Loogle!
Result
Found 21 declarations mentioning FractionalIdeal.map.
- FractionalIdeal.map_id ๐ Mathlib.RingTheory.FractionalIdeal.Operations
{R : Type u_1} [CommRing R] {S : Submonoid R} {P : Type u_2} [CommRing P] [Algebra R P] (I : FractionalIdeal S P) : FractionalIdeal.map (AlgHom.id R P) I = I - FractionalIdeal.map ๐ Mathlib.RingTheory.FractionalIdeal.Operations
{R : Type u_1} [CommRing R] {S : Submonoid R} {P : Type u_2} [CommRing P] [Algebra R P] {P' : Type u_3} [CommRing P'] [Algebra R P'] (g : P โโ[R] P') : FractionalIdeal S P โ FractionalIdeal S P' - FractionalIdeal.map_coeIdeal ๐ Mathlib.RingTheory.FractionalIdeal.Operations
{R : Type u_1} [CommRing R] {S : Submonoid R} {P : Type u_2} [CommRing P] [Algebra R P] {P' : Type u_3} [CommRing P'] [Algebra R P'] (g : P โโ[R] P') (I : Ideal R) : FractionalIdeal.map g โI = โI - FractionalIdeal.map_one ๐ Mathlib.RingTheory.FractionalIdeal.Operations
{R : Type u_1} [CommRing R] {S : Submonoid R} {P : Type u_2} [CommRing P] [Algebra R P] {P' : Type u_3} [CommRing P'] [Algebra R P'] (g : P โโ[R] P') : FractionalIdeal.map g 1 = 1 - FractionalIdeal.map_zero ๐ Mathlib.RingTheory.FractionalIdeal.Operations
{R : Type u_1} [CommRing R] {S : Submonoid R} {P : Type u_2} [CommRing P] [Algebra R P] {P' : Type u_3} [CommRing P'] [Algebra R P'] (g : P โโ[R] P') : FractionalIdeal.map g 0 = 0 - FractionalIdeal.map_injective ๐ Mathlib.RingTheory.FractionalIdeal.Operations
{R : Type u_1} [CommRing R] {S : Submonoid R} {P : Type u_2} [CommRing P] [Algebra R P] {P' : Type u_3} [CommRing P'] [Algebra R P'] (f : P โโ[R] P') (h : Function.Injective โf) : Function.Injective (FractionalIdeal.map f) - FractionalIdeal.map_comp ๐ Mathlib.RingTheory.FractionalIdeal.Operations
{R : Type u_1} [CommRing R] {S : Submonoid R} {P : Type u_2} [CommRing P] [Algebra R P] {P' : Type u_3} [CommRing P'] [Algebra R P'] {P'' : Type u_4} [CommRing P''] [Algebra R P''] (I : FractionalIdeal S P) (g : P โโ[R] P') (g' : P' โโ[R] P'') : FractionalIdeal.map (g'.comp g) I = FractionalIdeal.map g' (FractionalIdeal.map g I) - FractionalIdeal.mem_map ๐ Mathlib.RingTheory.FractionalIdeal.Operations
{R : Type u_1} [CommRing R] {S : Submonoid R} {P : Type u_2} [CommRing P] [Algebra R P] {P' : Type u_3} [CommRing P'] [Algebra R P'] {I : FractionalIdeal S P} {g : P โโ[R] P'} {y : P'} : y โ FractionalIdeal.map g I โ โ x โ I, g x = y - FractionalIdeal.map_add ๐ Mathlib.RingTheory.FractionalIdeal.Operations
{R : Type u_1} [CommRing R] {S : Submonoid R} {P : Type u_2} [CommRing P] [Algebra R P] {P' : Type u_3} [CommRing P'] [Algebra R P'] (I J : FractionalIdeal S P) (g : P โโ[R] P') : FractionalIdeal.map g (I + J) = FractionalIdeal.map g I + FractionalIdeal.map g J - FractionalIdeal.map_mul ๐ Mathlib.RingTheory.FractionalIdeal.Operations
{R : Type u_1} [CommRing R] {S : Submonoid R} {P : Type u_2} [CommRing P] [Algebra R P] {P' : Type u_3} [CommRing P'] [Algebra R P'] (I J : FractionalIdeal S P) (g : P โโ[R] P') : FractionalIdeal.map g (I * J) = FractionalIdeal.map g I * FractionalIdeal.map g J - FractionalIdeal.map_mem_map ๐ Mathlib.RingTheory.FractionalIdeal.Operations
{R : Type u_1} [CommRing R] {S : Submonoid R} {P : Type u_2} [CommRing P] [Algebra R P] {P' : Type u_3} [CommRing P'] [Algebra R P'] {f : P โโ[R] P'} (h : Function.Injective โf) {x : P} {I : FractionalIdeal S P} : f x โ FractionalIdeal.map f I โ x โ I - FractionalIdeal.map_ne_zero ๐ Mathlib.RingTheory.FractionalIdeal.Operations
