Loogle!
Result
Found 79 declarations mentioning Filter.atTop, HAdd.hAdd, Filter.Tendsto and Nat.
- Filter.tendsto_add_atTop_nat π Mathlib.Order.Filter.AtTopBot.Basic
(k : β) : Filter.Tendsto (fun a => a + k) Filter.atTop Filter.atTop - Filter.tendsto_add_atTop_iff_nat π Mathlib.Order.Filter.AtTopBot.Basic
{Ξ± : Type u_3} {f : β β Ξ±} {l : Filter Ξ±} (k : β) : Filter.Tendsto (fun n => f (n + k)) Filter.atTop l β Filter.Tendsto f Filter.atTop l - Filter.Tendsto.subseq_mem_entourage π Mathlib.Topology.UniformSpace.Cauchy
{Ξ± : Type u} [uniformSpace : UniformSpace Ξ±] {V : β β Set (Ξ± Γ Ξ±)} (hV : β (n : β), V n β uniformity Ξ±) {u : β β Ξ±} {a : Ξ±} (hu : Filter.Tendsto u Filter.atTop (nhds a)) : β Ο, StrictMono Ο β§ (u (Ο 0), a) β V 0 β§ β (n : β), (u (Ο (n + 1)), u (Ο n)) β V (n + 1) - tendsto_prod_nat_add π Mathlib.Topology.Algebra.InfiniteSum.NatInt
{G : Type u_2} [CommGroup G] [TopologicalSpace G] [IsTopologicalGroup G] [T2Space G] (f : β β G) : Filter.Tendsto (fun i => β' (k : β), f (k + i)) Filter.atTop (nhds 1) - tendsto_sum_nat_add π Mathlib.Topology.Algebra.InfiniteSum.NatInt
{G : Type u_2} [AddCommGroup G] [TopologicalSpace G] [IsTopologicalAddGroup G] [T2Space G] (f : β β G) : Filter.Tendsto (fun i => β' (k : β), f (k + i)) Filter.atTop (nhds 0) - NNReal.tendsto_sum_nat_add π Mathlib.Topology.Instances.ENNReal.Lemmas
(f : β β NNReal) : Filter.Tendsto (fun i => β' (k : β), f (k + i)) Filter.atTop (nhds 0) - ENNReal.tendsto_sum_nat_add π Mathlib.Topology.Instances.ENNReal.Lemmas
(f : β β ENNReal) (hf : β' (i : β), f i β β€) : Filter.Tendsto (fun i => β' (k : β), f (k + i)) Filter.atTop (nhds 0) - edist_le_tsum_of_edist_le_of_tendsto π Mathlib.Topology.Instances.ENNReal.Lemmas
{Ξ± : Type u_1} [PseudoEMetricSpace Ξ±] {f : β β Ξ±} (d : β β ENNReal) (hf : β (n : β), edist (f n) (f n.succ) β€ d n) {a : Ξ±} (ha : Filter.Tendsto f Filter.atTop (nhds a)) (n : β) : edist (f n) a β€ β' (m : β), d (n + m) - dist_le_tsum_of_dist_le_of_tendsto π Mathlib.Topology.Algebra.InfiniteSum.Real
{Ξ± : Type u_1} [PseudoMetricSpace Ξ±] {f : β β Ξ±} (d : β β β) (hf : β (n : β), dist (f n) (f n.succ) β€ d n) (hd : Summable d) {a : Ξ±} (ha : Filter.Tendsto f Filter.atTop (nhds a)) (n : β) : dist (f n) a β€ β' (m : β), d (n + m) - dist_le_tsum_dist_of_tendsto π Mathlib.Topology.Algebra.InfiniteSum.Real
{Ξ± : Type u_1} [PseudoMetricSpace Ξ±] {f : β β Ξ±} {a : Ξ±} (h : Summable fun n => dist (f n) (f n.succ)) (ha : Filter.Tendsto f Filter.atTop (nhds a)) (n : β) : dist (f n) a β€ β' (m : β), dist (f (n + m)) (f (n + m).succ) - tendsto_one_div_add_atTop_nhds_zero_nat π Mathlib.Analysis.SpecificLimits.Basic
: Filter.Tendsto (fun n => 1 / (βn + 1)) Filter.atTop (nhds 0) - tendsto_atTop_of_geom_le π Mathlib.Analysis.SpecificLimits.Basic
{v : β β β} {c : β} (hβ : 0 < v 0) (hc : 1 < c) (hu : β (n : β), c * v n β€ v (n + 1)) : Filter.Tendsto v Filter.atTop Filter.atTop - dist_le_of_le_geometric_of_tendstoβ π Mathlib.Analysis.SpecificLimits.Basic
{Ξ± : Type u_1} [PseudoMetricSpace Ξ±] (r C : β) {f : β β Ξ±} (hr : r < 1) (hu : β (n : β), dist (f n) (f (n + 1)) β€ C * r ^ n) {a : Ξ±} (ha : Filter.Tendsto f Filter.atTop (nhds a)) : dist (f 0) a β€ C / (1 - r) - dist_le_of_le_geometric_two_of_tendstoβ π Mathlib.Analysis.SpecificLimits.Basic
