Loogle!
Result
Found 124 declarations mentioning Functor.
- Functor π Init.Prelude
(f : Type u β Type v) : Type (max (u + 1) v) - Applicative.toFunctor π Init.Prelude
{f : Type u β Type v} [self : Applicative f] : Functor f - ReaderT.instFunctorOfMonad π Init.Prelude
{Ο : Type u} {m : Type u β Type v} [Monad m] : Functor (ReaderT Ο m) - Functor.mapConst π Init.Prelude
{f : Type u β Type v} [self : Functor f] {Ξ± Ξ² : Type u} : Ξ± β f Ξ² β f Ξ± - Functor.map π Init.Prelude
{f : Type u β Type v} [self : Functor f] {Ξ± Ξ² : Type u} : (Ξ± β Ξ²) β f Ξ± β f Ξ² - Applicative.mk π Init.Prelude
{f : Type u β Type v} [toFunctor : Functor f] [toPure : Pure f] [toSeq : Seq f] [toSeqLeft : SeqLeft f] [toSeqRight : SeqRight f] : Applicative f - Functor.mk π Init.Prelude
{f : Type u β Type v} (map : {Ξ± Ξ² : Type u} β (Ξ± β Ξ²) β f Ξ± β f Ξ²) (mapConst : {Ξ± Ξ² : Type u} β Ξ± β f Ξ² β f Ξ±) : Functor f - notM π Init.Control.Basic
{m : Type β Type v} [Functor m] (x : m Bool) : m Bool - Functor.discard π Init.Control.Basic
{f : Type u β Type v} {Ξ± : Type u} [Functor f] (x : f Ξ±) : f PUnit.{u + 1} - Functor.mapRev π Init.Control.Basic
{f : Type u β Type v} [Functor f] {Ξ± Ξ² : Type u} : f Ξ± β (Ξ± β Ξ²) β f Ξ² - tryFinally π Init.Control.Except
{m : Type u β Type v} {Ξ± Ξ² : Type u} [MonadFinally m] [Functor m] (x : m Ξ±) (finalizer : m Ξ²) : m Ξ± - StateT.run' π Init.Control.State
{Ο : Type u} {m : Type u β Type v} [Functor m] {Ξ± : Type u} (x : StateT Ο m Ξ±) (s : Ο) : m Ξ± - instFunctorOption π Init.Data.Option.Basic
: Functor Option - Array.instFunctor π Init.Data.Array.Basic
: Functor Array - LawfulFunctor π Init.Control.Lawful.Basic
(f : Type u β Type v) [Functor f] : Prop - Functor.map_unit π Init.Control.Lawful.Basic
{f : Type u_1 β Type u_2} [Functor f] [LawfulFunctor f] {a : f PUnit.{u_1 + 1}} : (fun x => PUnit.unit) <$> a = a - id_map' π Init.Control.Lawful.Basic
{f : Type u_1 β Type u_2} {Ξ± : Type u_1} [Functor f] [LawfulFunctor f] (x : f Ξ±) : (fun a => a) <$> x = x - LawfulFunctor.id_map π Init.Control.Lawful.Basic
{f : Type u β Type v} {instβ : Functor f} [self : LawfulFunctor f] {Ξ± : Type u} (x : f Ξ±) : id <$> x = x - map_congr π Init.Control.Lawful.Basic
{m : Type u_1 β Type u_2} {Ξ± Ξ² : Type u_1} [Functor m] {x : m Ξ±} {f g : Ξ± β Ξ²} (h : β (a : Ξ±), f a = g a) : f <$> x = g <$> x - LawfulFunctor.map_const π Init.Control.Lawful.Basic
{f : Type u β Type v} {instβ : Functor f} [self : LawfulFunctor f] {Ξ± Ξ² : Type u} : Functor.mapConst = Functor.map β Function.const Ξ² - Functor.map_map π Init.Control.Lawful.Basic
{f : Type u_1 β Type u_2} {Ξ± Ξ² Ξ³ : Type u_1} [Functor f] [LawfulFunctor f] (m : Ξ± β Ξ²) (g : Ξ² β Ξ³) (x : f Ξ±) : g <$> m <$> x = (fun a => g (m a)) <$> x - LawfulFunctor.comp_map π Init.Control.Lawful.Basic
