Loogle!
Result
Found 7 declarations mentioning GenContFract.Pair.map.
- GenContFract.Pair.map 📋 Mathlib.Algebra.ContinuedFractions.Basic
{α : Type u_1} {β : Type u_2} (f : α → β) (gp : GenContFract.Pair α) : GenContFract.Pair β - GenContFract.Pair.map.eq_1 📋 Mathlib.Algebra.ContinuedFractions.Computation.TerminatesIffRat
{α : Type u_1} {β : Type u_2} (f : α → β) (gp : GenContFract.Pair α) : GenContFract.Pair.map f gp = { a := f gp.a, b := f gp.b } - GenContFract.exists_gcf_pair_rat_eq_nth_conts 📋 Mathlib.Algebra.ContinuedFractions.Computation.TerminatesIffRat
{K : Type u_1} [Field K] [LinearOrder K] [IsStrictOrderedRing K] [FloorRing K] (v : K) (n : ℕ) : ∃ conts, (GenContFract.of v).conts n = GenContFract.Pair.map Rat.cast conts - GenContFract.exists_gcf_pair_rat_eq_of_nth_contsAux 📋 Mathlib.Algebra.ContinuedFractions.Computation.TerminatesIffRat
{K : Type u_1} [Field K] [LinearOrder K] [IsStrictOrderedRing K] [FloorRing K] (v : K) (n : ℕ) : ∃ conts, (GenContFract.of v).contsAux n = GenContFract.Pair.map Rat.cast conts - GenContFract.coe_of_s_rat_eq 📋 Mathlib.Algebra.ContinuedFractions.Computation.TerminatesIffRat
{K : Type u_1} [Field K] [LinearOrder K] [IsStrictOrderedRing K] [FloorRing K] {v : K} {q : ℚ} (v_eq_q : v = ↑q) : Stream'.Seq.map (GenContFract.Pair.map Rat.cast) (GenContFract.of q).s = (GenContFract.of v).s - GenContFract.coe_of_s_get?_rat_eq 📋 Mathlib.Algebra.ContinuedFractions.Computation.TerminatesIffRat
{K : Type u_1} [Field K] [LinearOrder K] [IsStrictOrderedRing K] [FloorRing K] {v : K} {q : ℚ} (v_eq_q : v = ↑q) (n : ℕ) : Option.map (GenContFract.Pair.map Rat.cast) ((GenContFract.of q).s.get? n) = (GenContFract.of v).s.get? n - GenContFract.coe_of_rat_eq 📋 Mathlib.Algebra.ContinuedFractions.Computation.TerminatesIffRat
{K : Type u_1} [Field K] [LinearOrder K] [IsStrictOrderedRing K] [FloorRing K] {v : K} {q : ℚ} (v_eq_q : v = ↑q) : { h := ↑(GenContFract.of q).h, s := Stream'.Seq.map (GenContFract.Pair.map Rat.cast) (GenContFract.of q).s } = GenContFract.of v
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ff04530
serving mathlib revision 8623f65