{Ξ± : Type u_1} [PseudoMetricSpace Ξ±] {C : β} {f : β β Ξ±} (huβ : β (n : β), dist (f n) (f (n + 1)) β€ C / 2 / 2 ^ n) {a : Ξ±} (ha : Filter.Tendsto f Filter.atTop (nhds a)) : dist (f 0) a β€ C - tendsto_natCast_div_add_atTop π Mathlib.Analysis.SpecificLimits.Basic
{π : Type u_4} [DivisionRing π] [TopologicalSpace π] [CharZero π] [Algebra β π] [ContinuousSMul β π] [IsTopologicalDivisionRing π] (x : π) : Filter.Tendsto (fun n => βn / (βn + x)) Filter.atTop (nhds 1) - tendsto_add_one_pow_atTop_atTop_of_pos π Mathlib.Analysis.SpecificLimits.Basic
{Ξ± : Type u_1} [Semiring Ξ±] [LinearOrder Ξ±] [IsStrictOrderedRing Ξ±] [Archimedean Ξ±] {r : Ξ±} (h : 0 < r) : Filter.Tendsto (fun n => (r + 1) ^ n) Filter.atTop Filter.atTop - dist_le_of_le_geometric_of_tendsto π Mathlib.Analysis.SpecificLimits.Basic
{Ξ± : Type u_1} [PseudoMetricSpace Ξ±] (r C : β) {f : β β Ξ±} (hr : r < 1) (hu : β (n : β), dist (f n) (f (n + 1)) β€ C * r ^ n) {a : Ξ±} (ha : Filter.Tendsto f Filter.atTop (nhds a)) (n : β) : dist (f n) a β€ C * r ^ n / (1 - r) - edist_le_of_edist_le_geometric_of_tendstoβ π Mathlib.Analysis.SpecificLimits.Basic
{Ξ± : Type u_1} [PseudoEMetricSpace Ξ±] (r C : ENNReal) {f : β β Ξ±} (hu : β (n : β), edist (f n) (f (n + 1)) β€ C * r ^ n) {a : Ξ±} (ha : Filter.Tendsto f Filter.atTop (nhds a)) : edist (f 0) a β€ C / (1 - r) - dist_le_of_le_geometric_two_of_tendsto π Mathlib.Analysis.SpecificLimits.Basic
{Ξ± : Type u_1} [PseudoMetricSpace Ξ±] {C : β} {f : β β Ξ±} (huβ : β (n : β), dist (f n) (f (n + 1)) β€ C / 2 / 2 ^ n) {a : Ξ±} (ha : Filter.Tendsto f Filter.atTop (nhds a)) (n : β) : dist (f n) a β€ C / 2 ^ n - edist_le_of_edist_le_geometric_two_of_tendstoβ π Mathlib.Analysis.SpecificLimits.Basic
{Ξ± : Type u_1} [PseudoEMetricSpace Ξ±] (C : ENNReal) {f : β β Ξ±} (hu : β (n : β), edist (f n) (f (n + 1)) β€ C / 2 ^ n) {a : Ξ±} (ha : Filter.Tendsto f Filter.atTop (nhds a)) : edist (f 0) a β€ 2 * C - edist_le_of_edist_le_geometric_of_tendsto π Mathlib.Analysis.SpecificLimits.Basic
{Ξ± : Type u_1} [PseudoEMetricSpace Ξ±] (r C : ENNReal) {f : β β Ξ±} (hu : β (n : β), edist (f n) (f (n + 1)) β€ C * r ^ n) {a : Ξ±} (ha : Filter.Tendsto f Filter.atTop (nhds a)) (n : β) : edist (f n) a β€ C * r ^ n / (1 - r) - edist_le_of_edist_le_geometric_two_of_tendsto π Mathlib.Analysis.SpecificLimits.Basic
{Ξ± : Type u_1} [PseudoEMetricSpace Ξ±] (C : ENNReal) {f : β β Ξ±} (hu : β (n : β), edist (f n) (f (n + 1)) β€ C / 2 ^ n) {a : Ξ±} (ha : Filter.Tendsto f Filter.atTop (nhds a)) (n : β) : edist (f n) a β€ 2 * C / 2 ^ n - controlled_prod_of_mem_closure π Mathlib.Analysis.Normed.Group.Continuity
{E : Type u_5} [SeminormedCommGroup E] {a : E} {s : Subgroup E} (hg : a β closure βs) {b : β β β} (b_pos : β (n : β), 0 < b n) : β v, Filter.Tendsto (fun n => β i β Finset.range (n + 1), v i) Filter.atTop (nhds a) β§ (β (n : β), v n β s) β§ βv 0 / aβ < b 0 β§ β (n : β), 0 < n β βv nβ < b n - controlled_sum_of_mem_closure π Mathlib.Analysis.Normed.Group.Continuity
{E : Type u_5} [SeminormedAddCommGroup E] {a : E} {s : AddSubgroup E} (hg : a β closure βs) {b : β β β} (b_pos : β (n : β), 0 < b n) : β v, Filter.Tendsto (fun n => β i β Finset.range (n + 1), v i) Filter.atTop (nhds a) β§ (β (n : β), v n β s) β§ βv 0 - aβ < b 0 β§ β (n : β), 0 < n β βv nβ < b n - controlled_prod_of_mem_closure_range π Mathlib.Analysis.Normed.Group.Continuity
