Loogle!
Result
Found 11 declarations mentioning HahnSeries.map.
- HahnSeries.map 📋 Mathlib.RingTheory.HahnSeries.Basic
{Γ : Type u_1} {R : Type u_3} {S : Type u_4} [PartialOrder Γ] [Zero R] [Zero S] (x : HahnSeries Γ R) {F : Type u_5} [FunLike F R S] [ZeroHomClass F R S] (f : F) : HahnSeries Γ S - HahnSeries.map_coeff 📋 Mathlib.RingTheory.HahnSeries.Basic
{Γ : Type u_1} {R : Type u_3} {S : Type u_4} [PartialOrder Γ] [Zero R] [Zero S] (x : HahnSeries Γ R) {F : Type u_5} [FunLike F R S] [ZeroHomClass F R S] (f : F) (g : Γ) : (x.map f).coeff g = f (x.coeff g) - HahnSeries.map_zero 📋 Mathlib.RingTheory.HahnSeries.Basic
{Γ : Type u_1} {R : Type u_3} {S : Type u_4} [PartialOrder Γ] [Zero R] [Zero S] (f : ZeroHom R S) : HahnSeries.map 0 f = 0 - HahnSeries.map_single 📋 Mathlib.RingTheory.HahnSeries.Basic
{Γ : Type u_1} {R : Type u_3} {S : Type u_4} [PartialOrder Γ] [Zero R] {a : Γ} {r : R} [Zero S] (f : ZeroHom R S) : ((HahnSeries.single a) r).map f = (HahnSeries.single a) (f r) - HahnSeries.map_neg 📋 Mathlib.RingTheory.HahnSeries.Addition
{Γ : Type u_1} {R : Type u_3} {S : Type u_4} [PartialOrder Γ] [AddGroup R] [AddGroup S] (f : R →+ S) {x : HahnSeries Γ R} : (-x).map f = -x.map f - HahnSeries.map_add 📋 Mathlib.RingTheory.HahnSeries.Addition
{Γ : Type u_1} {R : Type u_3} {S : Type u_4} [PartialOrder Γ] [AddMonoid R] [AddMonoid S] (f : R →+ S) {x y : HahnSeries Γ R} : (x + y).map f = x.map f + y.map f - HahnSeries.map_sub 📋 Mathlib.RingTheory.HahnSeries.Addition
{Γ : Type u_1} {R : Type u_3} {S : Type u_4} [PartialOrder Γ] [AddGroup R] [AddGroup S] (f : R →+ S) {x y : HahnSeries Γ R} : (x - y).map f = x.map f - y.map f - HahnSeries.map_smul 📋 Mathlib.RingTheory.HahnSeries.Addition
{Γ : Type u_1} {R : Type u_3} {U : Type u_5} {V : Type u_6} [PartialOrder Γ] [Semiring R] [AddCommMonoid V] [Module R V] [AddCommMonoid U] [Module R U] (f : U →ₗ[R] V) {r : R} {x : HahnSeries Γ U} : (r • x).map f = r • x.map f - HahnSeries.map_one 📋 Mathlib.RingTheory.HahnSeries.Multiplication
{Γ : Type u_1} {R : Type u_3} {S : Type u_4} [Zero Γ] [PartialOrder Γ] [MonoidWithZero R] [MonoidWithZero S] (f : R →*₀ S) : HahnSeries.map 1 f = 1 - HahnSeries.map_C 📋 Mathlib.RingTheory.HahnSeries.Multiplication
{Γ : Type u_1} {R : Type u_3} {S : Type u_4} [AddCommMonoid Γ] [PartialOrder Γ] [IsOrderedCancelAddMonoid Γ] [NonAssocSemiring R] [NonAssocSemiring S] (a : R) (f : R →+* S) : (HahnSeries.C a).map f = HahnSeries.C (f a) - HahnSeries.map_mul 📋 Mathlib.RingTheory.HahnSeries.Multiplication
{Γ : Type u_1} {R : Type u_3} {S : Type u_4} [AddCommMonoid Γ] [PartialOrder Γ] [IsOrderedCancelAddMonoid Γ] [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] (f : R →ₙ+* S) {x y : HahnSeries Γ R} : (x * y).map f = x.map f * y.map f
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08