Loogle!
Result
Found 550 declarations mentioning Ideal.IsPrime. Of these, only the first 200 are shown.
- Ideal.IsPrime π Mathlib.RingTheory.Ideal.Prime
{Ξ± : Type u} [Semiring Ξ±] (I : Ideal Ξ±) : Prop - Ideal.primeCompl π Mathlib.RingTheory.Ideal.Prime
{Ξ± : Type u} [Semiring Ξ±] (P : Ideal Ξ±) [hp : P.IsPrime] : Submonoid Ξ± - Ideal.IsPrime.ne_top π Mathlib.RingTheory.Ideal.Prime
{Ξ± : Type u} [Semiring Ξ±] {I : Ideal Ξ±} (hI : I.IsPrime) : I β β€ - Ideal.IsPrime.ne_top' π Mathlib.RingTheory.Ideal.Prime
{Ξ± : Type u} {instβ : Semiring Ξ±} {I : Ideal Ξ±} [self : I.IsPrime] : I β β€ - IsDomain.of_bot_isPrime π Mathlib.RingTheory.Ideal.Prime
(A : Type u_1) [Ring A] [hbp : β₯.IsPrime] : IsDomain A - Ideal.bot_prime π Mathlib.RingTheory.Ideal.Prime
{Ξ± : Type u} [Semiring Ξ±] [Nontrivial Ξ±] [NoZeroDivisors Ξ±] : β₯.IsPrime - Ideal.eq_bot_of_prime π Mathlib.RingTheory.Ideal.Prime
{K : Type u} [DivisionSemiring K] (I : Ideal K) [h : I.IsPrime] : I = β₯ - Ideal.one_notMem π Mathlib.RingTheory.Ideal.Prime
{Ξ± : Type u} [Semiring Ξ±] (I : Ideal Ξ±) [hI : I.IsPrime] : 1 β I - Ideal.IsPrime.one_notMem π Mathlib.RingTheory.Ideal.Prime
{Ξ± : Type u} [Semiring Ξ±] {I : Ideal Ξ±} (hI : I.IsPrime) : 1 β I - Ideal.mem_primeCompl_iff π Mathlib.RingTheory.Ideal.Prime
{Ξ± : Type u} [Semiring Ξ±] {P : Ideal Ξ±} [P.IsPrime] {x : Ξ±} : x β P.primeCompl β x β P - Ideal.IsPrime.mem_of_pow_mem π Mathlib.RingTheory.Ideal.Prime
{Ξ± : Type u} [Semiring Ξ±] {I : Ideal Ξ±} (hI : I.IsPrime) {r : Ξ±} (n : β) (H : r ^ n β I) : r β I - Ideal.IsPrime.pow_mem_iff_mem π Mathlib.RingTheory.Ideal.Prime
{Ξ± : Type u} [Semiring Ξ±] {I : Ideal Ξ±} (hI : I.IsPrime) {r : Ξ±} (n : β) (hn : 0 < n) : r ^ n β I β r β I - Ideal.IsPrime.mem_or_mem_of_mul_eq_zero π Mathlib.RingTheory.Ideal.Prime
{Ξ± : Type u} [Semiring Ξ±] {I : Ideal Ξ±} (hI : I.IsPrime) {x y : Ξ±} (h : x * y = 0) : x β I β¨ y β I - Ideal.IsPrime.mem_or_mem π Mathlib.RingTheory.Ideal.Prime
{Ξ± : Type u} [Semiring Ξ±] {I : Ideal Ξ±} (hI : I.IsPrime) {x y : Ξ±} : x * y β I β x β I β¨ y β I - Ideal.IsPrime.mem_or_mem' π Mathlib.RingTheory.Ideal.Prime
{Ξ± : Type u} {instβ : Semiring Ξ±} {I : Ideal Ξ±} [self : I.IsPrime] {x y : Ξ±} : x * y β I β x β I β¨ y β I - Ideal.IsPrime.mul_notMem π Mathlib.RingTheory.Ideal.Prime
{Ξ± : Type u} [Semiring Ξ±] {I : Ideal Ξ±} (hI : I.IsPrime) {x y : Ξ±} : x β I β y β I β x * y β I - Ideal.IsPrime.mul_mem_iff_mem_or_mem π Mathlib.RingTheory.Ideal.Prime
{Ξ± : Type u} [Semiring Ξ±] {I : Ideal Ξ±} [I.IsTwoSided] (hI : I.IsPrime) {x y : Ξ±} : x * y β I β x β I β¨ y β I - Ideal.IsPrime.mul_mem_left_iff π Mathlib.RingTheory.Ideal.Prime
{Ξ± : Type u} [Semiring Ξ±] {I : Ideal Ξ±} [I.IsTwoSided] [I.IsPrime] {x y : Ξ±} (hx : x β I) : x * y β I β y β I - Ideal.IsPrime.mul_mem_right_iff π Mathlib.RingTheory.Ideal.Prime
{Ξ± : Type u} [Semiring Ξ±] {I : Ideal Ξ±} [I.IsTwoSided] [I.IsPrime] {x y : Ξ±} (hx : y β I) : x * y β I β x β I - Ideal.IsPrime.mk π Mathlib.RingTheory.Ideal.Prime
{Ξ± : Type u} [Semiring Ξ±] {I : Ideal Ξ±} (ne_top' : I β β€) (mem_or_mem' : β {x y : Ξ±}, x * y β I β x β I β¨ y β I) : I.IsPrime - Ideal.isPrime_iff π Mathlib.RingTheory.Ideal.Prime
{Ξ± : Type u} [Semiring Ξ±] {I : Ideal Ξ±} : I.IsPrime β I β β€ β§ β {x y : Ξ±}, x * y β I β x β I β¨ y β I - Ideal.not_isPrime_iff π Mathlib.RingTheory.Ideal.Prime
{Ξ± : Type u} [Semiring Ξ±] {I : Ideal Ξ±} : Β¬I.IsPrime β I = β€ β¨ β x, β (_ : x β I), β y, β (_ : y β I), x * y β I - Ideal.IsMaximal.isPrime π Mathlib.RingTheory.Ideal.Maximal
{Ξ± : Type u} [CommSemiring Ξ±] {I : Ideal Ξ±} (H : I.IsMaximal) : I.IsPrime - Ideal.IsMaximal.isPrime' π Mathlib.RingTheory.Ideal.Maximal
{Ξ± : Type u} [CommSemiring Ξ±] (I : Ideal Ξ±) [_H : I.IsMaximal] : I.IsPrime - Ideal.span_singleton_prime π Mathlib.RingTheory.Ideal.Maximal
{Ξ± : Type u} [CommSemiring Ξ±] {p : Ξ±} (hp : p β 0) : (Ideal.span {p}).IsPrime β Prime p - Ideal.isPrime_iff_of_isPrincipalIdealRing π Mathlib.RingTheory.Ideal.Maximal
{Ξ± : Type u} [CommSemiring Ξ±] [IsPrincipalIdealRing Ξ±] {P : Ideal Ξ±} (hP : P β β₯) : P.IsPrime β β p, Prime p β§ P = Ideal.span {p} - Ideal.sInf_isPrime_of_isChain π Mathlib.RingTheory.Ideal.Maximal
{Ξ± : Type u} [Semiring Ξ±] {s : Set (Ideal Ξ±)} (hs : s.Nonempty) (hs' : IsChain (fun x1 x2 => x1 β€ x2) s) (H : β p β s, p.IsPrime) : (sInf s).IsPrime - Ideal.isPrime_iff_of_isPrincipalIdealRing_of_noZeroDivisors π Mathlib.RingTheory.Ideal.Maximal
{Ξ± : Type u} [CommSemiring Ξ±] [IsPrincipalIdealRing Ξ±] [NoZeroDivisors Ξ±] [Nontrivial Ξ±] {P : Ideal Ξ±} : P.IsPrime β P = β₯ β¨ β p, Prime p β§ P = Ideal.span {p} - Ideal.exists_le_prime_notMem_of_isIdempotentElem π Mathlib.RingTheory.Ideal.Maximal
{Ξ± : Type u} [CommSemiring Ξ±] (I : Ideal Ξ±) (a : Ξ±) (ha : IsIdempotentElem a) (haI : a β I) : β p, p.IsPrime β§ I β€ p β§ a β p - Ideal.isPrime_of_maximally_disjoint π Mathlib.RingTheory.Ideal.Maximal
{Ξ± : Type u} [CommSemiring Ξ±] (I : Ideal Ξ±) (S : Submonoid Ξ±) (disjoint : Disjoint βI βS) (maximally_disjoint : β (J : Ideal Ξ±), I < J β Β¬Disjoint βJ βS) : I.IsPrime - Ideal.exists_le_prime_disjoint π Mathlib.RingTheory.Ideal.Maximal
{Ξ± : Type u} [CommSemiring Ξ±] (I : Ideal Ξ±) (S : Submonoid Ξ±) (disjoint : Disjoint βI βS) : β p, p.IsPrime β§ I β€ p β§ Disjoint βp βS - Ring.not_isField_iff_exists_prime π Mathlib.RingTheory.Ideal.Basic
{R : Type u_5} [CommSemiring R] [Nontrivial R] : Β¬IsField R β β p, p β β₯ β§ p.IsPrime - Ideal.Quotient.isDomain π Mathlib.RingTheory.Ideal.Quotient.Basic
{R : Type u_3} [Ring R] (I : Ideal R) [I.IsTwoSided] [hI : I.IsPrime] : IsDomain (R β§Έ I) - Ideal.Quotient.isDomain_iff_prime π Mathlib.RingTheory.Ideal.Quotient.Basic
{R : Type u_3} [Ring R] (I : Ideal R) [I.IsTwoSided] : IsDomain (R β§Έ I) β I.IsPrime - Ideal.Quotient.noZeroDivisors π Mathlib.RingTheory.Ideal.Quotient.Basic