{E : Type u_5} {F : Type u_6} [SeminormedCommGroup E] [SeminormedCommGroup F] {j : E β* F} {b : F} (hb : b β closure βj.range) {f : β β β} (b_pos : β (n : β), 0 < f n) : β a, Filter.Tendsto (fun n => β i β Finset.range (n + 1), j (a i)) Filter.atTop (nhds b) β§ βj (a 0) / bβ < f 0 β§ β (n : β), 0 < n β βj (a n)β < f n - controlled_sum_of_mem_closure_range π Mathlib.Analysis.Normed.Group.Continuity
{E : Type u_5} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] {j : E β+ F} {b : F} (hb : b β closure βj.range) {f : β β β} (b_pos : β (n : β), 0 < f n) : β a, Filter.Tendsto (fun n => β i β Finset.range (n + 1), j (a i)) Filter.atTop (nhds b) β§ βj (a 0) - bβ < f 0 β§ β (n : β), 0 < n β βj (a n)β < f n - MeasureTheory.StronglyMeasurable.induction π Mathlib.MeasureTheory.Function.StronglyMeasurable.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} [MeasurableSpace Ξ±] [AddZeroClass Ξ²] [TopologicalSpace Ξ²] {P : (f : Ξ± β Ξ²) β MeasureTheory.StronglyMeasurable f β Prop} (ind : β (c : Ξ²) β¦s : Set Ξ±β¦ (hs : MeasurableSet s), P (s.indicator fun x => c) β―) (add : β β¦f g : Ξ± β Ξ²β¦ (hf : MeasureTheory.StronglyMeasurable f) (hg : MeasureTheory.StronglyMeasurable g) (hfg : MeasureTheory.StronglyMeasurable (f + g)), Disjoint (Function.support f) (Function.support g) β P f hf β P g hg β P (f + g) hfg) (lim : β β¦f : β β Ξ± β Ξ²β¦ β¦g : Ξ± β Ξ²β¦ (hf : β (n : β), MeasureTheory.StronglyMeasurable (f n)) (hg : MeasureTheory.StronglyMeasurable g), (β (n : β), P (f n) β―) β (β (x : Ξ±), Filter.Tendsto (fun x_1 => f x_1 x) Filter.atTop (nhds (g x))) β P g hg) (f : Ξ± β Ξ²) (hf : MeasureTheory.StronglyMeasurable f) : P f hf - not_summable_of_ratio_test_tendsto_gt_one π Mathlib.Analysis.SpecificLimits.Normed
{Ξ± : Type u_2} [SeminormedAddCommGroup Ξ±] {f : β β Ξ±} {l : β} (hl : 1 < l) (h : Filter.Tendsto (fun n => βf (n + 1)β / βf nβ) Filter.atTop (nhds l)) : Β¬Summable f - summable_of_ratio_test_tendsto_lt_one π Mathlib.Analysis.SpecificLimits.Normed
{Ξ± : Type u_2} [NormedAddCommGroup Ξ±] [CompleteSpace Ξ±] {f : β β Ξ±} {l : β} (hlβ : l < 1) (hf : βαΆ (n : β) in Filter.atTop, f n β 0) (h : Filter.Tendsto (fun n => βf (n + 1)β / βf nβ) Filter.atTop (nhds l)) : Summable f - Antitone.tendsto_le_alternating_series π Mathlib.Analysis.SpecificLimits.Normed
{E : Type u_2} [Ring E] [PartialOrder E] [IsOrderedRing E] [TopologicalSpace E] [OrderClosedTopology E] {l : E} {f : β β E} (hfl : Filter.Tendsto (fun n => β i β Finset.range n, (-1) ^ i * f i) Filter.atTop (nhds l)) (hfa : Antitone f) (k : β) : l β€ β i β Finset.range (2 * k + 1), (-1) ^ i * f i - Monotone.alternating_series_le_tendsto π Mathlib.Analysis.SpecificLimits.Normed
{E : Type u_2} [Ring E] [PartialOrder E] [IsOrderedRing E] [TopologicalSpace E] [OrderClosedTopology E] {l : E} {f : β β E} (hfl : Filter.Tendsto (fun n => β i β Finset.range n, (-1) ^ i * f i) Filter.atTop (nhds l)) (hfm : Monotone f) (k : β) : β i β Finset.range (2 * k + 1), (-1) ^ i * f i β€ l - Real.tendsto_mul_exp_add_div_pow_atTop π Mathlib.Analysis.SpecialFunctions.Exp
(b c : β) (n : β) (hb : 0 < b) : Filter.Tendsto (fun x => (b * Real.exp x + c) / x ^ n) Filter.atTop Filter.atTop - Real.tendsto_div_pow_mul_exp_add_atTop π Mathlib.Analysis.SpecialFunctions.Exp
(b c : β) (n : β) (hb : 0 β b) : Filter.Tendsto (fun x => x ^ n / (b * Real.exp x + c)) Filter.atTop (nhds 0) - Real.tendsto_log_nat_add_one_sub_log π Mathlib.Analysis.SpecialFunctions.Log.Basic