{f : Type u β Type v} {instβ : Functor f} [self : LawfulFunctor f] {Ξ± Ξ² Ξ³ : Type u} (g : Ξ± β Ξ²) (h : Ξ² β Ξ³) (x : f Ξ±) : (h β g) <$> x = h <$> g <$> x - LawfulFunctor.mk π Init.Control.Lawful.Basic
{f : Type u β Type v} [Functor f] (map_const : β {Ξ± Ξ² : Type u}, Functor.mapConst = Functor.map β Function.const Ξ²) (id_map : β {Ξ± : Type u} (x : f Ξ±), id <$> x = x) (comp_map : β {Ξ± Ξ² Ξ³ : Type u} (g : Ξ± β Ξ²) (h : Ξ² β Ξ³) (x : f Ξ±), (h β g) <$> x = h <$> g <$> x) : LawfulFunctor f - map_inj_of_left_inverse π Init.Control.Lawful.Lemmas
{m : Type u_1 β Type u_2} {Ξ± Ξ² : Type u_1} [Functor m] [LawfulFunctor m] {f : Ξ± β Ξ²} (w : β g, β (x : Ξ±), g (f x) = x) {x y : m Ξ±} : f <$> x = f <$> y β x = y - map_inj_right_of_nonempty π Init.Control.Lawful.Lemmas
{m : Type u_1 β Type u_2} {Ξ± Ξ² : Type u_1} [Functor m] [LawfulFunctor m] [Nonempty Ξ±] {f : Ξ± β Ξ²} (w : β {x y : Ξ±}, f x = f y β x = y) {x y : m Ξ±} : f <$> x = f <$> y β x = y - List.instFunctor π Init.Data.List.Control
: Functor List - Std.Iterators.instFunctorPostconditionT π Init.Data.Iterators.PostconditionMonad
{m : Type w β Type w'} [Functor m] : Functor (Std.Iterators.PostconditionT m) - Std.Iterators.PostconditionT.lift π Init.Data.Iterators.PostconditionMonad
{Ξ± : Type w} {m : Type w β Type w'} [Functor m] (x : m Ξ±) : Std.Iterators.PostconditionT m Ξ± - Std.Iterators.PostconditionT.map π Init.Data.Iterators.PostconditionMonad
{m : Type w β Type w'} [Functor m] {Ξ± Ξ² : Type w} (f : Ξ± β Ξ²) (x : Std.Iterators.PostconditionT m Ξ±) : Std.Iterators.PostconditionT m Ξ² - Std.Iterators.PostconditionT.property_lift π Init.Data.Iterators.PostconditionMonad
{m : Type w β Type w'} [Functor m] {Ξ± : Type w} {x : m Ξ±} : (Std.Iterators.PostconditionT.lift x).Property = fun x => True - Std.Iterators.PostconditionT.property_map π Init.Data.Iterators.PostconditionMonad
{m : Type w β Type w'} [Functor m] {Ξ± Ξ² : Type w} {x : Std.Iterators.PostconditionT m Ξ±} {f : Ξ± β Ξ²} {b : Ξ²} : (Std.Iterators.PostconditionT.map f x).Property b β β a, f a = b β§ x.Property a - Std.Iterators.PostconditionT.operation_lift π Init.Data.Iterators.PostconditionMonad
{m : Type w β Type w'} [Functor m] {Ξ± : Type w} {x : m Ξ±} : (Std.Iterators.PostconditionT.lift x).operation = (fun x_1 => β¨x_1, β―β©) <$> x - Std.Iterators.PostconditionT.map.eq_1 π Init.Data.Iterators.PostconditionMonad
{m : Type w β Type w'} [Functor m] {Ξ± Ξ² : Type w} (f : Ξ± β Ξ²) (x : Std.Iterators.PostconditionT m Ξ±) : Std.Iterators.PostconditionT.map f x = { Property := fun b => β a, f βa = b, operation := (fun a => β¨f βa, β―β©) <$> x.operation } - Std.Iterators.PostconditionT.operation_map π Init.Data.Iterators.PostconditionMonad
{m : Type w β Type w'} [Functor m] {Ξ± Ξ² : Type w} {x : Std.Iterators.PostconditionT m Ξ±} {f : Ξ± β Ξ²} : (Std.Iterators.PostconditionT.map f x).operation = (fun a => β¨f βa, β―β©) <$> x.operation - Std.Iterators.Types.Map π Init.Data.Iterators.Combinators.Monadic.FilterMap