{R : Type u_3} [Ring R] (I : Ideal R) [I.IsTwoSided] [hI : I.IsPrime] : NoZeroDivisors (R β§Έ I) - Ideal.IsPrime.isRadical π Mathlib.RingTheory.Ideal.Operations
{R : Type u} [CommSemiring R] {I : Ideal R} (H : I.IsPrime) : I.IsRadical - Ideal.IsPrime.radical π Mathlib.RingTheory.Ideal.Operations
{R : Type u} [CommSemiring R] {I : Ideal R} (H : I.IsPrime) : I.radical = I - Ideal.IsPrime.notMem_of_isCoprime_of_mem π Mathlib.RingTheory.Ideal.Operations
{R : Type u} [CommSemiring R] {I : Ideal R} [I.IsPrime] {x y : R} (h : IsCoprime x y) (hx : x β I) : y β I - Ideal.IsPrime.multiset_prod_mem_iff_exists_mem π Mathlib.RingTheory.Ideal.Operations
{R : Type u} [CommSemiring R] {I : Ideal R} (hI : I.IsPrime) (s : Multiset R) : s.prod β I β β p β s, p β I - Ideal.IsPrime.prod_mem_iff_exists_mem π Mathlib.RingTheory.Ideal.Operations
{R : Type u} [CommSemiring R] {I : Ideal R} (hI : I.IsPrime) (s : Finset R) : β x β s, x β I β β p β s, p β I - Ideal.radical_eq_sInf π Mathlib.RingTheory.Ideal.Operations
{R : Type u} [CommSemiring R] (I : Ideal R) : I.radical = sInf {J | I β€ J β§ J.IsPrime} - Ideal.IsPrime.prod_mem_iff π Mathlib.RingTheory.Ideal.Operations
{R : Type u} {ΞΉ : Type u_1} [CommSemiring R] {s : Finset ΞΉ} {x : ΞΉ β R} {p : Ideal R} [hp : p.IsPrime] : β i β s, x i β p β β i β s, x i β p - Ideal.primeCompl_le_nonZeroDivisors π Mathlib.RingTheory.Ideal.Operations
{R : Type u_1} [CommSemiring R] [NoZeroDivisors R] (P : Ideal R) [P.IsPrime] : P.primeCompl β€ nonZeroDivisors R - Ideal.IsPrime.radical_le_iff π Mathlib.RingTheory.Ideal.Operations
{R : Type u} [CommSemiring R] {I J : Ideal R} (hJ : J.IsPrime) : I.radical β€ J β I β€ J - Ideal.coprime_of_no_prime_ge π Mathlib.RingTheory.Ideal.Operations
{R : Type u} [CommSemiring R] {I J : Ideal R} (h : β (P : Ideal R), I β€ P β J β€ P β Β¬P.IsPrime) : IsCoprime I J - Ideal.IsPrime.prod_le π Mathlib.RingTheory.Ideal.Operations
{R : Type u} {ΞΉ : Type u_1} [CommSemiring R] {s : Finset ΞΉ} {f : ΞΉ β Ideal R} {P : Ideal R} (hp : P.IsPrime) : s.prod f β€ P β β i β s, f i β€ P - Ideal.IsPrime.le_of_pow_le π Mathlib.RingTheory.Ideal.Operations
{R : Type u} [CommSemiring R] {I P : Ideal R} [hP : P.IsPrime] {n : β} (h : I ^ n β€ P) : I β€ P - Ideal.IsPrime.multiset_prod_map_le π Mathlib.RingTheory.Ideal.Operations
{R : Type u} {ΞΉ : Type u_1} [CommSemiring R] {s : Multiset ΞΉ} (f : ΞΉ β Ideal R) {P : Ideal R} (hp : P.IsPrime) : (Multiset.map f s).prod β€ P β β i β s, f i β€ P - Ideal.IsPrime.pow_le_iff π Mathlib.RingTheory.Ideal.Operations
{R : Type u} [CommSemiring R] {I P : Ideal R} [hP : P.IsPrime] {n : β} (hn : n β 0) : I ^ n β€ P β I β€ P - Ideal.IsPrime.multiset_prod_le π Mathlib.RingTheory.Ideal.Operations
{R : Type u} [CommSemiring R] {s : Multiset (Ideal R)} {P : Ideal R} (hp : P.IsPrime) : s.prod β€ P β β I β s, I β€ P - Ideal.IsPrime.inf_le' π Mathlib.RingTheory.Ideal.Operations
{R : Type u} {ΞΉ : Type u_1} [CommSemiring R] {s : Finset ΞΉ} {f : ΞΉ β Ideal R} {P : Ideal R} (hp : P.IsPrime) : s.inf f β€ P β β i β s, f i β€ P - Ideal.IsPrime.inf_le π Mathlib.RingTheory.Ideal.Operations
{R : Type u} [CommSemiring R] {I J P : Ideal R} (hp : P.IsPrime) : I β J β€ P β I β€ P β¨ J β€ P - Ideal.IsPrime.mul_le π Mathlib.RingTheory.Ideal.Operations
{R : Type u} [CommSemiring R] {I J P : Ideal R} (hp : P.IsPrime) : I * J β€ P β I β€ P β¨ J β€ P - Ideal.subset_union_prime_finite π Mathlib.RingTheory.Ideal.Operations
{R : Type u_2} {ΞΉ : Type u_3} [CommRing R] {s : Set ΞΉ} (hs : s.Finite) {f : ΞΉ β Ideal R} (a b : ΞΉ) (hp : β i β s, i β a β i β b β (f i).IsPrime) {I : Ideal R} : βI β β i β s, β(f i) β β i β s, I β€ f i - Ideal.subset_union_prime π Mathlib.RingTheory.Ideal.Operations
{ΞΉ : Type u_1} {R : Type u} [CommRing R] {s : Finset ΞΉ} {f : ΞΉ β Ideal R} (a b : ΞΉ) (hp : β i β s, i β a β i β b β (f i).IsPrime) {I : Ideal R} : βI β β i β βs, β(f i) β β i β s, I β€ f i - Ideal.subset_union_prime' π Mathlib.RingTheory.Ideal.Operations
{ΞΉ : Type u_1} {R : Type u} [CommRing R] {s : Finset ΞΉ} {f : ΞΉ β Ideal R} {a b : ΞΉ} (hp : β i β s, (f i).IsPrime) {I : Ideal R} : βI β β(f a) βͺ β(f b) βͺ β i β βs, β(f i) β I β€ f a β¨ I β€ f b β¨ β i β s, I β€ f i - RingHom.ker_isPrime π Mathlib.RingTheory.Ideal.Maps
{R : Type u} {S : Type v} {F : Type u_1} [Semiring R] [Semiring S] [IsDomain S] [FunLike F R S] [RingHomClass F R S] (f : F) : (RingHom.ker f).IsPrime - Ideal.comap_isPrime π Mathlib.RingTheory.Ideal.Maps
{R : Type u} {S : Type v} {F : Type u_1} [Semiring R] [Semiring S] [FunLike F R S] (f : F) (K : Ideal S) [RingHomClass F R S] [H : K.IsPrime] : (Ideal.comap f K).IsPrime - Ideal.IsPrime.comap π Mathlib.RingTheory.Ideal.Maps
{R : Type u} {S : Type v} {F : Type u_1} [Semiring R] [Semiring S] [FunLike F R S] (f : F) {K : Ideal S} [RingHomClass F R S] [hK : K.IsPrime] : (Ideal.comap f K).IsPrime - Ideal.map_isPrime_of_equiv π Mathlib.RingTheory.Ideal.Maps
{R : Type u_1} {S : Type u_2} [Semiring R] [Semiring S] {F' : Type u_4} [EquivLike F' R S] [RingEquivClass F' R S] (f : F') {I : Ideal R} [I.IsPrime] : (Ideal.map f I).IsPrime - Ideal.map_isPrime_of_surjective π Mathlib.RingTheory.Ideal.Maps
{R : Type u_1} {S : Type u_2} {F : Type u_3} [Ring R] [Ring S] [FunLike F R S] [rc : RingHomClass F R S] {f : F} (hf : Function.Surjective βf) {I : Ideal R} [H : I.IsPrime] (hk : RingHom.ker f β€ I) : (Ideal.map f I).IsPrime - Ideal.comap_map_eq_self_iff_of_isPrime π Mathlib.RingTheory.Ideal.Maps
{R : Type u} [CommSemiring R] {S : Type u_2} [CommSemiring S] {f : R β+* S} (p : Ideal R) [p.IsPrime] : Ideal.comap f (Ideal.map f p) = p β β q, q.IsPrime β§ Ideal.comap f q = p - Ideal.exists_ideal_comap_le_prime π Mathlib.RingTheory.Ideal.Maps
{R : Type u} {F : Type u_1} [Semiring R] {S : Type u_2} [CommSemiring S] [FunLike F R S] [RingHomClass F R S] {f : F} (P : Ideal R) [P.IsPrime] (I : Ideal S) (le : Ideal.comap f I β€ P) : β Q β₯ I, Q.IsPrime β§ Ideal.comap f Q β€ P - Ideal.disjoint_map_primeCompl_iff_comap_le π Mathlib.RingTheory.Ideal.Maps
{R : Type u} [CommSemiring R] {S : Type u_2} [Semiring S] {f : R β+* S} {p : Ideal R} {I : Ideal S} [p.IsPrime] : Disjoint βI β(Submonoid.map f p.primeCompl) β Ideal.comap f I β€ p - Ideal.isPrime_ideal_prod_top π Mathlib.RingTheory.Ideal.Prod
{R : Type u} {S : Type v} [Semiring R] [Semiring S] {I : Ideal R} [h : I.IsPrime] : (I.prod β€).IsPrime - Ideal.isPrime_ideal_prod_top' π Mathlib.RingTheory.Ideal.Prod
{R : Type u} {S : Type v} [Semiring R] [Semiring S] {I : Ideal S} [h : I.IsPrime] : (β€.prod I).IsPrime - Ideal.isPrime_of_isPrime_prod_top π Mathlib.RingTheory.Ideal.Prod
{R : Type u} {S : Type v} [Semiring R] [Semiring S] {I : Ideal R} (h : (I.prod β€).IsPrime) : I.IsPrime - Ideal.isPrime_of_isPrime_prod_top' π Mathlib.RingTheory.Ideal.Prod
{R : Type u} {S : Type v} [Semiring R] [Semiring S] {I : Ideal S} (h : (β€.prod I).IsPrime) : I.IsPrime - Ideal.ideal_prod_prime_aux π Mathlib.RingTheory.Ideal.Prod
{R : Type u} {S : Type v} [Semiring R] [Semiring S] {I : Ideal R} {J : Ideal S} : (I.prod J).IsPrime β I = β€ β¨ J = β€ - Ideal.ideal_prod_prime π Mathlib.RingTheory.Ideal.Prod
{R : Type u} {S : Type v} [Semiring R] [Semiring S] (I : Ideal (R Γ S)) : I.IsPrime β (β p, p.IsPrime β§ I = p.prod β€) β¨ β p, p.IsPrime β§ I = β€.prod p - Ideal.IsPrime.exists_mem_prime_of_ne_bot π Mathlib.RingTheory.UniqueFactorizationDomain.Ideal
{R : Type u_2} [CommSemiring R] [IsDomain R] [UniqueFactorizationMonoid R] {I : Ideal R} (hIβ : I.IsPrime) (hI : I β β₯) : β x β I, Prime x - IsPrime.to_maximal_ideal π Mathlib.RingTheory.PrincipalIdealDomain
{R : Type u} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] {S : Ideal R} [hpi : S.IsPrime] (hS : S β β₯) : S.IsMaximal - Submodule.IsPrincipal.prime_generator_of_isPrime π Mathlib.RingTheory.PrincipalIdealDomain
{R : Type u} [CommSemiring R] (S : Ideal R) [Submodule.IsPrincipal S] [is_prime : S.IsPrime] (ne_bot : S β β₯) : Prime (Submodule.IsPrincipal.generator S) - Ideal.isPrime_map_C_of_isPrime π Mathlib.RingTheory.Polynomial.Basic
{R : Type u} [CommRing R] {P : Ideal R} [P.IsPrime] : (Ideal.map Polynomial.C P).IsPrime - Ideal.isPrime_map_C_iff_isPrime π Mathlib.RingTheory.Polynomial.Basic
{R : Type u} [CommRing R] (P : Ideal R) : (Ideal.map Polynomial.C P).IsPrime β P.IsPrime - Ideal.isPrime_map_quotientMk_of_isPrime π Mathlib.RingTheory.Ideal.Quotient.Operations
{R : Type u} [Ring R] {I : Ideal R} [I.IsTwoSided] {p : Ideal R} [p.IsPrime] (hIP : I β€ p) : (Ideal.map (Ideal.Quotient.mk I) p).IsPrime - Ideal.IsPrime.isPrimary π Mathlib.RingTheory.Ideal.IsPrimary
{R : Type u_1} [CommSemiring R] {I : Ideal R} (hi : I.IsPrime) : I.IsPrimary - Ideal.isPrime_radical π Mathlib.RingTheory.Ideal.IsPrimary
{R : Type u_1} [CommSemiring R] {I : Ideal R} (hi : I.IsPrimary) : I.radical.IsPrime - IsLocalRing.of_unique_nonzero_prime π Mathlib.RingTheory.LocalRing.Basic
{R : Type u_1} [CommSemiring R] (h : β! P, P β β₯ β§ P.IsPrime) : IsLocalRing R - IsLocalRing.le_maximalIdeal_of_isPrime π Mathlib.RingTheory.LocalRing.MaximalIdeal.Basic
{R : Type u_1} [CommSemiring R] [IsLocalRing R] (p : Ideal R) [hp : p.IsPrime] : p β€ IsLocalRing.maximalIdeal R - Ideal.IsPrime.smul π Mathlib.RingTheory.Ideal.Pointwise
{M : Type u_1} {R : Type u_2} [Group M] [Semiring R] [MulSemiringAction M R] {I : Ideal R} [H : I.IsPrime] (g : M) : (g β’ I).IsPrime - Ideal.IsPrime.smul_iff π Mathlib.RingTheory.Ideal.Pointwise
{M : Type u_1} {R : Type u_2} [Group M] [Semiring R] [MulSemiringAction M R] {I : Ideal R} (g : M) : (g β’ I).IsPrime β I.IsPrime - Ideal.IsPrime.under π Mathlib.RingTheory.Ideal.Over
(A : Type u_2) [CommSemiring A] {B : Type u_3} [Semiring B] [Algebra A B] (P : Ideal B) [hP : P.IsPrime] : (Ideal.under A P).IsPrime - Ideal.primesOver.mk π Mathlib.RingTheory.Ideal.Over
{A : Type u_2} [CommSemiring A] (p : Ideal A) {B : Type u_3} [Semiring B] [Algebra A B] (P : Ideal B) [hPp : P.IsPrime] [hp : P.LiesOver p] : β(p.primesOver B) - Ideal.primesOver.isPrime π Mathlib.RingTheory.Ideal.Over
{A : Type u_2} [CommSemiring A] (p : Ideal A) {B : Type u_3} [Semiring B] [Algebra A B] (Q : β(p.primesOver B)) : (βQ).IsPrime - Ideal.Quotient.nontrivial_of_liesOver_of_isPrime π Mathlib.RingTheory.Ideal.Over
{A : Type u_3} {B : Type u_4} [CommRing A] [CommRing B] [Algebra A B] (P : Ideal B) (p : Ideal A) [P.LiesOver p] [hp : p.IsPrime] : Nontrivial (B β§Έ P) - Ideal.primeCompl.eq_1 π Mathlib.RingTheory.Ideal.Over
{Ξ± : Type u} [Semiring Ξ±] (P : Ideal Ξ±) [hp : P.IsPrime] : P.primeCompl = { carrier := (βP)αΆ, mul_mem' := β―, one_mem' := β― } - Ideal.disjoint_primeCompl_of_liesOver π Mathlib.RingTheory.Ideal.Over
{A : Type u_2} [CommSemiring A] {C : Type u_4} [Semiring C] [Algebra A C] (π : Ideal C) (p : Ideal A) [p.IsPrime] [hPp : π.LiesOver p] : Disjoint β(Algebra.algebraMapSubmonoid C p.primeCompl) βπ - Ideal.Quotient.instIsPrimeQuotientMapRingHomAlgebraMapMkOfLiesOver π Mathlib.RingTheory.Ideal.Over
(R : Type u_2) [CommSemiring R] {A : Type u_3} [CommRing A] [Algebra R A] (p : Ideal R) (P : Ideal A) [P.IsPrime] [P.LiesOver p] : (Ideal.map (Ideal.Quotient.mk (Ideal.map (algebraMap R A) p)) P).IsPrime - PrimeSpectrum.isPrime π Mathlib.RingTheory.Spectrum.Prime.Defs
{R : Type u_1} [CommSemiring R] (self : PrimeSpectrum R) : self.asIdeal.IsPrime - PrimeSpectrum.mk π Mathlib.RingTheory.Spectrum.Prime.Defs
{R : Type u_1} [CommSemiring R] (asIdeal : Ideal R) (isPrime : asIdeal.IsPrime) : PrimeSpectrum R - PrimeSpectrum.mk.injEq π Mathlib.RingTheory.Spectrum.Prime.Defs
{R : Type u_1} [CommSemiring R] (asIdeal : Ideal R) (isPrime : asIdeal.IsPrime) (asIdealβ : Ideal R) (isPrimeβ : asIdealβ.IsPrime) : ({ asIdeal := asIdeal, isPrime := isPrime } = { asIdeal := asIdealβ, isPrime := isPrimeβ }) = (asIdeal = asIdealβ) - PrimeSpectrum.mk.sizeOf_spec π Mathlib.RingTheory.Spectrum.Prime.Defs
