Loogle!
Result
Found 4 declarations mentioning Ideal.ResidueField.map.
- Ideal.ResidueField.map 📋 Mathlib.RingTheory.LocalRing.ResidueField.Ideal
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (I : Ideal R) [I.IsPrime] (J : Ideal S) [J.IsPrime] (f : R →+* S) (hf : I = Ideal.comap f J) : I.ResidueField →+* J.ResidueField - Ideal.ResidueField.map.congr_simp 📋 Mathlib.RingTheory.LocalRing.ResidueField.Ideal
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (I : Ideal R) [I.IsPrime] (J : Ideal S) [J.IsPrime] (f f✝ : R →+* S) (e_f : f = f✝) (hf : I = Ideal.comap f J) : Ideal.ResidueField.map I J f hf = Ideal.ResidueField.map I J f✝ ⋯ - Ideal.ResidueField.map_algebraMap 📋 Mathlib.RingTheory.LocalRing.ResidueField.Ideal
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (I : Ideal R) [I.IsPrime] (J : Ideal S) [J.IsPrime] (f : R →+* S) (hf : I = Ideal.comap f J) (r : R) : (Ideal.ResidueField.map I J f hf) ((algebraMap R I.ResidueField) r) = (algebraMap S J.ResidueField) (f r) - Ideal.ResidueField.mapