c : M) (f : Ο ββ R) : (Finsupp.weight (Pi.single s c)) f = f s β’ c - Submodule.LinearDisjoint.linearIndependent_left_of_flat π Mathlib.LinearAlgebra.LinearDisjoint
{R : Type u} {S : Type v} [CommRing R] [Ring S] [Algebra R S] {M N : Submodule R S} (H : M.LinearDisjoint N) [Module.Flat R β₯N] {ΞΉ : Type u_1} {m : ΞΉ β β₯M} (hm : LinearIndependent R m) : LinearMap.ker (Submodule.mulLeftMap N m) = β₯ - Submodule.LinearDisjoint.linearIndependent_right_of_flat π Mathlib.LinearAlgebra.LinearDisjoint
{R : Type u} {S : Type v} [CommRing R] [Ring S] [Algebra R S] {M N : Submodule R S} (H : M.LinearDisjoint N) [Module.Flat R β₯M] {ΞΉ : Type u_1} {n : ΞΉ β β₯N} (hn : LinearIndependent R n) : LinearMap.ker (M.mulRightMap n) = β₯ - Subalgebra.LinearDisjoint.mulRightMap_ker_eq_bot_iff_linearIndependent π Mathlib.RingTheory.LinearDisjoint
{R : Type u} {S : Type v} [CommRing R] [Ring S] [Algebra R S] (A B : Subalgebra R S) {ΞΉ : Type u_1} (b : ΞΉ β β₯B) : LinearMap.ker ((Subalgebra.toSubmodule A).mulRightMap b) = β₯ β LinearIndependent (β₯A) (βB.val β b) - Subalgebra.LinearDisjoint.mulLeftMap_ker_eq_bot_iff_linearIndependent_op π Mathlib.RingTheory.LinearDisjoint
{R : Type u} {S : Type v} [CommRing R] [Ring S] [Algebra R S] (A B : Subalgebra R S) {ΞΉ : Type u_1} (a : ΞΉ β β₯A) : LinearMap.ker (Submodule.mulLeftMap (Subalgebra.toSubmodule B) a) = β₯ β LinearIndependent (β₯B.op) (MulOpposite.op β βA.val β a) - Rep.coindFunctorIso_inv_app_hom_hom_apply_coe π Mathlib.RepresentationTheory.Coinduced
{k G H : Type u} [CommRing k] [Monoid G] [Monoid H] (Ο : G β* H) (X : Rep k G) (a : (Action.res (ModuleCat k) Ο).obj (Rep.leftRegular k H) βΆ X) (h : H) : β((ModuleCat.Hom.hom ((Rep.coindFunctorIso Ο).inv.app X).hom) a) h = (CategoryTheory.ConcreteCategory.hom a.hom) funβ | h => 1 - Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply π Mathlib.RepresentationTheory.Coinduced
{k G H : Type u} [CommRing k] [Monoid G] [Monoid H] (Ο : G β* H) (X : Rep k G) (f : β₯(Representation.coindV Ο X.Ο)) (d : H ββ k) : (ModuleCat.Hom.hom ((ModuleCat.Hom.hom ((Rep.coindFunctorIso Ο).hom.app X).hom) f).hom) d = d.sum fun i c => c β’ βf i - Rep.coindVEquiv_apply_hom π Mathlib.RepresentationTheory.Coinduced
{k G H : Type u} [CommRing k] [Monoid G] [Monoid H] (Ο : G β* H) (A : Rep k G) (f : β₯(Representation.coindV Ο A.Ο)) : ((Rep.coindVEquiv Ο A) f).hom = ModuleCat.ofHom (Finsupp.linearCombination k βf) - Representation.ind π Mathlib.RepresentationTheory.Induced
{k : Type u_1} {G : Type u_2} {H : Type u_3} [CommRing k] [Group G] [Group H] (Ο : G β* H) {A : Type u_4} [AddCommGroup A] [Module k A] (Ο : Representation k G A) : Representation k H (Representation.IndV Ο Ο) - Representation.IndV.mk π Mathlib.RepresentationTheory.Induced
{k : Type u_1} {G : Type u_2} {H : Type u_3} [CommRing k] [Group G] [Group H] (Ο : G β* H) {A : Type u_4} [AddCommGroup A] [Module k A] (Ο : Representation k G A) (h : H) : A ββ[k] Representation.IndV Ο Ο - Representation.IndV.hom_ext π Mathlib.RepresentationTheory.Induced
{k : Type u_1} {G : Type u_2} {H : Type u_3} [CommRing k] [Group G] [Group H] (Ο : G β* H) {A : Type u_4} {B : Type u_5} [AddCommGroup A] [Module k A] (Ο : Representation k G A) [AddCommGroup B] [Module k B] {f g : Representation.IndV Ο Ο ββ[k] B} (hfg : β (h : H), f ββ Representation.IndV.mk Ο Ο h = g ββ Representation.IndV.mk Ο Ο h) : f = g - Representation.IndV.hom_ext_iff π Mathlib.RepresentationTheory.Induced