(Ξ± : Type w) {Ξ² Ξ³ : Type w} (m : Type w β Type w') (n : Type w β Type w'') (lift : β¦Ξ± : Type wβ¦ β m Ξ± β n Ξ±) [Functor n] (f : Ξ² β Std.Iterators.PostconditionT n Ξ³) : Type w - Std.Iterators.Types.Map.eq_1 π Init.Data.Iterators.Lemmas.Combinators.Monadic.FilterMap
(Ξ± : Type w) {Ξ² Ξ³ : Type w} (m : Type w β Type w') (n : Type w β Type w'') (lift : β¦Ξ± : Type wβ¦ β m Ξ± β n Ξ±) [Functor n] (f : Ξ² β Std.Iterators.PostconditionT n Ξ³) : Std.Iterators.Types.Map Ξ± m n lift f = Std.Iterators.Types.FilterMap Ξ± m n lift fun b => Std.Iterators.PostconditionT.map some (f b) - Std.Iterators.instFunctorHetT π Std.Data.Iterators.Lemmas.Equivalence.HetT
{m : Type w β Type w'} [Functor m] : Functor (Std.Iterators.HetT m) - Std.Iterators.HetT.map π Std.Data.Iterators.Lemmas.Equivalence.HetT
{m : Type w β Type w'} [Functor m] {Ξ± : Type u} {Ξ² : Type v} (f : Ξ± β Ξ²) (x : Std.Iterators.HetT m Ξ±) : Std.Iterators.HetT m Ξ² - Std.Iterators.HetT.pmap π Std.Data.Iterators.Lemmas.Equivalence.HetT
{m : Type w β Type w'} [Functor m] {Ξ± : Type u} {Ξ² : Type v} (x : Std.Iterators.HetT m Ξ±) (f : (a : Ξ±) β x.Property a β Ξ²) : Std.Iterators.HetT m Ξ² - Std.Iterators.HetT.map.eq_1 π Std.Data.Iterators.Lemmas.Equivalence.HetT
{m : Type w β Type w'} [Functor m] {Ξ± : Type u} {Ξ² : Type v} (f : Ξ± β Ξ²) (x : Std.Iterators.HetT m Ξ±) : Std.Iterators.HetT.map f x = x.pmap fun a x => f a - Std.Iterators.HetT.property_map π Std.Data.Iterators.Lemmas.Equivalence.HetT
{m : Type w β Type w'} [Functor m] {Ξ± : Type u} {Ξ² : Type v} {x : Std.Iterators.HetT m Ξ±} {f : Ξ± β Ξ²} {b : Ξ²} : (Std.Iterators.HetT.map f x).Property b β β a, f a = b β§ x.Property a - Std.Iterators.HetT.pmap.eq_1 π Std.Data.Iterators.Lemmas.Equivalence.HetT
{m : Type w β Type w'} [Functor m] {Ξ± : Type u} {Ξ² : Type v} (x : Std.Iterators.HetT m Ξ±) (f : (a : Ξ±) β x.Property a β Ξ²) : x.pmap f = { Property := fun b => β a, β (h : x.Property a), f a h = b, small := β―, operation := (fun a => Std.Internal.USquash.deflate β¨f βa.inflate β―, β―β©) <$> x.operation } - Std.Internal.IO.Async.BaseAsync.instFunctor π Std.Internal.Async.Basic
: Functor Std.Internal.IO.Async.BaseAsync - Std.Internal.IO.Async.MaybeTask.instFunctor π Std.Internal.Async.Basic
: Functor Std.Internal.IO.Async.MaybeTask - Std.Internal.IO.Async.EAsync.instFunctor π Std.Internal.Async.Basic
{Ξ΅ : Type} : Functor (Std.Internal.IO.Async.EAsync Ξ΅) - Std.Internal.IO.Async.ETask.instFunctor π Std.Internal.Async.Basic
{Ξ΅ : Type} : Functor (Std.Internal.IO.Async.ETask Ξ΅) - Std.Internal.IO.Async.instMonadAsyncStateTOfMonadOfFunctor π Std.Internal.Async.Basic
{m t : Type β Type} {s : Type} [Monad m] [Functor t] [inst : Std.Internal.IO.Async.MonadAsync t m] : Std.Internal.IO.Async.MonadAsync t (StateT s m) - Std.Internal.IO.Async.ContextAsync.instFunctor π Std.Internal.Async.ContextAsync