{R : Type u_1} [CommSemiring R] [SizeOf R] (asIdeal : Ideal R) (isPrime : asIdeal.IsPrime) : sizeOf { asIdeal := asIdeal, isPrime := isPrime } = 1 + sizeOf asIdeal + sizeOf isPrime - PrimeSpectrum.equivSubtype π Mathlib.RingTheory.Spectrum.Prime.Defs
(R : Type u_1) [CommSemiring R] : PrimeSpectrum R βo { I // I.IsPrime } - PrimeSpectrum.equivSubtype_apply_coe π Mathlib.RingTheory.Spectrum.Prime.Defs
(R : Type u_1) [CommSemiring R] (I : PrimeSpectrum R) : β((PrimeSpectrum.equivSubtype R) I) = I.asIdeal - PrimeSpectrum.equivSubtype_symm_apply_asIdeal π Mathlib.RingTheory.Spectrum.Prime.Defs
(R : Type u_1) [CommSemiring R] (I : { I // I.IsPrime }) : ((RelIso.symm (PrimeSpectrum.equivSubtype R)) I).asIdeal = βI - IsLocalization.instIsDomainLocalizationAlgebraMapSubmonoidPrimeComplOfFaithfulSMul π Mathlib.RingTheory.Localization.Ideal
{R : Type u_1} [CommRing R] (S : Type u_2) [CommRing S] [Algebra R S] {P : Ideal R} [P.IsPrime] [IsDomain R] [IsDomain S] [FaithfulSMul R S] : IsDomain (Localization (Algebra.algebraMapSubmonoid S P.primeCompl)) - IsLocalization.isPrime_of_isPrime_disjoint π Mathlib.RingTheory.Localization.Ideal
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (I : Ideal R) (hp : I.IsPrime) (hd : Disjoint βM βI) : (Ideal.map (algebraMap R S) I).IsPrime - IsLocalization.comap_map_of_isPrime_disjoint π Mathlib.RingTheory.Localization.Ideal
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (I : Ideal R) (hI : I.IsPrime) (hM : Disjoint βM βI) : Ideal.comap (algebraMap R S) (Ideal.map (algebraMap R S) I) = I - IsLocalization.isPrime_iff_isPrime_disjoint π Mathlib.RingTheory.Localization.Ideal
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (J : Ideal S) : J.IsPrime β (Ideal.comap (algebraMap R S) J).IsPrime β§ Disjoint βM β(Ideal.comap (algebraMap R S) J) - IsLocalization.orderIsoOfPrime π Mathlib.RingTheory.Localization.Ideal
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] : { p // p.IsPrime } βo { p // p.IsPrime β§ Disjoint βM βp } - IsLocalization.bot_lt_comap_prime π Mathlib.RingTheory.Localization.Ideal
{R : Type u_1} [CommRing R] (M : Submonoid R) (S : Type u_2) [CommRing S] [Algebra R S] [IsLocalization M S] [IsDomain R] (hM : M β€ nonZeroDivisors R) (p : Ideal S) [hpp : p.IsPrime] (hp0 : p β β₯) : β₯ < Ideal.comap (algebraMap R S) p - IsLocalization.surjective_quotientMap_of_maximal_of_localization π Mathlib.RingTheory.Localization.Ideal
{R : Type u_1} [CommRing R] (M : Submonoid R) (S : Type u_2) [CommRing S] [Algebra R S] [IsLocalization M S] {I : Ideal S} [I.IsPrime] {J : Ideal R} {H : J β€ Ideal.comap (algebraMap R S) I} (hI : (Ideal.comap (algebraMap R S) I).IsMaximal) : Function.Surjective β(Ideal.quotientMap I (algebraMap R S) H) - IsLocalization.orderIsoOfPrime_apply_coe π Mathlib.RingTheory.Localization.Ideal
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (p : { p // p.IsPrime }) : β((IsLocalization.orderIsoOfPrime M S) p) = Ideal.comap (algebraMap R S) βp - IsLocalization.orderIsoOfPrime_symm_apply_coe π Mathlib.RingTheory.Localization.Ideal
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (p : { p // p.IsPrime β§ Disjoint βM βp }) : β((RelIso.symm (IsLocalization.orderIsoOfPrime M S)) p) = Ideal.map (algebraMap R S) βp - Ideal.minimalPrimes_isPrime π Mathlib.RingTheory.Ideal.MinimalPrime.Basic
{R : Type u_1} [CommSemiring R] {I p : Ideal R} (h : p β I.minimalPrimes) : p.IsPrime - Ideal.minimalPrimes_eq_subsingleton_self π Mathlib.RingTheory.Ideal.MinimalPrime.Basic
{R : Type u_1} [CommRing R] {I : Ideal R} [I.IsPrime] : I.minimalPrimes = {I} - minimalPrimes_eq_minimals π Mathlib.RingTheory.Ideal.MinimalPrime.Basic
{R : Type u_1} [CommSemiring R] : minimalPrimes R = {x | Minimal Ideal.IsPrime x} - Ideal.minimalPrimes.eq_1 π Mathlib.RingTheory.Ideal.MinimalPrime.Basic
{R : Type u_1} [CommSemiring R] (I : Ideal R) : I.minimalPrimes = {p | Minimal (fun q => q.IsPrime β§ I β€ q) p} - Ideal.exists_minimalPrimes_le π Mathlib.RingTheory.Ideal.MinimalPrime.Basic
{R : Type u_1} [CommSemiring R] {I J : Ideal R} [J.IsPrime] (e : I β€ J) : β p β I.minimalPrimes, p β€ J - Ideal.map_sup_mem_minimalPrimes_of_map_quotientMk_mem_minimalPrimes π Mathlib.RingTheory.Ideal.MinimalPrime.Basic
{R : Type u_1} [CommSemiring R] {S : Type u_2} [CommRing S] [Algebra R S] {I p : Ideal R} {P : Ideal S} [P.IsPrime] [P.LiesOver p] (hI : p β I.minimalPrimes) {J : Ideal S} (hJP : J β€ P) (hJ : Ideal.map (Ideal.Quotient.mk (Ideal.map (algebraMap R S) p)) P β (Ideal.map (Ideal.Quotient.mk (Ideal.map (algebraMap R S) p)) J).minimalPrimes) : P β (Ideal.map (algebraMap R S) I β J).minimalPrimes - Localization.AtPrime π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (P : Ideal R) [hp : P.IsPrime] : Type u_1 - IsLocalization.AtPrime π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (P : Ideal R) [hp : P.IsPrime] : Prop - IsLocalization.AtPrime.Nontrivial π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (P : Ideal R) [hp : P.IsPrime] [IsLocalization.AtPrime S P] : Nontrivial S - IsLocalization.AtPrime.nontrivial π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (P : Ideal R) [hp : P.IsPrime] [IsLocalization.AtPrime S P] : Nontrivial S - IsLocalization.AtPrime.isLocalRing π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (P : Ideal R) [hp : P.IsPrime] [IsLocalization.AtPrime S P] : IsLocalRing S - Localization.AtPrime.isLocalRing π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (P : Ideal R) [hp : P.IsPrime] : IsLocalRing (Localization P.primeCompl) - IsLocalization.isDomain_of_atPrime π Mathlib.RingTheory.Localization.AtPrime.Basic
{A : Type u_4} [CommRing A] [IsDomain A] (S : Type u_5) [CommSemiring S] [Algebra A S] (P : Ideal A) [P.IsPrime] [IsLocalization.AtPrime S P] : IsDomain S - Ideal.primeCompl.congr_simp π Mathlib.RingTheory.Localization.AtPrime.Basic