: Filter.Tendsto (fun k => Real.log (βk + 1) - Real.log βk) Filter.atTop (nhds 0) - Real.tendsto_pow_log_div_mul_add_atTop π Mathlib.Analysis.SpecialFunctions.Log.Basic
(a b : β) (n : β) (ha : a β 0) : Filter.Tendsto (fun x => Real.log x ^ n / (a * x + b)) Filter.atTop (nhds 0) - HasFPowerSeriesAt.tendsto_partialSum π Mathlib.Analysis.Analytic.Basic
{π : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField π] [NormedAddCommGroup E] [NormedSpace π E] [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {p : FormalMultilinearSeries π E F} {x : E} (hf : HasFPowerSeriesAt f p x) : βαΆ (y : E) in nhds 0, Filter.Tendsto (fun n => p.partialSum n y) Filter.atTop (nhds (f (x + y))) - HasFPowerSeriesOnBall.tendsto_partialSum π Mathlib.Analysis.Analytic.Basic
{π : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField π] [NormedAddCommGroup E] [NormedSpace π E] [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {p : FormalMultilinearSeries π E F} {x : E} {r : ENNReal} (hf : HasFPowerSeriesOnBall f p x r) {y : E} (hy : y β EMetric.ball 0 r) : Filter.Tendsto (fun n => p.partialSum n y) Filter.atTop (nhds (f (x + y))) - HasFPowerSeriesOnBall.tendsto_partialSum_prod π Mathlib.Analysis.Analytic.Basic
{π : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField π] [NormedAddCommGroup E] [NormedSpace π E] [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {p : FormalMultilinearSeries π E F} {x : E} {r : ENNReal} {y : E} (hf : HasFPowerSeriesOnBall f p x r) (hy : y β EMetric.ball 0 r) : Filter.Tendsto (fun z => p.partialSum z.1 z.2) (Filter.atTop ΓΛ’ nhds y) (nhds (f (x + y))) - HasFPowerSeriesWithinOnBall.tendsto_partialSum π Mathlib.Analysis.Analytic.Basic
{π : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField π] [NormedAddCommGroup E] [NormedSpace π E] [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {p : FormalMultilinearSeries π E F} {s : Set E} {x : E} {r : ENNReal} (hf : HasFPowerSeriesWithinOnBall f p s x r) {y : E} (hy : y β EMetric.ball 0 r) (h'y : x + y β insert x s) : Filter.Tendsto (fun n => p.partialSum n y) Filter.atTop (nhds (f (x + y))) - HasFPowerSeriesWithinOnBall.tendsto_partialSum_prod π Mathlib.Analysis.Analytic.Basic
{π : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField π] [NormedAddCommGroup E] [NormedSpace π E] [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {p : FormalMultilinearSeries π E F} {s : Set E} {x : E} {r : ENNReal} {y : E} (hf : HasFPowerSeriesWithinOnBall f p s x r) (hy : y β EMetric.ball 0 r) (h'y : x + y β insert x s) : Filter.Tendsto (fun z => p.partialSum z.1 z.2) (Filter.atTop ΓΛ’ nhds y) (nhds (f (x + y))) - HasFPowerSeriesAt.tendsto_partialSum_prod_of_comp π Mathlib.Analysis.Analytic.Inverse
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π G] {f : E β G} {q : FormalMultilinearSeries π F G} {p : FormalMultilinearSeries π E F} {x : E} (hf : HasFPowerSeriesAt f (q.comp p) x) (hq : 0 < q.radius) (hp : 0 < p.radius) : βαΆ (y : E) in nhds 0, Filter.Tendsto (fun a => q.partialSum a.1 (p.partialSum a.2 y - (p 0) fun x => 0)) Filter.atTop (nhds (f (x + y))) - RCLike.tendsto_add_mul_div_add_mul_atTop_nhds π Mathlib.Analysis.SpecificLimits.RCLike