: Functor Std.Internal.IO.Async.ContextAsync - MonadSatisfying π Batteries.Classes.SatisfiesM
(m : Type u β Type v) [Functor m] [LawfulFunctor m] : Type (max (u + 1) v) - SatisfiesM π Batteries.Classes.SatisfiesM
{Ξ± : Type u} {m : Type u β Type v} [Functor m] (p : Ξ± β Prop) (x : m Ξ±) : Prop - SatisfiesM.trivial π Batteries.Classes.SatisfiesM
{m : Type u_1 β Type u_2} {Ξ± : Type u_1} [Functor m] [LawfulFunctor m] {x : m Ξ±} : SatisfiesM (fun x => True) x - SatisfiesM.of_true π Batteries.Classes.SatisfiesM
{m : Type u_1 β Type u_2} {Ξ± : Type u_1} {p : Ξ± β Prop} [Functor m] [LawfulFunctor m] {x : m Ξ±} (h : β (a : Ξ±), p a) : SatisfiesM p x - MonadSatisfying.satisfying π Batteries.Classes.SatisfiesM
{m : Type u β Type v} {instβ : Functor m} {instβΒΉ : LawfulFunctor m} [self : MonadSatisfying m] {Ξ± : Type u} {p : Ξ± β Prop} {x : m Ξ±} (h : SatisfiesM p x) : m { a // p a } - SatisfiesM.imp π Batteries.Classes.SatisfiesM
{m : Type u_1 β Type u_2} {Ξ± : Type u_1} {p q : Ξ± β Prop} [Functor m] [LawfulFunctor m] {x : m Ξ±} (h : SatisfiesM p x) (H : β {a : Ξ±}, p a β q a) : SatisfiesM q x - SatisfiesM.map_pre π Batteries.Classes.SatisfiesM
{m : Type u_1 β Type u_2} {Ξ± Ξ±β : Type u_1} {p : Ξ±β β Prop} {f : Ξ± β Ξ±β} [Functor m] [LawfulFunctor m] {x : m Ξ±} (hx : SatisfiesM (fun a => p (f a)) x) : SatisfiesM p (f <$> x) - SatisfiesM.mapConst π Batteries.Classes.SatisfiesM
{m : Type u_1 β Type u_2} {Ξ± : Type u_1} {q : Ξ± β Prop} {Ξ±β : Type u_1} {p : Ξ±β β Prop} {a : Ξ±β} [Functor m] [LawfulFunctor m] {x : m Ξ±} (hx : SatisfiesM q x) (ha : β {b : Ξ±}, q b β p a) : SatisfiesM p (Functor.mapConst a x) - SatisfiesM.map π Batteries.Classes.SatisfiesM
{m : Type u_1 β Type u_2} {Ξ± : Type u_1} {p : Ξ± β Prop} {Ξ±β : Type u_1} {q : Ξ±β β Prop} {f : Ξ± β Ξ±β} [Functor m] [LawfulFunctor m] {x : m Ξ±} (hx : SatisfiesM p x) (hf : β {a : Ξ±}, p a β q (f a)) : SatisfiesM q (f <$> x) - SatisfiesM.map_post π Batteries.Classes.SatisfiesM
{m : Type u_1 β Type u_2} {Ξ± : Type u_1} {p : Ξ± β Prop} {Ξ±β : Type u_1} {f : Ξ± β Ξ±β} [Functor m] [LawfulFunctor m] {x : m Ξ±} (hx : SatisfiesM p x) : SatisfiesM (fun b => β a, p a β§ b = f a) (f <$> x) - MonadSatisfying.val_eq π Batteries.Classes.SatisfiesM
{m : Type u β Type v} {instβ : Functor m} {instβΒΉ : LawfulFunctor m} [self : MonadSatisfying m] {Ξ± : Type u} {p : Ξ± β Prop} {x : m Ξ±} (h : SatisfiesM p x) : Subtype.val <$> satisfying h = x - MonadSatisfying.mk π Batteries.Classes.SatisfiesM
{m : Type u β Type v} [Functor m] [LawfulFunctor m] (satisfying : {Ξ± : Type u} β {p : Ξ± β Prop} β {x : m Ξ±} β SatisfiesM p x β m { a // p a }) (val_eq : β {Ξ± : Type u} {p : Ξ± β Prop} {x : m Ξ±} (h : SatisfiesM p x), Subtype.val <$> satisfying h = x) : MonadSatisfying m - MonadSatisfying.satisfying.congr_simp π Batteries.Classes.SatisfiesM
