Loogle!
Result
Found 12 declarations mentioning HahnSeries.map.
- HahnSeries.map đ Mathlib.RingTheory.HahnSeries.Basic
 {Î : Type u_1} {R : Type u_3} {S : Type u_4} [PartialOrder Î] [Zero R] [Zero S] (x : HahnSeries Î R) {F : Type u_5} [FunLike F R S] [ZeroHomClass F R S] (f : F) : HahnSeries Î S
- HahnSeries.map_coeff đ Mathlib.RingTheory.HahnSeries.Basic
 {Î : Type u_1} {R : Type u_3} {S : Type u_4} [PartialOrder Î] [Zero R] [Zero S] (x : HahnSeries Î R) {F : Type u_5} [FunLike F R S] [ZeroHomClass F R S] (f : F) (g : Î) : (x.map f).coeff g = f (x.coeff g)
- HahnSeries.map.congr_simp đ Mathlib.RingTheory.HahnSeries.Basic
 {Î : Type u_1} {R : Type u_3} {S : Type u_4} [PartialOrder Î] [Zero R] [Zero S] (x xâ : HahnSeries Î R) (e_x : x = xâ) {F : Type u_5} [FunLike F R S] [ZeroHomClass F R S] (f fâ : F) (e_f : f = fâ) : x.map f = xâ.map fâ
- HahnSeries.map_zero đ Mathlib.RingTheory.HahnSeries.Basic
 {Î : Type u_1} {R : Type u_3} {S : Type u_4} [PartialOrder Î] [Zero R] [Zero S] (f : ZeroHom R S) : HahnSeries.map 0 f = 0
- HahnSeries.map_single đ Mathlib.RingTheory.HahnSeries.Basic
 {Î : Type u_1} {R : Type u_3} {S : Type u_4} [PartialOrder Î] [Zero R] {a : Î} {r : R} [Zero S] (f : ZeroHom R S) : ((HahnSeries.single a) r).map f = (HahnSeries.single a) (f r)
- HahnSeries.map_neg đ Mathlib.RingTheory.HahnSeries.Addition
 {Î : Type u_1} {R : Type u_3} {S : Type u_4} [PartialOrder Î] [AddGroup R] [AddGroup S] (f : R â+ S) {x : HahnSeries Î R} : (-x).map f = -x.map f
- HahnSeries.map_add đ Mathlib.RingTheory.HahnSeries.Addition
 {Î : Type u_1} {R : Type u_3} {S : Type u_4} [PartialOrder Î] [AddMonoid R] [AddMonoid S] (f : R â+ S) {x y : HahnSeries Î R} : (x + y).map f = x.map f + y.map f
- HahnSeries.map_sub đ Mathlib.RingTheory.HahnSeries.Addition
 {Î : Type u_1} {R : Type u_3} {S : Type u_4} [PartialOrder Î] [AddGroup R] [AddGroup S] (f : R â+ S) {x y : HahnSeries Î R} : (x - y).map f = x.map f - y.map f
- HahnSeries.map_smul đ Mathlib.RingTheory.HahnSeries.Addition
 {Î : Type u_1} {R : Type u_3} {U : Type u_5} {V : Type u_6} [PartialOrder Î] [Semiring R] [AddCommMonoid V] [Module R V] [AddCommMonoid U] [Module R U] (f : U ââ[R] V) {r : R} {x : HahnSeries Î U} : (r ⢠x).map f = r ⢠x.map f
- HahnSeries.map_one đ Mathlib.RingTheory.HahnSeries.Multiplication
 {Î : Type u_1} {R : Type u_3} {S : Type u_4} [Zero Î] [PartialOrder Î] [MonoidWithZero R] [MonoidWithZero S] (f : R â*â S) : HahnSeries.map 1 f = 1
- HahnSeries.map_C đ Mathlib.RingTheory.HahnSeries.Multiplication
 {Î : Type u_1} {R : Type u_3} {S : Type u_4} [AddCommMonoid Î] [PartialOrder Î] [IsOrderedCancelAddMonoid Î] [NonAssocSemiring R] [NonAssocSemiring S] (a : R) (f : R â+* S) : (HahnSeries.C a).map f = HahnSeries.C (f a)
- HahnSeries.map_mul đ Mathlib.RingTheory.HahnSeries.Multiplication
 {Î : Type u_1} {R : Type u_3} {S : Type u_4} [AddCommMonoid Î] [PartialOrder Î] [IsOrderedCancelAddMonoid Î] [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] (f : R ââ+* S) {x y : HahnSeries Î R} : (x * y).map f = x.map f * y.map f
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
- By constant: 
 đ- Real.sin
 finds all lemmas whose statement somehow mentions the sine function.
- By lemma name substring: 
 đ- "differ"
 finds all lemmas that have- "differ"somewhere in their lemma name.
- By subexpression: 
 đ- _ * (_ ^ _)
 finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.- The pattern can also be non-linear, as in 
 đ- Real.sqrt ?a * Real.sqrt ?a- If the pattern has parameters, they are matched in any order. Both of these will find - List.map:
 đ- (?a -> ?b) -> List ?a -> List ?b
 đ- List ?a -> (?a -> ?b) -> List ?b
- By main conclusion: 
 đ- |- tsum _ = _ * tsum _
 finds all lemmas where the conclusion (the subexpression to the right of all- âand- â) has the given shape.- As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example, 
 đ- |- _ < _ â tsum _ < tsum _
 will find- tsum_lt_tsumeven though the hypothesis- f i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
đ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ â _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 187ba29 serving mathlib revision 8b227ee