{π : Type u_1} [RCLike π] (a b c : π) {d : π} (hd : d β 0) : Filter.Tendsto (fun k => (a + c * βk) / (b + d * βk)) Filter.atTop (nhds (c / d)) - tendsto_one_plus_div_pow_exp π Mathlib.Analysis.SpecialFunctions.Pow.Deriv
(t : β) : Filter.Tendsto (fun x => (1 + t / βx) ^ x) Filter.atTop (nhds (Real.exp t)) - Complex.abel_aux π Mathlib.Analysis.Complex.AbelLimit
{f : β β β} {l : β} (h : Filter.Tendsto (fun n => β i β Finset.range n, f i) Filter.atTop (nhds l)) {z : β} (hz : βzβ < 1) : Filter.Tendsto (fun n => (1 - z) * β i β Finset.range n, (l - β j β Finset.range (i + 1), f j) * z ^ i) Filter.atTop (nhds (l - β' (n : β), f n * z ^ n)) - Complex.tendsto_abs_tan_atTop π Mathlib.Analysis.SpecialFunctions.Trigonometric.ComplexDeriv
(k : β€) : Filter.Tendsto (fun x => βComplex.tan xβ) (nhdsWithin ((2 * βk + 1) * βReal.pi / 2) {(2 * βk + 1) * βReal.pi / 2}αΆ) Filter.atTop - Complex.tendsto_norm_tan_atTop π Mathlib.Analysis.SpecialFunctions.Trigonometric.ComplexDeriv
(k : β€) : Filter.Tendsto (fun x => βComplex.tan xβ) (nhdsWithin ((2 * βk + 1) * βReal.pi / 2) {(2 * βk + 1) * βReal.pi / 2}αΆ) Filter.atTop - Real.tendsto_abs_tan_atTop π Mathlib.Analysis.SpecialFunctions.Trigonometric.ArctanDeriv
(k : β€) : Filter.Tendsto (fun x => |Real.tan x|) (nhdsWithin ((2 * βk + 1) * Real.pi / 2) {(2 * βk + 1) * Real.pi / 2}αΆ) Filter.atTop - ConvexBody.iInter_smul_eq_self π Mathlib.Analysis.Convex.Body
{V : Type u_1} [SeminormedAddCommGroup V] [NormedSpace β V] [T2Space V] {u : β β NNReal} (K : ConvexBody V) (h_zero : 0 β K) (hu : Filter.Tendsto u Filter.atTop (nhds 0)) : β n, (1 + β(u n)) β’ βK = βK - Real.tendsto_sum_range_one_div_nat_succ_atTop π Mathlib.Analysis.PSeries
: Filter.Tendsto (fun n => β i β Finset.range n, 1 / (βi + 1)) Filter.atTop Filter.atTop - Real.tendsto_euler_sin_prod π Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd
(x : β) : Filter.Tendsto (fun n => Real.pi * x * β j β Finset.range n, (1 - x ^ 2 / (βj + 1) ^ 2)) Filter.atTop (nhds (Real.sin (Real.pi * x))) - Complex.tendsto_euler_sin_prod π Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd
(z : β) : Filter.Tendsto (fun n => βReal.pi * z * β j β Finset.range n, (1 - z ^ 2 / (βj + 1) ^ 2)) Filter.atTop (nhds (Complex.sin (βReal.pi * z))) - Real.BohrMollerup.tendsto_logGammaSeq π Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup
{f : β β β} {x : β} (hf_conv : ConvexOn β (Set.Ioi 0) f) (hf_feq : β {y : β}, 0 < y β f (y + 1) = f y + Real.log y) (hx : 0 < x) : Filter.Tendsto (Real.BohrMollerup.logGammaSeq x) Filter.atTop (nhds (f x - f 1)) - Real.BohrMollerup.tendsto_logGammaSeq_of_le_one π Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup
{f : β β β} {x : β} (hf_conv : ConvexOn β (Set.Ioi 0) f) (hf_feq : β {y : β}, 0 < y β f (y + 1) = f y + Real.log y) (hx : 0 < x) (hx' : x β€ 1) : Filter.Tendsto (Real.BohrMollerup.logGammaSeq x) Filter.atTop (nhds (f x - f 1)) - tendsto_integral_mul_one_plus_inv_smul_sq_pow π Mathlib.Analysis.SpecialFunctions.MulExpNegMulSqIntegral
{E : Type u_1} [TopologicalSpace E] [MeasurableSpace E] [BorelSpace E] {P : MeasureTheory.Measure E} [MeasureTheory.IsFiniteMeasure P] {Ξ΅ : β} (g : BoundedContinuousFunction E β) (hΞ΅ : 0 < Ξ΅) : Filter.Tendsto (fun n => β« (x : E), (g * (1 + (βn)β»ΒΉ β’ -(Ξ΅ β’ g * g)) ^ n) x βP) Filter.atTop (nhds (β« (x : E), Ξ΅.mulExpNegMulSq (g x) βP)) - Real.tendsto_prod_pi_div_two π Mathlib.Data.Real.Pi.Wallis