{m : Type u β Type v} {instβ : Functor m} {instβΒΉ : LawfulFunctor m} [self : MonadSatisfying m] {Ξ± : Type u} {p : Ξ± β Prop} {x xβ : m Ξ±} (e_x : x = xβ) (h : SatisfiesM p x) : satisfying h = satisfying β― - LawfulFunctor.map_inj_right_of_nonempty π Batteries.Control.Monad
{m : Type u_1 β Type u_2} {Ξ± Ξ² : Type u_1} [Functor m] [LawfulFunctor m] [Nonempty Ξ±] {f : Ξ± β Ξ²} (w : β {x y : Ξ±}, f x = f y β x = y) {x y : m Ξ±} : f <$> x = f <$> y β x = y - Lean.Expr.modifyAppArgM π Mathlib.Lean.Expr.Basic
{M : Type β Type u} [Functor M] [Pure M] (modifier : Lean.Expr β M Lean.Expr) : Lean.Expr β M Lean.Expr - Set.instFunctor π Mathlib.Data.Set.Defs
: Functor Set - EquivFunctor.ofLawfulFunctor π Mathlib.Control.EquivFunctor
(f : Type uβ β Type uβ) [Functor f] [LawfulFunctor f] : EquivFunctor f - EquivFunctor.ofLawfulFunctor.congr_simp π Mathlib.Control.EquivFunctor
(f : Type uβ β Type uβ) [Functor f] [LawfulFunctor f] : EquivFunctor.ofLawfulFunctor f = EquivFunctor.ofLawfulFunctor f - Functor.AddConst.functor π Mathlib.Control.Functor
{Ξ³ : Type u_1} : Functor (Functor.AddConst Ξ³) - Functor.Const.functor π Mathlib.Control.Functor
{Ξ³ : Type u_1} : Functor (Functor.Const Ξ³) - Functor.supp π Mathlib.Control.Functor
{F : Type u β Type v} [Functor F] {Ξ± : Type u} (x : F Ξ±) : Set Ξ± - Functor.Liftp π Mathlib.Control.Functor
{F : Type u β Type v} [Functor F] {Ξ± : Type u} (p : Ξ± β Prop) (x : F Ξ±) : Prop - Functor.mapConstRev π Mathlib.Control.Functor
{f : Type u β Type v} [Functor f] {Ξ± Ξ² : Type u} : f Ξ² β Ξ± β f Ξ± - Functor.Comp.functor π Mathlib.Control.Functor
{F : Type u β Type w} {G : Type v β Type u} [Functor F] [Functor G] : Functor (Functor.Comp F G) - Functor.Liftr π Mathlib.Control.Functor
{F : Type u β Type v} [Functor F] {Ξ± : Type u} (r : Ξ± β Ξ± β Prop) (x y : F Ξ±) : Prop - Functor.Comp.map π Mathlib.Control.Functor
{F : Type u β Type w} {G : Type v β Type u} [Functor F] [Functor G] {Ξ± Ξ² : Type v} (h : Ξ± β Ξ²) : Functor.Comp F G Ξ± β Functor.Comp F G Ξ² - Functor.Comp.functor_comp_id π Mathlib.Control.Functor
{F : Type u_1 β Type u_2} [AF : Functor F] [LawfulFunctor F] : Functor.Comp.functor = AF - Functor.Comp.functor_id_comp π Mathlib.Control.Functor
{F : Type u_1 β Type u_2} [AF : Functor F] [LawfulFunctor F] : Functor.Comp.functor = AF - Functor.Comp.lawfulFunctor π Mathlib.Control.Functor
{F : Type u β Type w} {G : Type v β Type u} [Functor F] [Functor G] [LawfulFunctor F] [LawfulFunctor G] : LawfulFunctor (Functor.Comp F G) - Functor.map_id π Mathlib.Control.Functor
{F : Type u β Type v} {Ξ± : Type u} [Functor F] [LawfulFunctor F] : (fun x => id <$> x) = id - Functor.of_mem_supp π Mathlib.Control.Functor