{Ξ± : Type u} [Semiring Ξ±] (P Pβ : Ideal Ξ±) (e_P : P = Pβ) [hp : P.IsPrime] : P.primeCompl = Pβ.primeCompl - Localization.AtPrime.congr_simp π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (P Pβ : Ideal R) (e_P : P = Pβ) [hp : P.IsPrime] : Localization.AtPrime P = Localization.AtPrime Pβ - IsLocalization.AtPrime.liesOver_maximalIdeal π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (I : Ideal R) [hI : I.IsPrime] [IsLocalization.AtPrime S I] (h : IsLocalRing S := β―) : (IsLocalRing.maximalIdeal S).LiesOver I - IsLocalization.isDomain_of_local_atPrime π Mathlib.RingTheory.Localization.AtPrime.Basic
{A : Type u_4} [CommRing A] [IsDomain A] {P : Ideal A} (xβ : P.IsPrime) : IsDomain (Localization.AtPrime P) - IsLocalization.AtPrime.congr_simp π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (P Pβ : Ideal R) (e_P : P = Pβ) [hp : P.IsPrime] : IsLocalization.AtPrime S P = IsLocalization.AtPrime S Pβ - IsLocalization.AtPrime.faithfulSMul π Mathlib.RingTheory.Localization.AtPrime.Basic
(S : Type u_2) [CommSemiring S] (R : Type u_4) [CommRing R] [NoZeroDivisors R] [Algebra R S] (P : Ideal R) [hp : P.IsPrime] [IsLocalization.AtPrime S P] : FaithfulSMul R S - IsLocalization.AtPrime.isMaximal_map π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (p : Ideal R) [p.IsPrime] (Rβ : Type u_4) [CommSemiring Rβ] [Algebra R Rβ] [IsLocalization.AtPrime Rβ p] [IsLocalRing Rβ] : (Ideal.map (algebraMap R Rβ) p).IsMaximal - IsLocalization.AtPrime.map_eq_maximalIdeal π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (p : Ideal R) [p.IsPrime] (Rβ : Type u_4) [CommSemiring Rβ] [Algebra R Rβ] [IsLocalization.AtPrime Rβ p] [IsLocalRing Rβ] : Ideal.map (algebraMap R Rβ) p = IsLocalRing.maximalIdeal Rβ - IsLocalization.AtPrime.comap_maximalIdeal π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (I : Ideal R) [hI : I.IsPrime] [IsLocalization.AtPrime S I] (h : IsLocalRing S := β―) : Ideal.comap (algebraMap R S) (IsLocalRing.maximalIdeal S) = I - IsLocalization.AtPrime.primeSpectrumOrderIso π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (I : Ideal R) [hI : I.IsPrime] [IsLocalization.AtPrime S I] : PrimeSpectrum S βo β(Set.Iic { asIdeal := I, isPrime := hI }) - IsLocalization.AtPrime.isPrime_map_of_liesOver π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (p : Ideal R) [p.IsPrime] (Sβ : Type u_5) [CommSemiring Sβ] [Algebra S Sβ] [IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sβ] (P : Ideal S) [P.IsPrime] [P.LiesOver p] : (Ideal.map (algebraMap S Sβ) P).IsPrime - IsLocalization.AtPrime.isUnit_to_map_iff π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (I : Ideal R) [hI : I.IsPrime] [IsLocalization.AtPrime S I] (x : R) : IsUnit ((algebraMap R S) x) β x β I.primeCompl - Localization.AtPrime.instAlgebraOfLiesOver π Mathlib.RingTheory.Localization.AtPrime.Basic
{A : Type u_4} {B : Type u_5} [CommRing A] [CommRing B] [Algebra A B] (p : Ideal A) [p.IsPrime] (P : Ideal B) [P.IsPrime] [P.LiesOver p] : Algebra (Localization.AtPrime p) (Localization.AtPrime P) - Ideal.isPrime_map_of_isLocalizationAtPrime π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (q : Ideal R) [q.IsPrime] {S : Type u_4} [CommSemiring S] [Algebra R S] [IsLocalization.AtPrime S q] {p : Ideal R} [p.IsPrime] (hpq : p β€ q) : (Ideal.map (algebraMap R S) p).IsPrime - IsLocalization.AtPrime.isUnit_mk'_iff π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (I : Ideal R) [hI : I.IsPrime] [IsLocalization.AtPrime S I] (x : R) (y : β₯I.primeCompl) : IsUnit (IsLocalization.mk' S x y) β x β I.primeCompl - Ideal.under_map_of_isLocalizationAtPrime π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (q : Ideal R) [q.IsPrime] {S : Type u_4} [CommSemiring S] [Algebra R S] [IsLocalization.AtPrime S q] {p : Ideal R} [p.IsPrime] (hpq : p β€ q) : Ideal.under R (Ideal.map (algebraMap R S) p) = p - Localization.AtPrime.instAlgebraOfLiesOver.congr_simp π Mathlib.RingTheory.Localization.AtPrime.Basic
{A : Type u_4} {B : Type u_5} [CommRing A] [CommRing B] [Algebra A B] (p : Ideal A) [p.IsPrime] (P : Ideal B) [P.IsPrime] [P.LiesOver p] : Localization.AtPrime.instAlgebraOfLiesOver p P = Localization.AtPrime.instAlgebraOfLiesOver p P - IsLocalization.AtPrime.to_map_mem_maximal_iff π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (I : Ideal R) [hI : I.IsPrime] [IsLocalization.AtPrime S I] (x : R) (h : IsLocalRing S := β―) : (algebraMap R S) x β IsLocalRing.maximalIdeal S β x β I - Localization.instFaithfulSMulAtPrimeOfNoZeroDivisors π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_4} [CommRing R] [NoZeroDivisors R] (P : Ideal R) [hp : P.IsPrime] : FaithfulSMul R (Localization.AtPrime P) - Localization.localRingHom π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (I : Ideal R) [hI : I.IsPrime] (J : Ideal P) [J.IsPrime] (f : R β+* P) (hIJ : I = Ideal.comap f J) : Localization.AtPrime I β+* Localization.AtPrime J - IsLocalization.AtPrime.comap_map_of_isMaximal π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (p : Ideal R) [p.IsPrime] (Sβ : Type u_5) [CommSemiring Sβ] [Algebra S Sβ] [IsLocalization (Algebra.algebraMapSubmonoid S p.primeCompl) Sβ] (P : Ideal S) [P.IsMaximal] [P.LiesOver p] : Ideal.comap (algebraMap S Sβ) (Ideal.map (algebraMap S Sβ) P) = P - IsLocalization.AtPrime.mk'_mem_maximal_iff π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (I : Ideal R) [hI : I.IsPrime] [IsLocalization.AtPrime S I] (x : R) (y : β₯I.primeCompl) (h : IsLocalRing S := β―) : IsLocalization.mk' S x y β IsLocalRing.maximalIdeal S β x β I - Localization.localRingHom_id π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (I : Ideal R) [hI : I.IsPrime] : Localization.localRingHom I I (RingHom.id R) β― = RingHom.id (Localization.AtPrime I) - Localization.AtPrime.map_eq_maximalIdeal π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] {I : Ideal R} [hI : I.IsPrime] : Ideal.map (algebraMap R (Localization.AtPrime I)) I = IsLocalRing.maximalIdeal (Localization I.primeCompl) - IsLocalization.AtPrime.orderIsoOfPrime π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (I : Ideal R) [hI : I.IsPrime] [IsLocalization.AtPrime S I] : { p // p.IsPrime } βo { p // p.IsPrime β§ p β€ I } - Localization.AtPrime.comap_maximalIdeal π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] {I : Ideal R} [hI : I.IsPrime] : Ideal.comap (algebraMap R (Localization.AtPrime I)) (IsLocalRing.maximalIdeal (Localization I.primeCompl)) = I - Localization.localRingHom.congr_simp π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (I : Ideal R) [hI : I.IsPrime] (J : Ideal P) [J.IsPrime] (f fβ : R β+* P) (e_f : f = fβ) (hIJ : I = Ideal.comap f J) : Localization.localRingHom I J f hIJ = Localization.localRingHom I J fβ β― - Localization.isLocalHom_localRingHom π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (I : Ideal R) [hI : I.IsPrime] (J : Ideal P) [hJ : J.IsPrime] (f : R β+* P) (hIJ : I = Ideal.comap f J) : IsLocalHom (Localization.localRingHom I J f hIJ) - Localization.AtPrime.eq_maximalIdeal_iff_comap_eq π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] {I : Ideal R} [hI : I.IsPrime] {J : Ideal (Localization.AtPrime I)} : Ideal.comap (algebraMap R (Localization.AtPrime I)) J = I β J = IsLocalRing.maximalIdeal (Localization.AtPrime I) - Localization.le_comap_primeCompl_iff π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] {I : Ideal R} [hI : I.IsPrime] {J : Ideal P} [J.IsPrime] {f : R β+* P} : I.primeCompl β€ Submonoid.comap f J.primeCompl β Ideal.comap f J β€ I - Localization.AtPrime.instIsScalarTower π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] {A : Type u_4} {B : Type u_5} [CommRing A] [CommRing B] [Algebra A B] [Algebra R A] [Algebra R B] [IsScalarTower R A B] (p : Ideal A) [p.IsPrime] (P : Ideal B) [P.IsPrime] [P.LiesOver p] : IsScalarTower R (Localization.AtPrime p) (Localization.AtPrime P) - Localization.instNoZeroSMulDivisorsAtPrimeAlgebraMapSubmonoidPrimeComplOfNoZeroDivisorsOfIsDomain π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_4} {S : Type u_5} [CommRing R] [NoZeroDivisors R] {P : Ideal R} [CommRing S] [Algebra R S] [NoZeroSMulDivisors R S] [IsDomain S] [P.IsPrime] : NoZeroSMulDivisors (Localization.AtPrime P) (Localization (Algebra.algebraMapSubmonoid S P.primeCompl)) - IsLocalization.subsingleton_primeSpectrum_of_mem_minimalPrimes π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_5} [CommSemiring R] (p : Ideal R) (hp : p β minimalPrimes R) (S : Type u_6) [CommSemiring S] [Algebra R S] [IsLocalization.AtPrime S p] : Subsingleton (PrimeSpectrum S) - Localization.localRingHom_comp π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (I : Ideal R) [hI : I.IsPrime] {S : Type u_4} [CommSemiring S] (J : Ideal S) [hJ : J.IsPrime] (K : Ideal P) [hK : K.IsPrime] (f : R β+* S) (hIJ : I = Ideal.comap f J) (g : S β+* P) (hJK : J = Ideal.comap g K) : Localization.localRingHom I K (g.comp f) β― = (Localization.localRingHom J K g hJK).comp (Localization.localRingHom I J f hIJ) - Localization.AtPrime.instIsScalarTower_1 π Mathlib.RingTheory.Localization.AtPrime.Basic
{A : Type u_4} {B : Type u_5} {C : Type u_6} [CommRing A] [CommRing B] [CommRing C] [Algebra A B] [Algebra A C] [Algebra B C] [IsScalarTower A B C] (p : Ideal A) [p.IsPrime] (P : Ideal B) [P.IsPrime] [P.LiesOver p] (Q : Ideal C) [Q.IsPrime] [Q.LiesOver P] [Q.LiesOver p] : IsScalarTower (Localization.AtPrime p) (Localization.AtPrime P) (Localization.AtPrime Q) - IsLocalization.AtPrime.coe_primeSpectrumOrderIso_apply_coe_asIdeal π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (I : Ideal R) [hI : I.IsPrime] [IsLocalization.AtPrime S I] (aβ : PrimeSpectrum S) : β(β((IsLocalization.AtPrime.primeSpectrumOrderIso S I) aβ)).asIdeal = β(algebraMap R S) β»ΒΉ' βaβ.asIdeal - Localization.localRingHom_to_map π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (I : Ideal R) [hI : I.IsPrime] (J : Ideal P) [J.IsPrime] (f : R β+* P) (hIJ : I = Ideal.comap f J) (x : R) : (Localization.localRingHom I J f hIJ) ((algebraMap R (Localization.AtPrime I)) x) = (algebraMap P (Localization.AtPrime J)) (f x) - Localization.localRingHom_unique π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (I : Ideal R) [hI : I.IsPrime] (J : Ideal P) [J.IsPrime] (f : R β+* P) (hIJ : I = Ideal.comap f J) {j : Localization.AtPrime I β+* Localization.AtPrime J} (hj : β (x : R), j ((algebraMap R (Localization.AtPrime I)) x) = (algebraMap P (Localization.AtPrime J)) (f x)) : Localization.localRingHom I J f hIJ = j - Localization.AtPrime.mapPiEvalRingHom π Mathlib.RingTheory.Localization.AtPrime.Basic
{ΞΉ : Type u_4} {R : ΞΉ β Type u_5} [(i : ΞΉ) β CommSemiring (R i)] {i : ΞΉ} (I : Ideal (R i)) [I.IsPrime] : Localization.AtPrime (Ideal.comap (Pi.evalRingHom R i) I) β+* Localization.AtPrime I - Localization.localRingHom_mk' π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (I : Ideal R) [hI : I.IsPrime] (J : Ideal P) [J.IsPrime] (f : R β+* P) (hIJ : I = Ideal.comap f J) (x : R) (y : β₯I.primeCompl) : (Localization.localRingHom I J f hIJ) (IsLocalization.mk' (Localization.AtPrime I) x y) = IsLocalization.mk' (Localization.AtPrime J) (f x) β¨f βy, β―β© - IsLocalization.AtPrime.coe_orderIsoOfPrime_apply_coe π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (I : Ideal R) [hI : I.IsPrime] [IsLocalization.AtPrime S I] (aβ : { p // p.IsPrime }) : ββ((IsLocalization.AtPrime.orderIsoOfPrime S I) aβ) = β(algebraMap R S) β»ΒΉ' ββaβ - Localization.AtPrime.mapPiEvalRingHom_comp_algebraMap π Mathlib.RingTheory.Localization.AtPrime.Basic
{ΞΉ : Type u_4} {R : ΞΉ β Type u_5} [(i : ΞΉ) β CommSemiring (R i)] {i : ΞΉ} (I : Ideal (R i)) [I.IsPrime] : (Localization.AtPrime.mapPiEvalRingHom I).comp (algebraMap ((i : ΞΉ) β R i) (Localization.AtPrime (Ideal.comap (Pi.evalRingHom R i) I))) = (algebraMap (R i) (Localization.AtPrime I)).comp (Pi.evalRingHom R i) - Localization.AtPrime.mapPiEvalRingHom_bijective π Mathlib.RingTheory.Localization.AtPrime.Basic