{k : Type u_1} {G : Type u_2} {H : Type u_3} [CommRing k] [Group G] [Group H] {Ο : G β* H} {A : Type u_4} {B : Type u_5} [AddCommGroup A] [Module k A] {Ο : Representation k G A} [AddCommGroup B] [Module k B] {f g : Representation.IndV Ο Ο ββ[k] B} : f = g β β (h : H), f ββ Representation.IndV.mk Ο Ο h = g ββ Representation.IndV.mk Ο Ο h - Rep.indMap_hom π Mathlib.RepresentationTheory.Induced
{k G H : Type u} [CommRing k] [Group G] [Group H] (Ο : G β* H) {A B : Rep k G} (f : A βΆ B) : (Rep.indMap Ο f).hom = ModuleCat.ofHom (Representation.Coinvariants.map (Representation.tprod (MonoidHom.comp (Representation.leftRegular k H) Ο) A.Ο) (Representation.tprod (MonoidHom.comp (Representation.leftRegular k H) Ο) B.Ο) (LinearMap.lTensor (H ββ k) (ModuleCat.Hom.hom f.hom)) β―) - Rep.indResHomEquiv_symm_apply_hom π Mathlib.RepresentationTheory.Induced
{k G H : Type u} [CommRing k] [Group G] [Group H] (Ο : G β* H) (A : Rep k G) (B : Rep k H) (f : A βΆ (Action.res (ModuleCat k) Ο).obj B) : ((Rep.indResHomEquiv Ο A B).symm f).hom = ModuleCat.ofHom (Representation.Coinvariants.lift (Representation.tprod (MonoidHom.comp (Representation.leftRegular k H) Ο) A.Ο) (TensorProduct.lift ((Finsupp.lift (βA.V ββ[k] βB.1) k H) fun h => B.Ο hβ»ΒΉ ββ ModuleCat.Hom.hom f.hom)) β―) - Rep.indResAdjunction_counit_app_hom_hom π Mathlib.RepresentationTheory.Induced
(k : Type u) {G H : Type u} [CommRing k] [Group G] [Group H] (Ο : G β* H) (Y : Rep k H) : ModuleCat.Hom.hom ((Rep.indResAdjunction k Ο).counit.app Y).hom = Representation.Coinvariants.lift (Representation.tprod (MonoidHom.comp (Representation.leftRegular k H) Ο) (MonoidHom.comp Y.Ο Ο)) (TensorProduct.lift ((Finsupp.lift (βY.V ββ[k] βY.1) k H) fun h => Y.Ο hβ»ΒΉ)) β― - Rep.coinvariantsTensorIndHom_mk_tmul_indVMk π Mathlib.RepresentationTheory.Induced
{k G H : Type u} [CommRing k] [Group G] [Group H] (Ο : G β* H) {A : Rep k G} {B : Rep k H} (h : H) (x : βA.V) (y : βB.V) : (CategoryTheory.ConcreteCategory.hom (Rep.coinvariantsTensorIndHom Ο A B)) ((((Rep.ind Ο A).coinvariantsTensorMk B) ((Representation.IndV.mk Ο A.Ο h) x)) y) = ((A.coinvariantsTensorMk ((Action.res (ModuleCat k) Ο).obj B)) x) ((B.Ο h) y) - Rep.coinvariantsTensorIndInv_mk_tmul_indMk π Mathlib.RepresentationTheory.Induced
{k G H : Type u} [CommRing k] [Group G] [Group H] (Ο : G β* H) {A : Rep k G} {B : Rep k H} (x : βA.V) (y : βB.V) : (CategoryTheory.ConcreteCategory.hom (Rep.coinvariantsTensorIndInv Ο A B)) ((Representation.Coinvariants.mk (A.Ο.tprod (Rep.Ο ((Action.res (ModuleCat k) Ο).obj B)))) (x ββ[k] y)) = (((Rep.ind Ο A).coinvariantsTensorMk B) ((Representation.IndV.mk Ο A.Ο 1) x)) y - Representation.ind_mk π Mathlib.RepresentationTheory.Induced
{k : Type u_1} {G : Type u_2} {H : Type u_3} [CommRing k] [Group G] [Group H] (Ο : G β* H) {A : Type u_4} [AddCommGroup A] [Module k A] (Ο : Representation k G A) (hβ hβ : H) (a : A) : ((Representation.ind Ο Ο) hβ) ((Representation.IndV.mk Ο Ο hβ) a) = (Representation.IndV.mk Ο Ο (hβ * hββ»ΒΉ)) a - Representation.ind_apply π Mathlib.RepresentationTheory.Induced
{k : Type u_1} {G : Type u_2} {H : Type u_3} [CommRing k] [Group G] [Group H] (Ο : G β* H) {A : Type u_4} [AddCommGroup A] [Module k A] (Ο : Representation k G A) (h : H) : (Representation.ind Ο Ο) h = Representation.Coinvariants.map (Representation.tprod (MonoidHom.comp (Representation.leftRegular k H) Ο) Ο) (Representation.tprod (MonoidHom.comp (Representation.leftRegular k H) Ο) Ο) (LinearMap.rTensor A (Finsupp.lmapDomain k k fun x => x * hβ»ΒΉ)) β― - Rep.coinvariantsTensorIndHom.eq_1 π Mathlib.RepresentationTheory.Induced