{F : Type u β Type v} [Functor F] {Ξ± : Type u} {x : F Ξ±} {p : Ξ± β Prop} (h : Functor.Liftp p x) (y : Ξ±) : y β Functor.supp x β p y - Functor.Comp.id_map π Mathlib.Control.Functor
{F : Type u β Type w} {G : Type v β Type u} [Functor F] [Functor G] [LawfulFunctor F] [LawfulFunctor G] {Ξ± : Type v} (x : Functor.Comp F G Ξ±) : Functor.Comp.map id x = x - Functor.ext π Mathlib.Control.Functor
{F : Type u_1 β Type u_2} {F1 F2 : Functor F} [LawfulFunctor F] [LawfulFunctor F] : (β (Ξ± Ξ² : Type u_1) (f : Ξ± β Ξ²) (x : F Ξ±), f <$> x = f <$> x) β F1 = F2 - Functor.Comp.map.eq_1 π Mathlib.Control.Functor
{F : Type u β Type w} {G : Type v β Type u} [Functor F] [Functor G] {Ξ± Ξ² : Type v} (h : Ξ± β Ξ²) (xβ : Functor.Comp F G Ξ±) : Functor.Comp.map h xβ = Functor.Comp.mk ((fun x => h <$> x) <$> xβ) - Functor.map_comp_map π Mathlib.Control.Functor
{F : Type u β Type v} {Ξ± Ξ² Ξ³ : Type u} [Functor F] [LawfulFunctor F] (f : Ξ± β Ξ²) (g : Ξ² β Ξ³) : ((fun x => g <$> x) β fun x => f <$> x) = fun x => (g β f) <$> x - Functor.Comp.map_mk π Mathlib.Control.Functor
{F : Type u β Type w} {G : Type v β Type u} [Functor F] [Functor G] {Ξ± Ξ² : Type v} (h : Ξ± β Ξ²) (x : F (G Ξ±)) : h <$> Functor.Comp.mk x = Functor.Comp.mk ((fun x => h <$> x) <$> x) - Functor.Comp.run_map π Mathlib.Control.Functor
{F : Type u β Type w} {G : Type v β Type u} [Functor F] [Functor G] {Ξ± Ξ² : Type v} (h : Ξ± β Ξ²) (x : Functor.Comp F G Ξ±) : (h <$> x).run = (fun x => h <$> x) <$> x.run - Functor.Comp.comp_map π Mathlib.Control.Functor
{F : Type u β Type w} {G : Type v β Type u} [Functor F] [Functor G] [LawfulFunctor F] [LawfulFunctor G] {Ξ± Ξ² Ξ³ : Type v} (g' : Ξ± β Ξ²) (h : Ξ² β Ξ³) (x : Functor.Comp F G Ξ±) : Functor.Comp.map (h β g') x = Functor.Comp.map h (Functor.Comp.map g' x) - Traversable.toFunctor π Mathlib.Control.Traversable.Basic
{t : Type u β Type u} [self : Traversable t] : Functor t - Traversable.mk π Mathlib.Control.Traversable.Basic
{t : Type u β Type u} [toFunctor : Functor t] (traverse : {m : Type u β Type u} β [Applicative m] β {Ξ± Ξ² : Type u} β (Ξ± β m Ξ²) β t Ξ± β m (t Ξ²)) : Traversable t - StateT.eval π Mathlib.Control.Monad.Basic
{Ξ± Ο : Type u} {m : Type u β Type v} [Functor m] (cmd : StateT Ο m Ξ±) (s : Ο) : m Ξ± - Filter.instFunctor π Mathlib.Order.Filter.Defs
: Functor Filter - Ultrafilter.functor π Mathlib.Order.Filter.Ultrafilter.Defs
: Functor Ultrafilter - CategoryTheory.ofTypeFunctor π Mathlib.CategoryTheory.Types.Basic
(m : Type u β Type v) [Functor m] [LawfulFunctor m] : CategoryTheory.Functor (Type u) (Type v) - CategoryTheory.ofTypeFunctor_obj π Mathlib.CategoryTheory.Types.Basic
(m : Type u β Type v) [Functor m] [LawfulFunctor m] : (CategoryTheory.ofTypeFunctor m).obj = m - CategoryTheory.ofTypeFunctor_map π Mathlib.CategoryTheory.Types.Basic
(m : Type u β Type v) [Functor m] [LawfulFunctor m] {Ξ± Ξ² : Type u} (f : Ξ± β Ξ²) : (CategoryTheory.ofTypeFunctor m).map f = Functor.map f - Bifunctor.functor π Mathlib.Control.Bifunctor