{ΞΉ : Type u_4} {R : ΞΉ β Type u_5} [(i : ΞΉ) β CommSemiring (R i)] {i : ΞΉ} (I : Ideal (R i)) [I.IsPrime] : Function.Bijective β(Localization.AtPrime.mapPiEvalRingHom I) - IsLocalization.AtPrime.coe_primeSpectrumOrderIso_symm_apply_asIdeal π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (I : Ideal R) [hI : I.IsPrime] [IsLocalization.AtPrime S I] (aβ : β(Set.Iic { asIdeal := I, isPrime := hI })) : β((RelIso.symm (IsLocalization.AtPrime.primeSpectrumOrderIso S I)) aβ).asIdeal = β s, β (_ : ββ((OrderIso.setCongr (fun p => p.IsPrime β§ Disjoint βI.primeCompl βp) (fun p => p.IsPrime β§ p β€ I) β―).symm β¨(βaβ).asIdeal, β―β©) β β(algebraMap R S) β»ΒΉ' βs), βs - Localization.AtPrime.mapPiEvalRingHom_algebraMap_apply π Mathlib.RingTheory.Localization.AtPrime.Basic
{ΞΉ : Type u_4} {R : ΞΉ β Type u_5} [(i : ΞΉ) β CommSemiring (R i)] {i : ΞΉ} (I : Ideal (R i)) [I.IsPrime] {r : (i : ΞΉ) β R i} : (Localization.AtPrime.mapPiEvalRingHom I) ((algebraMap ((i : ΞΉ) β R i) (Localization.AtPrime (Ideal.comap (Pi.evalRingHom R i) I))) r) = (algebraMap (R i) (Localization.AtPrime I)) (r i) - IsLocalization.AtPrime.coe_orderIsoOfPrime_symm_apply_coe π Mathlib.RingTheory.Localization.AtPrime.Basic
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (I : Ideal R) [hI : I.IsPrime] [IsLocalization.AtPrime S I] (aβ : { p // p.IsPrime β§ p β€ I }) : ββ((RelIso.symm (IsLocalization.AtPrime.orderIsoOfPrime S I)) aβ) = β s, β (_ : ββ((OrderIso.setCongr (fun p => p.IsPrime β§ Disjoint βI.primeCompl βp) (fun p => p.IsPrime β§ p β€ I) β―).symm aβ) β β(algebraMap R S) β»ΒΉ' βs), βs - LocalizedModule.AtPrime π Mathlib.Algebra.Module.LocalizedModule.AtPrime
{R : Type u_1} [CommSemiring R] (P : Ideal R) [P.IsPrime] (M : Type u_2) [AddCommMonoid M] [Module R M] : Type (max u_1 u_2) - IsLocalizedModule.AtPrime π Mathlib.Algebra.Module.LocalizedModule.AtPrime
{R : Type u_1} {M : Type u_2} {M' : Type u_3} [CommSemiring R] (P : Ideal R) [P.IsPrime] [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R M'] (f : M ββ[R] M') : Prop - IsLocalizedModule.map_linearMap_of_isLocalization π Mathlib.RingTheory.LocalProperties.Exactness
{R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] [Algebra R S] (Rβ : Type u_5) (Sβ : Type u_6) [CommSemiring Rβ] [Algebra R Rβ] [CommSemiring Sβ] [Algebra S Sβ] [Algebra R Sβ] [IsScalarTower R S Sβ] [Algebra Rβ Sβ] [IsScalarTower R Rβ Sβ] (p : Ideal R) [p.IsPrime] [IsLocalization.AtPrime Rβ p] [IsLocalizedModule.AtPrime p β(IsScalarTower.toAlgHom R S Sβ)] : (IsLocalizedModule.map p.primeCompl (Algebra.linearMap R Rβ) β(IsScalarTower.toAlgHom R S Sβ)) (Algebra.linearMap R S) = βR (Algebra.linearMap Rβ Sβ) - instFlatAtPrime π Mathlib.RingTheory.Flat.Localization
{A : Type u_4} {B : Type u_5} [CommRing A] [CommRing B] [Algebra A B] [Module.Flat A B] (p : Ideal A) [p.IsPrime] (P : Ideal B) [P.IsPrime] [P.LiesOver p] : Module.Flat (Localization.AtPrime p) (Localization.AtPrime P) - nilradical_eq_sInf π Mathlib.RingTheory.Nilpotent.Lemmas
(R : Type u_3) [CommSemiring R] : nilradical R = sInf {J | J.IsPrime} - nilradical_le_prime π Mathlib.RingTheory.Nilpotent.Lemmas
{R : Type u_1} [CommSemiring R] (J : Ideal R) [H : J.IsPrime] : nilradical R β€ J - nilpotent_iff_mem_prime π Mathlib.RingTheory.Nilpotent.Lemmas
{R : Type u_1} [CommSemiring R] {x : R} : IsNilpotent x β β (J : Ideal R), J.IsPrime β x β J - Ideal.IsMaximal.of_liesOver_isMaximal π Mathlib.RingTheory.Ideal.GoingUp
{A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] [Algebra A B] [Algebra.IsIntegral A B] (P : Ideal B) (p : Ideal A) [P.LiesOver p] [hpm : p.IsMaximal] [P.IsPrime] : P.IsMaximal - Ideal.nonempty_primesOver π Mathlib.RingTheory.Ideal.GoingUp
{R : Type u_1} [CommRing R] {S : Type u_2} [CommRing S] [Algebra R S] [Nontrivial S] [Algebra.IsIntegral R S] [NoZeroSMulDivisors R S] (P : Ideal R) [P.IsPrime] : Nonempty β(P.primesOver S) - Ideal.isMaximal_of_isIntegral_of_isMaximal_comap' π Mathlib.RingTheory.Ideal.GoingUp
{R : Type u_1} [CommRing R] {S : Type u_2} [CommRing S] (f : R β+* S) (hf : f.IsIntegral) (I : Ideal S) [I.IsPrime] (hI : (Ideal.comap f I).IsMaximal) : I.IsMaximal - Ideal.isMaximal_of_isIntegral_of_isMaximal_comap π Mathlib.RingTheory.Ideal.GoingUp
{R : Type u_1} [CommRing R] {S : Type u_2} [CommRing S] [Algebra R S] [Algebra.IsIntegral R S] (I : Ideal S) [I.IsPrime] (hI : (Ideal.comap (algebraMap R S) I).IsMaximal) : I.IsMaximal - Ideal.IsIntegralClosure.isMaximal_of_isMaximal_comap π Mathlib.RingTheory.Ideal.GoingUp
{R : Type u_1} [CommRing R] (S : Type u_2) [CommRing S] [Algebra R S] {A : Type u_3} [CommRing A] [Algebra R A] [Algebra A S] [IsScalarTower R A S] [IsIntegralClosure A R S] (I : Ideal A) [I.IsPrime] (hI : (Ideal.comap (algebraMap R A) I).IsMaximal) : I.IsMaximal - Ideal.exists_ideal_over_prime_of_isIntegral_of_isDomain π Mathlib.RingTheory.Ideal.GoingUp
{R : Type u_1} [CommRing R] {S : Type u_2} [CommRing S] [Algebra R S] [IsDomain S] [Algebra.IsIntegral R S] (P : Ideal R) [P.IsPrime] (hP : RingHom.ker (algebraMap R S) β€ P) : β Q, Q.IsPrime β§ Ideal.comap (algebraMap R S) Q = P - Ideal.exists_ideal_over_prime_of_isIntegral π Mathlib.RingTheory.Ideal.GoingUp
{R : Type u_1} [CommRing R] {S : Type u_2} [CommRing S] [Algebra R S] [Algebra.IsIntegral R S] (P : Ideal R) [P.IsPrime] (I : Ideal S) (hIP : Ideal.comap (algebraMap R S) I β€ P) : β Q β₯ I, Q.IsPrime β§ Ideal.comap (algebraMap R S) Q = P - Ideal.exists_ideal_over_prime_of_isIntegral_of_isPrime π Mathlib.RingTheory.Ideal.GoingUp