: Filter.Tendsto (fun k => β i β Finset.range k, (2 * βi + 2) / (2 * βi + 1) * ((2 * βi + 2) / (2 * βi + 3))) Filter.atTop (nhds (Real.pi / 2)) - Stirling.tendsto_self_div_two_mul_self_add_one π Mathlib.Analysis.SpecialFunctions.Stirling
: Filter.Tendsto (fun n => βn / (2 * βn + 1)) Filter.atTop (nhds (1 / 2)) - tendsto_div_of_monotone_of_exists_subseq_tendsto_div π Mathlib.Analysis.SpecificLimits.FloorPow
(u : β β β) (l : β) (hmono : Monotone u) (hlim : β (a : β), 1 < a β β c, (βαΆ (n : β) in Filter.atTop, β(c (n + 1)) β€ a * β(c n)) β§ Filter.Tendsto c Filter.atTop Filter.atTop β§ Filter.Tendsto (fun n => u (c n) / β(c n)) Filter.atTop (nhds l)) : Filter.Tendsto (fun n => u n / βn) Filter.atTop (nhds l) - Real.tendsto_sum_pi_div_four π Mathlib.Data.Real.Pi.Leibniz
: Filter.Tendsto (fun k => β i β Finset.range k, (-1) ^ i / (2 * βi + 1)) Filter.atTop (nhds (Real.pi / 4)) - CircleDeg1Lift.translationNumber_eq_of_tendstoβ' π Mathlib.Dynamics.Circle.RotationNumber.TranslationNumber
(f : CircleDeg1Lift) {Ο' : β} (h : Filter.Tendsto (fun n => (βf)^[n + 1] 0 / (βn + 1)) Filter.atTop (nhds Ο')) : f.translationNumber = Ο' - CircleDeg1Lift.tendsto_translation_numberβ' π Mathlib.Dynamics.Circle.RotationNumber.TranslationNumber
(f : CircleDeg1Lift) : Filter.Tendsto (fun n => (f ^ (n + 1)) 0 / (βn + 1)) Filter.atTop (nhds f.translationNumber) - CircleDeg1Lift.tendsto_translation_number' π Mathlib.Dynamics.Circle.RotationNumber.TranslationNumber
(f : CircleDeg1Lift) (x : β) : Filter.Tendsto (fun n => ((f ^ (n + 1)) x - x) / (βn + 1)) Filter.atTop (nhds f.translationNumber) - Real.tendsto_harmonic_sub_log_add_one π Mathlib.NumberTheory.Harmonic.EulerMascheroni
: Filter.Tendsto (fun n => β(harmonic n) - Real.log (βn + 1)) Filter.atTop (nhds Real.eulerMascheroniConstant) - LSeries.tendsto_cpow_mul_atTop π Mathlib.NumberTheory.LSeries.Injectivity
{f : β β β} {n : β} (h : β m β€ n, f m = 0) (ha : LSeries.abscissaOfAbsConv f < β€) : Filter.Tendsto (fun x => (βn + 1) ^ βx * LSeries f βx) Filter.atTop (nhds (f (n + 1))) - ModularGroup.tendsto_normSq_coprime_pair π Mathlib.NumberTheory.Modular
(z : UpperHalfPlane) : Filter.Tendsto (fun p => Complex.normSq (β(p 0) * βz + β(p 1))) Filter.cofinite Filter.atTop - NonarchimedeanAddGroup.cauchySeq_of_tendsto_sub_nhds_zero π Mathlib.Topology.Algebra.InfiniteSum.Nonarchimedean
{G : Type u_2} [AddCommGroup G] [UniformSpace G] [IsUniformAddGroup G] [NonarchimedeanAddGroup G] {f : β β G} (hf : Filter.Tendsto (fun n => f (n + 1) - f n) Filter.atTop (nhds 0)) : CauchySeq f - NonarchimedeanGroup.cauchySeq_of_tendsto_div_nhds_one π Mathlib.Topology.Algebra.InfiniteSum.Nonarchimedean
{G : Type u_2} [CommGroup G] [UniformSpace G] [IsUniformGroup G] [NonarchimedeanGroup G] {f : β β G} (hf : Filter.Tendsto (fun n => f (n + 1) / f n) Filter.atTop (nhds 1)) : CauchySeq f - PadicInt.mahlerSeries_apply_nat π Mathlib.NumberTheory.Padics.MahlerBasis
{p : β} [hp : Fact (Nat.Prime p)] {E : Type u_1} [NormedAddCommGroup E] [Module β€_[p] E] [IsBoundedSMul β€_[p] E] [IsUltrametricDist E] [CompleteSpace E] {a : β β E} (ha : Filter.Tendsto a Filter.atTop (nhds 0)) {m n : β} (hmn : m β€ n) : (PadicInt.mahlerSeries a) βm = β i β Finset.range (n + 1), m.choose i β’ a i - PadicInt.addChar_of_value_at_one_def π Mathlib.NumberTheory.Padics.AddChar