{F : Type uβ β Type uβ β Type uβ} [Bifunctor F] {Ξ± : Type uβ} : Functor (F Ξ±) - Function.bicompr.bifunctor π Mathlib.Control.Bifunctor
{F : Type uβ β Type uβ β Type uβ} [Bifunctor F] (G : Type uβ β Type u_1) [Functor G] : Bifunctor (Function.bicompr G F) - Function.bicompl.bifunctor π Mathlib.Control.Bifunctor
{F : Type uβ β Type uβ β Type uβ} [Bifunctor F] (G : Type u_1 β Type uβ) (H : Type u_2 β Type uβ) [Functor G] [Functor H] : Bifunctor (Function.bicompl F G H) - Function.bicompr.lawfulBifunctor π Mathlib.Control.Bifunctor
{F : Type uβ β Type uβ β Type uβ} [Bifunctor F] (G : Type uβ β Type u_1) [Functor G] [LawfulFunctor G] [LawfulBifunctor F] : LawfulBifunctor (Function.bicompr G F) - Function.bicompl.lawfulBifunctor π Mathlib.Control.Bifunctor
{F : Type uβ β Type uβ β Type uβ} [Bifunctor F] (G : Type u_1 β Type uβ) (H : Type u_2 β Type uβ) [Functor G] [Functor H] [LawfulFunctor G] [LawfulFunctor H] [LawfulBifunctor F] : LawfulBifunctor (Function.bicompl F G H) - Functor.mapEquiv π Mathlib.Logic.Equiv.Functor
{Ξ± Ξ² : Type u} (f : Type u β Type v) [Functor f] [LawfulFunctor f] (h : Ξ± β Ξ²) : f Ξ± β f Ξ² - Functor.mapEquiv_refl π Mathlib.Logic.Equiv.Functor
{Ξ± : Type u} (f : Type u β Type v) [Functor f] [LawfulFunctor f] : Functor.mapEquiv f (Equiv.refl Ξ±) = Equiv.refl (f Ξ±) - Functor.mapEquiv.congr_simp π Mathlib.Logic.Equiv.Functor
{Ξ± Ξ² : Type u} (f : Type u β Type v) [Functor f] [LawfulFunctor f] (h hβ : Ξ± β Ξ²) (e_h : h = hβ) : Functor.mapEquiv f h = Functor.mapEquiv f hβ - Functor.mapEquiv_apply π Mathlib.Logic.Equiv.Functor
{Ξ± Ξ² : Type u} (f : Type u β Type v) [Functor f] [LawfulFunctor f] (h : Ξ± β Ξ²) (x : f Ξ±) : (Functor.mapEquiv f h) x = βh <$> x - Functor.mapEquiv_symm_apply π Mathlib.Logic.Equiv.Functor
{Ξ± Ξ² : Type u} (f : Type u β Type v) [Functor f] [LawfulFunctor f] (h : Ξ± β Ξ²) (y : f Ξ²) : (Functor.mapEquiv f h).symm y = βh.symm <$> y - Stream'.Seq.instFunctor π Mathlib.Data.Seq.Basic
: Functor Stream'.Seq - MeasureTheory.OuterMeasure.instFunctor π Mathlib.MeasureTheory.OuterMeasure.Operations
: Functor MeasureTheory.OuterMeasure - ULiftable.refl π Mathlib.Control.ULiftable
(f : Type uβ β Type uβ) [Functor f] [LawfulFunctor f] : ULiftable f f - ULiftable.downMap π Mathlib.Control.ULiftable
{F : Type (max uβ vβ) β Type uβ} {G : Type uβ β Type vβ} [ULiftable G F] [Functor F] {Ξ± : Type (max uβ vβ)} {Ξ² : Type uβ} (f : Ξ± β Ξ²) (x : F Ξ±) : G Ξ² - ULiftable.upMap π Mathlib.Control.ULiftable
{F : Type uβ β Type uβ} {G : Type (max uβ vβ) β Type vβ} [ULiftable F G] [Functor G] {Ξ± : Type uβ} {Ξ² : Type (max uβ vβ)} (f : Ξ± β Ξ²) (x : F Ξ±) : G Ξ² - Equiv.functor π Mathlib.Control.Traversable.Equiv
{t t' : Type u β Type u} (eqv : (Ξ± : Type u) β t Ξ± β t' Ξ±) [Functor t] : Functor t' - Equiv.map π Mathlib.Control.Traversable.Equiv