{k G H : Type u} [CommRing k] [Group G] [Group H] (Ο : G β* H) (A : Rep k G) (B : Rep k H) : Rep.coinvariantsTensorIndHom Ο A B = ModuleCat.ofHom (Representation.Coinvariants.lift (((CategoryTheory.MonoidalCategory.curriedTensor (Rep k H)).obj (Rep.ind Ο A)).obj B).Ο (TensorProduct.lift (Representation.Coinvariants.lift (Representation.tprod (MonoidHom.comp (Representation.leftRegular k H) Ο) A.Ο) (TensorProduct.lift ((Finsupp.lift (βA.V ββ[k] β(((Action.functorCategoryEquivalence (ModuleCat k) H).symm.inverse.obj B).obj PUnit.unit) ββ[k] (((CategoryTheory.MonoidalCategory.curriedTensor (Rep k G)).obj A).obj ((Action.res (ModuleCat k) Ο).obj B)).Ο.Coinvariants) k H) fun g => (A.coinvariantsTensorMk ((Action.res (ModuleCat k) Ο).obj B)).complβ (B.Ο g))) β―)) β―) - Rep.coindToInd π Mathlib.RepresentationTheory.FiniteIndex
{k G : Type u} [CommRing k] [Group G] {S : Subgroup G} (A : Rep k β₯S) [S.FiniteIndex] : β(Rep.coind S.subtype A).V ββ[k] β(Rep.ind S.subtype A).V - Rep.indToCoind π Mathlib.RepresentationTheory.FiniteIndex
{k G : Type u} [CommRing k] [Group G] {S : Subgroup G} [DecidableRel β(QuotientGroup.rightRel S)] (A : Rep k β₯S) : β(Rep.ind S.subtype A).V ββ[k] β(Rep.coind S.subtype A).V - Rep.coindToInd.congr_simp π Mathlib.RepresentationTheory.FiniteIndex
{k G : Type u} [CommRing k] [Group G] {S : Subgroup G} (A : Rep k β₯S) [S.FiniteIndex] : A.coindToInd = A.coindToInd - Rep.indCoindIso_hom_hom_hom π Mathlib.RepresentationTheory.FiniteIndex
{k G : Type u} [CommRing k] [Group G] {S : Subgroup G} [DecidableRel β(QuotientGroup.rightRel S)] (A : Rep k β₯S) [S.FiniteIndex] : ModuleCat.Hom.hom A.indCoindIso.hom.hom = A.indToCoind - Rep.indCoindIso_inv_hom_hom π Mathlib.RepresentationTheory.FiniteIndex
{k G : Type u} [CommRing k] [Group G] {S : Subgroup G} [DecidableRel β(QuotientGroup.rightRel S)] (A : Rep k β₯S) [S.FiniteIndex] : ModuleCat.Hom.hom A.indCoindIso.inv.hom = A.coindToInd - Rep.coindToInd_of_support_subset_orbit π Mathlib.RepresentationTheory.FiniteIndex
{k G : Type u} [CommRing k] [Group G] {S : Subgroup G} {A : Rep k β₯S} [S.FiniteIndex] (g : G) (f : β(Rep.coind S.subtype A).V) (hx : Function.support βf β MulAction.orbit (β₯S) g) : A.coindToInd f = (Representation.IndV.mk S.subtype A.Ο g) (βf g) - Rep.coindToInd_apply π Mathlib.RepresentationTheory.FiniteIndex
{k G : Type u} [CommRing k] [Group G] {S : Subgroup G} (A : Rep k β₯S) [S.FiniteIndex] (f : β(Rep.coind S.subtype A).V) : A.coindToInd f = β g, g.liftOn (fun g => (Representation.IndV.mk S.subtype A.Ο g) (βf g)) β― - groupHomology.H1_induction_on π Mathlib.RepresentationTheory.Homological.GroupHomology.LowDegree
{k G : Type u} [CommRing k] [Group G] {A : Rep k G} {C : β(groupHomology.H1 A) β Prop} (x : β(groupHomology.H1 A)) (h : β (x : β₯(groupHomology.cyclesβ A)), C ((CategoryTheory.ConcreteCategory.hom (groupHomology.H1Ο A)) x)) : C x - groupHomology.H2_induction_on π Mathlib.RepresentationTheory.Homological.GroupHomology.LowDegree
{k G : Type u} [CommRing k] [Group G] {A : Rep k G} {C : β(groupHomology.H2 A) β Prop} (x : β(groupHomology.H2 A)) (h : β (x : β₯(groupHomology.cyclesβ A)), C ((CategoryTheory.ConcreteCategory.hom (groupHomology.H2Ο A)) x)) : C x
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ad0d2bb serving mathlib revision 0852c3e