{R : Type u_1} [CommRing R] {K : Type u_3} {K' : Type u_4} [Field K] [Field K'] [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] {I : FractionalIdeal (nonZeroDivisors R) K} (h : K โโ[R] K') [Nontrivial R] (hI : I โ 0) : FractionalIdeal.map h I โ 0 - FractionalIdeal.map_eq_zero_iff ๐ Mathlib.RingTheory.FractionalIdeal.Operations
{R : Type u_1} [CommRing R] {K : Type u_3} {K' : Type u_4} [Field K] [Field K'] [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] {I : FractionalIdeal (nonZeroDivisors R) K} (h : K โโ[R] K') [Nontrivial R] : FractionalIdeal.map h I = 0 โ I = 0 - FractionalIdeal.map_map_symm ๐ Mathlib.RingTheory.FractionalIdeal.Operations
{R : Type u_1} [CommRing R] {S : Submonoid R} {P : Type u_2} [CommRing P] [Algebra R P] {P' : Type u_3} [CommRing P'] [Algebra R P'] (I : FractionalIdeal S P) (g : P โโ[R] P') : FractionalIdeal.map (โg.symm) (FractionalIdeal.map (โg) I) = I - FractionalIdeal.map_symm_map ๐ Mathlib.RingTheory.FractionalIdeal.Operations
{R : Type u_1} [CommRing R] {S : Submonoid R} {P : Type u_2} [CommRing P] [Algebra R P] {P' : Type u_3} [CommRing P'] [Algebra R P'] (I : FractionalIdeal S P') (g : P โโ[R] P') : FractionalIdeal.map (โg) (FractionalIdeal.map (โg.symm) I) = I - FractionalIdeal.coeFun_mapEquiv ๐ Mathlib.RingTheory.FractionalIdeal.Operations
{R : Type u_1} [CommRing R] {S : Submonoid R} {P : Type u_2} [CommRing P] [Algebra R P] {P' : Type u_3} [CommRing P'] [Algebra R P'] (g : P โโ[R] P') : โ(FractionalIdeal.mapEquiv g) = FractionalIdeal.map โg - FractionalIdeal.mapEquiv_apply ๐ Mathlib.RingTheory.FractionalIdeal.Operations
{R : Type u_1} [CommRing R] {S : Submonoid R} {P : Type u_2} [CommRing P] [Algebra R P] {P' : Type u_3} [CommRing P'] [Algebra R P'] (g : P โโ[R] P') (I : FractionalIdeal S P) : (FractionalIdeal.mapEquiv g) I = FractionalIdeal.map (โg) I - FractionalIdeal.coe_map ๐ Mathlib.RingTheory.FractionalIdeal.Operations
{R : Type u_1} [CommRing R] {S : Submonoid R} {P : Type u_2} [CommRing P] [Algebra R P] {P' : Type u_3} [CommRing P'] [Algebra R P'] (g : P โโ[R] P') (I : FractionalIdeal S P) : โ(FractionalIdeal.map g I) = Submodule.map g.toLinearMap โI - FractionalIdeal.map_one_div ๐ Mathlib.RingTheory.FractionalIdeal.Operations
{Rโ : Type u_3} [CommRing Rโ] {K : Type u_4} [Field K] [Algebra Rโ K] [IsFractionRing Rโ K] [IsDomain Rโ] {K' : Type u_5} [Field K'] [Algebra Rโ K'] [IsFractionRing Rโ K'] (I : FractionalIdeal (nonZeroDivisors Rโ) K) (h : K โโ[Rโ] K') : FractionalIdeal.map (โh) (1 / I) = 1 / FractionalIdeal.map (โh) I - FractionalIdeal.map_div ๐ Mathlib.RingTheory.FractionalIdeal.Operations
{Rโ : Type u_3} [CommRing Rโ] {K : Type u_4} [Field K] [Algebra Rโ K] [IsFractionRing Rโ K] [IsDomain Rโ] {K' : Type u_5} [Field K'] [Algebra Rโ K'] [IsFractionRing Rโ K'] (I J : FractionalIdeal (nonZeroDivisors Rโ) K) (h : K โโ[Rโ] K') : FractionalIdeal.map (โh) (I / J) = FractionalIdeal.map (โh) I / FractionalIdeal.map (โh) J - FractionalIdeal.map_inv ๐ Mathlib.RingTheory.DedekindDomain.Ideal
(K : Type u_3) [Field K] {Rโ : Type u_4} [CommRing Rโ] [IsDomain Rโ] [Algebra Rโ K] [IsFractionRing Rโ K] {K' : Type u_5} [Field K'] [Algebra Rโ K'] [IsFractionRing Rโ K'] (I : FractionalIdeal (nonZeroDivisors Rโ) K) (h : K โโ[Rโ] K') : FractionalIdeal.map (โh) Iโปยน = (FractionalIdeal.map (โh) I)โปยน
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08