{t t' : Type u β Type u} (eqv : (Ξ± : Type u) β t Ξ± β t' Ξ±) [Functor t] {Ξ± Ξ² : Type u} (f : Ξ± β Ξ²) (x : t' Ξ±) : t' Ξ² - Equiv.lawfulFunctor π Mathlib.Control.Traversable.Equiv
{t t' : Type u β Type u} (eqv : (Ξ± : Type u) β t Ξ± β t' Ξ±) [Functor t] [LawfulFunctor t] : LawfulFunctor t' - Equiv.id_map π Mathlib.Control.Traversable.Equiv
{t t' : Type u β Type u} (eqv : (Ξ± : Type u) β t Ξ± β t' Ξ±) [Functor t] [LawfulFunctor t] {Ξ± : Type u} (x : t' Ξ±) : Equiv.map eqv id x = x - Equiv.comp_map π Mathlib.Control.Traversable.Equiv
{t t' : Type u β Type u} (eqv : (Ξ± : Type u) β t Ξ± β t' Ξ±) [Functor t] [LawfulFunctor t] {Ξ± Ξ² Ξ³ : Type u} (g : Ξ± β Ξ²) (h : Ξ² β Ξ³) (x : t' Ξ±) : Equiv.map eqv (h β g) x = Equiv.map eqv h (Equiv.map eqv g x) - Equiv.lawfulFunctor' π Mathlib.Control.Traversable.Equiv
{t t' : Type u β Type u} (eqv : (Ξ± : Type u) β t Ξ± β t' Ξ±) [Functor t] [LawfulFunctor t] [F : Functor t'] (hβ : β {Ξ± Ξ² : Type u} (f : Ξ± β Ξ²), Functor.map f = Equiv.map eqv f) (hβ : β {Ξ± Ξ² : Type u} (f : Ξ²), Functor.mapConst f = (Equiv.map eqv β Function.const Ξ±) f) : LawfulFunctor t' - Equiv.map.eq_1 π Mathlib.Control.Traversable.Equiv
{t t' : Type u β Type u} (eqv : (Ξ± : Type u) β t Ξ± β t' Ξ±) [Functor t] {Ξ± Ξ² : Type u} (f : Ξ± β Ξ²) (x : t' Ξ±) : Equiv.map eqv f x = (eqv Ξ²) (f <$> (eqv Ξ±).symm x) - Multiset.functor π Mathlib.Data.Multiset.Functor
: Functor Multiset - Finset.functor π Mathlib.Data.Finset.Functor
[(P : Prop) β Decidable P] : Functor Finset - PFunctor.instFunctorObj π Mathlib.Data.PFunctor.Univariate.Basic
(P : PFunctor.{uA, uB}) : Functor βP - Functor.supp.eq_1 π Mathlib.Data.PFunctor.Univariate.Basic
{F : Type u β Type v} [Functor F] {Ξ± : Type u} (x : F Ξ±) : Functor.supp x = {y | β β¦p : Ξ± β Propβ¦, Functor.Liftp p x β p y} - QPF.toFunctor π Mathlib.Data.QPF.Univariate.Basic
{F : Type u β Type v} [self : QPF F] : Functor F - QPF.mk π Mathlib.Data.QPF.Univariate.Basic
{F : Type u β Type v} [toFunctor : Functor F] (P : PFunctor.{u, u'}) (abs : {Ξ± : Type u} β βP Ξ± β F Ξ±) (repr : {Ξ± : Type u} β F Ξ± β βP Ξ±) (abs_repr : β {Ξ± : Type u} (x : F Ξ±), abs (repr x) = x) (abs_map : β {Ξ± Ξ² : Type u} (f : Ξ± β Ξ²) (p : βP Ξ±), abs (P.map f p) = f <$> abs p) : QPF F - QPF.quotientQPF π Mathlib.Data.QPF.Univariate.Basic
{F : Type u β Type u} [q : QPF F] {G : Type u β Type u} [Functor G] {FG_abs : {Ξ± : Type u} β F Ξ± β G Ξ±} {FG_repr : {Ξ± : Type u} β G Ξ± β F Ξ±} (FG_abs_repr : β {Ξ± : Type u} (x : G Ξ±), FG_abs (FG_repr x) = x) (FG_abs_map : β {Ξ± Ξ² : Type u} (f : Ξ± β Ξ²) (x : F Ξ±), FG_abs (f <$> x) = f <$> FG_abs x) : QPF G - WittVector.instFunctor π Mathlib.RingTheory.WittVector.Defs
(p : β) : Functor (WittVector p)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 79343e3 serving mathlib revision 706fd95