{p : β} [Fact (Nat.Prime p)] {R : Type u_1} [NormedRing R] [Algebra β€_[p] R] [IsBoundedSMul β€_[p] R] [IsUltrametricDist R] [CompleteSpace R] {r : R} (hr : Filter.Tendsto (fun x => r ^ x) Filter.atTop (nhds 0)) : (PadicInt.addChar_of_value_at_one r hr) 1 = 1 + r - PadicInt.eq_addChar_of_value_at_one π Mathlib.NumberTheory.Padics.AddChar
{p : β} [Fact (Nat.Prime p)] {R : Type u_1} [NormedRing R] [Algebra β€_[p] R] [IsBoundedSMul β€_[p] R] [IsUltrametricDist R] [CompleteSpace R] {r : R} (hr : Filter.Tendsto (fun x => r ^ x) Filter.atTop (nhds 0)) {ΞΊ : AddChar β€_[p] R} (hΞΊ : Continuous βΞΊ) (hΞΊ' : ΞΊ 1 = 1 + r) : ΞΊ = PadicInt.addChar_of_value_at_one r hr - MeasureTheory.Martingale.ae_not_tendsto_atTop_atBot π Mathlib.Probability.Martingale.BorelCantelli
{Ξ© : Type u_1} {m0 : MeasurableSpace Ξ©} {ΞΌ : MeasureTheory.Measure Ξ©} {β± : MeasureTheory.Filtration β m0} {f : β β Ξ© β β} {R : NNReal} [MeasureTheory.IsFiniteMeasure ΞΌ] (hf : MeasureTheory.Martingale f β± ΞΌ) (hbdd : βα΅ (Ο : Ξ©) βΞΌ, β (i : β), |f (i + 1) Ο - f i Ο| β€ βR) : βα΅ (Ο : Ξ©) βΞΌ, Β¬Filter.Tendsto (fun n => f n Ο) Filter.atTop Filter.atBot - MeasureTheory.Martingale.ae_not_tendsto_atTop_atTop π Mathlib.Probability.Martingale.BorelCantelli
{Ξ© : Type u_1} {m0 : MeasurableSpace Ξ©} {ΞΌ : MeasureTheory.Measure Ξ©} {β± : MeasureTheory.Filtration β m0} {f : β β Ξ© β β} {R : NNReal} [MeasureTheory.IsFiniteMeasure ΞΌ] (hf : MeasureTheory.Martingale f β± ΞΌ) (hbdd : βα΅ (Ο : Ξ©) βΞΌ, β (i : β), |f (i + 1) Ο - f i Ο| β€ βR) : βα΅ (Ο : Ξ©) βΞΌ, Β¬Filter.Tendsto (fun n => f n Ο) Filter.atTop Filter.atTop - MeasureTheory.Submartingale.bddAbove_iff_exists_tendsto π Mathlib.Probability.Martingale.BorelCantelli
{Ξ© : Type u_1} {m0 : MeasurableSpace Ξ©} {ΞΌ : MeasureTheory.Measure Ξ©} {β± : MeasureTheory.Filtration β m0} {f : β β Ξ© β β} {R : NNReal} [MeasureTheory.IsFiniteMeasure ΞΌ] (hf : MeasureTheory.Submartingale f β± ΞΌ) (hbdd : βα΅ (Ο : Ξ©) βΞΌ, β (i : β), |f (i + 1) Ο - f i Ο| β€ βR) : βα΅ (Ο : Ξ©) βΞΌ, BddAbove (Set.range fun n => f n Ο) β β c, Filter.Tendsto (fun n => f n Ο) Filter.atTop (nhds c) - MeasureTheory.ae_mem_limsup_atTop_iff π Mathlib.Probability.Martingale.BorelCantelli
{Ξ© : Type u_1} {m0 : MeasurableSpace Ξ©} {β± : MeasureTheory.Filtration β m0} (ΞΌ : MeasureTheory.Measure Ξ©) [MeasureTheory.IsFiniteMeasure ΞΌ] {s : β β Set Ξ©} (hs : β (n : β), MeasurableSet (s n)) : βα΅ (Ο : Ξ©) βΞΌ, Ο β Filter.limsup s Filter.atTop β Filter.Tendsto (fun n => β k β Finset.range n, ΞΌ[(s (k + 1)).indicator 1|ββ± k] Ο) Filter.atTop Filter.atTop - MeasureTheory.Submartingale.exists_tendsto_of_abs_bddAbove_aux π Mathlib.Probability.Martingale.BorelCantelli
{Ξ© : Type u_1} {m0 : MeasurableSpace Ξ©} {ΞΌ : MeasureTheory.Measure Ξ©} {β± : MeasureTheory.Filtration β m0} {f : β β Ξ© β β} {R : NNReal} [MeasureTheory.IsFiniteMeasure ΞΌ] (hf : MeasureTheory.Submartingale f β± ΞΌ) (hf0 : f 0 = 0) (hbdd : βα΅ (Ο : Ξ©) βΞΌ, β (i : β), |f (i + 1) Ο - f i Ο| β€ βR) : βα΅ (Ο : Ξ©) βΞΌ, BddAbove (Set.range fun n => f n Ο) β β c, Filter.Tendsto (fun n => f n Ο) Filter.atTop (nhds c) - MeasureTheory.Submartingale.bddAbove_iff_exists_tendsto_aux π Mathlib.Probability.Martingale.BorelCantelli
