Loogle!
Result
Found 8 declarations mentioning FunOnFinite.map.
- FunOnFinite.map ๐ Mathlib.LinearAlgebra.Finsupp.Pi
{M : Type u_4} [AddCommMonoid M] {X : Type u_5} {Y : Type u_6} [Finite X] [Finite Y] (f : X โ Y) (s : X โ M) : Y โ M - FunOnFinite.map_id ๐ Mathlib.LinearAlgebra.Finsupp.Pi
(M : Type u_4) [AddCommMonoid M] {X : Type u_5} [Finite X] : FunOnFinite.map id = id - FunOnFinite.map_apply_apply ๐ Mathlib.LinearAlgebra.Finsupp.Pi
{M : Type u_4} [AddCommMonoid M] {X : Type u_5} {Y : Type u_6} [Fintype X] [Finite Y] [DecidableEq Y] (f : X โ Y) (s : X โ M) (y : Y) : FunOnFinite.map f s y = โ x with f x = y, s x - FunOnFinite.map.congr_simp ๐ Mathlib.LinearAlgebra.Finsupp.Pi
{M : Type u_4} [AddCommMonoid M] {X : Type u_5} {Y : Type u_6} [Finite X] [Finite Y] (f fโ : X โ Y) (e_f : f = fโ) (s sโ : X โ M) (e_s : s = sโ) (aโ aโยน : Y) : aโ = aโยน โ FunOnFinite.map f s aโ = FunOnFinite.map fโ sโ aโยน - FunOnFinite.map_comp ๐ Mathlib.LinearAlgebra.Finsupp.Pi
{M : Type u_4} [AddCommMonoid M] {X : Type u_5} {Y : Type u_6} {Z : Type u_7} [Finite X] [Finite Y] [Finite Z] (g : Y โ Z) (f : X โ Y) : FunOnFinite.map (g โ f) = FunOnFinite.map g โ FunOnFinite.map f - FunOnFinite.map_piSingle ๐ Mathlib.LinearAlgebra.Finsupp.Pi
{M : Type u_4} [AddCommMonoid M] {X : Type u_5} {Y : Type u_6} [Finite X] [Finite Y] [DecidableEq X] [DecidableEq Y] (f : X โ Y) (x : X) (m : M) : FunOnFinite.map f (Pi.single x m) = Pi.single (f x) m - FunOnFinite.map.eq_1 ๐ Mathlib.LinearAlgebra.Finsupp.Pi
{M : Type u_4} [AddCommMonoid M] {X : Type u_5} {Y : Type u_6} [Finite X] [Finite Y] (f : X โ Y) (s : X โ M) : FunOnFinite.map f s = Finsupp.equivFunOnFinite (Finsupp.mapDomain f (Finsupp.equivFunOnFinite.symm s)) - FunOnFinite.continuous_map ๐ Mathlib.Topology.Algebra.Monoid.FunOnFinite
(M : Type u_1) [AddCommMonoid M] [TopologicalSpace M] [ContinuousAdd M] {X : Type u_2} {Y : Type u_3} [Finite X] [Finite Y] (f : X โ Y) : Continuous (FunOnFinite.map f)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ee8c038
serving mathlib revision 7a9e177