{R : Type u_1} [CommRing R] {S : Type u_2} [CommRing S] [Algebra R S] [Algebra.IsIntegral R S] (P : Ideal R) [P.IsPrime] (I : Ideal S) [I.IsPrime] (hIP : Ideal.comap (algebraMap R S) I β€ P) : β Q β₯ I, Q.IsPrime β§ Ideal.comap (algebraMap R S) Q = P - Ideal.IsIntegralClosure.comap_lt_comap π Mathlib.RingTheory.Ideal.GoingUp
{R : Type u_1} [CommRing R] (S : Type u_2) [CommRing S] [Algebra R S] {A : Type u_3} [CommRing A] [Algebra R A] [Algebra A S] [IsScalarTower R A S] [IsIntegralClosure A R S] {I J : Ideal A} [I.IsPrime] (I_lt_J : I < J) : Ideal.comap (algebraMap R A) I < Ideal.comap (algebraMap R A) J - Ideal.comap_lt_comap_of_integral_mem_sdiff π Mathlib.RingTheory.Ideal.GoingUp
{R : Type u_1} [CommRing R] {S : Type u_2} [CommRing S] {I J : Ideal S} [Algebra R S] [hI : I.IsPrime] (hIJ : I β€ J) {x : S} (mem : x β βJ \ βI) (integral : IsIntegral R x) : Ideal.comap (algebraMap R S) I < Ideal.comap (algebraMap R S) J - Ideal.IntegralClosure.isMaximal_of_isMaximal_comap π Mathlib.RingTheory.Ideal.GoingUp
{R : Type u_1} [CommRing R] {S : Type u_2} [CommRing S] [Algebra R S] (I : Ideal β₯(integralClosure R S)) [I.IsPrime] (hI : (Ideal.comap (algebraMap R β₯(integralClosure R S)) I).IsMaximal) : I.IsMaximal - Ideal.IntegralClosure.comap_lt_comap π Mathlib.RingTheory.Ideal.GoingUp
{R : Type u_1} [CommRing R] {S : Type u_2} [CommRing S] [Algebra R S] {I J : Ideal β₯(integralClosure R S)} [I.IsPrime] (I_lt_J : I < J) : Ideal.comap (algebraMap R β₯(integralClosure R S)) I < Ideal.comap (algebraMap R β₯(integralClosure R S)) J - Ideal.comap_lt_comap_of_root_mem_sdiff π Mathlib.RingTheory.Ideal.GoingUp
{R : Type u_1} [CommRing R] {S : Type u_2} [CommRing S] {f : R β+* S} {I J : Ideal S} [I.IsPrime] (hIJ : I β€ J) {r : S} (hr : r β βJ \ βI) {p : Polynomial R} (p_ne_zero : Polynomial.map (Ideal.Quotient.mk (Ideal.comap f I)) p β 0) (hp : Polynomial.evalβ f r p β I) : Ideal.comap f I < Ideal.comap f J - Ideal.exists_coeff_mem_comap_sdiff_comap_of_root_mem_sdiff π Mathlib.RingTheory.Ideal.GoingUp
{R : Type u_1} [CommRing R] {S : Type u_2} [CommRing S] {f : R β+* S} {I J : Ideal S} [I.IsPrime] (hIJ : I β€ J) {r : S} (hr : r β βJ \ βI) {p : Polynomial R} (p_ne_zero : Polynomial.map (Ideal.Quotient.mk (Ideal.comap f I)) p β 0) (hpI : Polynomial.evalβ f r p β I) : β i, p.coeff i β β(Ideal.comap f J) \ β(Ideal.comap f I) - PrimeSpectrum.range_asIdeal π Mathlib.RingTheory.Spectrum.Prime.Basic
(R : Type u) [CommSemiring R] : Set.range PrimeSpectrum.asIdeal = {J | J.IsPrime} - PrimeSpectrum.mk.congr_simp π Mathlib.RingTheory.Spectrum.Prime.Basic
{R : Type u_1} [CommSemiring R] (asIdeal asIdealβ : Ideal R) (e_asIdeal : asIdeal = asIdealβ) (isPrime : asIdeal.IsPrime) : { asIdeal := asIdeal, isPrime := isPrime } = { asIdeal := asIdealβ, isPrime := β― } - PrimeSpectrum.zeroLocus_eq_singleton π Mathlib.RingTheory.Spectrum.Prime.Basic
{R : Type u} [CommSemiring R] (m : Ideal R) [m.IsMaximal] : PrimeSpectrum.zeroLocus βm = {{ asIdeal := m, isPrime := β― }} - PrimeSpectrum.primeSpectrumProdOfSum.eq_1 π Mathlib.RingTheory.Spectrum.Prime.Basic
(R : Type u) (S : Type v) [CommSemiring R] [CommSemiring S] (I : Ideal R) (isPrime : I.IsPrime) : PrimeSpectrum.primeSpectrumProdOfSum R S (Sum.inl { asIdeal := I, isPrime := isPrime }) = { asIdeal := I.prod β€, isPrime := β― } - PrimeSpectrum.primeSpectrumProdOfSum.eq_2 π Mathlib.RingTheory.Spectrum.Prime.Basic
(R : Type u) (S : Type v) [CommSemiring R] [CommSemiring S] (J : Ideal S) (isPrime : J.IsPrime) : PrimeSpectrum.primeSpectrumProdOfSum R S (Sum.inr { asIdeal := J, isPrime := isPrime }) = { asIdeal := β€.prod J, isPrime := β― } - RingHom.SurjectiveOnStalks.exists_mul_eq_tmul π Mathlib.RingTheory.SurjectiveOnStalks
{R : Type u_1} [CommRing R] {S : Type u_2} [CommRing S] {T : Type u_3} [CommRing T] [Algebra R T] [Algebra R S] (hfβ : (algebraMap R T).SurjectiveOnStalks) (x : TensorProduct R S T) (J : Ideal T) (hJ : J.IsPrime) : β t r a, r β’ t β J β§ 1 ββ[R] (r β’ t) * x = a ββ[R] t - RingHom.SurjectiveOnStalks.eq_1 π Mathlib.RingTheory.SurjectiveOnStalks
{R : Type u_1} [CommRing R] {S : Type u_2} [CommRing S] (f : R β+* S) : f.SurjectiveOnStalks = β (P : Ideal S) (x : P.IsPrime), Function.Surjective β(Localization.localRingHom (Ideal.comap f P) P f β―) - RingHom.surjective_localRingHom_iff π Mathlib.RingTheory.SurjectiveOnStalks
{R : Type u_1} [CommRing R] {S : Type u_2} [CommRing S] {f : R β+* S} (P : Ideal S) [P.IsPrime] : Function.Surjective β(Localization.localRingHom (Ideal.comap f P) P f β―) β β (s : S), β x r, β c β P, f r β P β§ c * f r * s = c * f x - Ideal.ResidueField π Mathlib.RingTheory.LocalRing.ResidueField.Ideal
{R : Type u_1} [CommRing R] (I : Ideal R) [I.IsPrime] : Type u_1 - instAlgebraQuotientIdealResidueField π Mathlib.RingTheory.LocalRing.ResidueField.Ideal
{R : Type u_1} [CommRing R] (I : Ideal R) [I.IsPrime] : Algebra (R β§Έ I) I.ResidueField - instIsFractionRingQuotientIdealResidueField π Mathlib.RingTheory.LocalRing.ResidueField.Ideal
{R : Type u_1} [CommRing R] (I : Ideal R) [I.IsPrime] : IsFractionRing (R β§Έ I) I.ResidueField - Ideal.surjectiveOnStalks_residueField π Mathlib.RingTheory.LocalRing.ResidueField.Ideal
{R : Type u_1} [CommRing R] (I : Ideal R) [I.IsPrime] : (algebraMap R I.ResidueField).SurjectiveOnStalks - Ideal.ResidueField.map π Mathlib.RingTheory.LocalRing.ResidueField.Ideal
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (I : Ideal R) [I.IsPrime] (J : Ideal S) [J.IsPrime] (f : R β+* S) (hf : I = Ideal.comap f J) : I.ResidueField β+* J.ResidueField - Ideal.injective_algebraMap_quotient_residueField π Mathlib.RingTheory.LocalRing.ResidueField.Ideal
{R : Type u_1} [CommRing R] (I : Ideal R) [I.IsPrime] : Function.Injective β(algebraMap (R β§Έ I) I.ResidueField) - instIsScalarTowerQuotientIdealResidueField π Mathlib.RingTheory.LocalRing.ResidueField.Ideal
{R : Type u_1} [CommRing R] (I : Ideal R) [I.IsPrime] : IsScalarTower R (R β§Έ I) I.ResidueField
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision 519f454