{Ξ© : Type u_1} {m0 : MeasurableSpace Ξ©} {ΞΌ : MeasureTheory.Measure Ξ©} {β± : MeasureTheory.Filtration β m0} {f : β β Ξ© β β} {R : NNReal} [MeasureTheory.IsFiniteMeasure ΞΌ] (hf : MeasureTheory.Submartingale f β± ΞΌ) (hf0 : f 0 = 0) (hbdd : βα΅ (Ο : Ξ©) βΞΌ, β (i : β), |f (i + 1) Ο - f i Ο| β€ βR) : βα΅ (Ο : Ξ©) βΞΌ, BddAbove (Set.range fun n => f n Ο) β β c, Filter.Tendsto (fun n => f n Ο) Filter.atTop (nhds c) - MeasureTheory.tendsto_sum_indicator_atTop_iff' π Mathlib.Probability.Martingale.BorelCantelli
{Ξ© : Type u_1} {m0 : MeasurableSpace Ξ©} {ΞΌ : MeasureTheory.Measure Ξ©} {β± : MeasureTheory.Filtration β m0} [MeasureTheory.IsFiniteMeasure ΞΌ] {s : β β Set Ξ©} (hs : β (n : β), MeasurableSet (s n)) : βα΅ (Ο : Ξ©) βΞΌ, Filter.Tendsto (fun n => β k β Finset.range n, (s (k + 1)).indicator 1 Ο) Filter.atTop Filter.atTop β Filter.Tendsto (fun n => β k β Finset.range n, ΞΌ[(s (k + 1)).indicator 1|ββ± k] Ο) Filter.atTop Filter.atTop - MeasureTheory.tendsto_sum_indicator_atTop_iff π Mathlib.Probability.Martingale.BorelCantelli
{Ξ© : Type u_1} {m0 : MeasurableSpace Ξ©} {ΞΌ : MeasureTheory.Measure Ξ©} {β± : MeasureTheory.Filtration β m0} {f : β β Ξ© β β} {R : NNReal} [MeasureTheory.IsFiniteMeasure ΞΌ] (hfmono : βα΅ (Ο : Ξ©) βΞΌ, β (n : β), f n Ο β€ f (n + 1) Ο) (hf : MeasureTheory.Adapted β± f) (hint : β (n : β), MeasureTheory.Integrable (f n) ΞΌ) (hbdd : βα΅ (Ο : Ξ©) βΞΌ, β (n : β), |f (n + 1) Ο - f n Ο| β€ βR) : βα΅ (Ο : Ξ©) βΞΌ, Filter.Tendsto (fun n => f n Ο) Filter.atTop Filter.atTop β Filter.Tendsto (fun n => MeasureTheory.predictablePart f β± ΞΌ n Ο) Filter.atTop Filter.atTop - ProbabilityTheory.Kernel.trajContent_tendsto_zero π Mathlib.Probability.Kernel.IonescuTulcea.Traj
{X : β β Type u_1} [(n : β) β MeasurableSpace (X n)] {ΞΊ : (n : β) β ProbabilityTheory.Kernel ((i : { x // x β Finset.Iic n }) β X βi) (X (n + 1))} [β (n : β), ProbabilityTheory.IsMarkovKernel (ΞΊ n)] {A : β β Set ((n : β) β X n)} (A_mem : β (n : β), A n β MeasureTheory.measurableCylinders X) (A_anti : Antitone A) (A_inter : β n, A n = β ) {p : β} (xβ : (i : { x // x β Finset.Iic p }) β X βi) : Filter.Tendsto (fun n => (ProbabilityTheory.Kernel.trajContent ΞΊ xβ) (A n)) Filter.atTop (nhds 0) - ProbabilityTheory.Kernel.le_lmarginalPartialTraj_succ π Mathlib.Probability.Kernel.IonescuTulcea.Traj
{X : β β Type u_1} [(n : β) β MeasurableSpace (X n)] {ΞΊ : (n : β) β ProbabilityTheory.Kernel ((i : { x // x β Finset.Iic n }) β X βi) (X (n + 1))} [β (n : β), ProbabilityTheory.IsMarkovKernel (ΞΊ n)] {f : β β ((n : β) β X n) β ENNReal} {a : β β β} (hcte : β (n : β), DependsOn (f n) β(Finset.Iic (a n))) (mf : β (n : β), Measurable (f n)) {bound : ENNReal} (fin_bound : bound β β€) (le_bound : β (n : β) (x : (n : β) β X n), f n x β€ bound) {k : β} (anti : β (x : (n : β) β X n), Antitone fun n => ProbabilityTheory.Kernel.lmarginalPartialTraj ΞΊ (k + 1) (a n) (f n) x) {l : ((n : β) β X n) β ENNReal} (htendsto : β (x : (n : β) β X n), Filter.Tendsto (fun n => ProbabilityTheory.Kernel.lmarginalPartialTraj ΞΊ (k + 1) (a n) (f n) x) Filter.atTop (nhds (l x))) (Ξ΅ : ENNReal) (y : (i : { x // x β Finset.Iic k }) β X βi) (hpos : β (x : (i : β) β X i) (n : β), Ξ΅ β€ ProbabilityTheory.Kernel.lmarginalPartialTraj ΞΊ k (a n) (f n) (Function.updateFinset x (Finset.Iic k) y)) : β z, β (x : (i : β) β X i) (n : β), Ξ΅ β€ ProbabilityTheory.Kernel.lmarginalPartialTraj ΞΊ (k + 1) (a n) (f n) (Function.update (Function.updateFinset x (Finset.Iic k) y) (k + 1) z)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 4cb993b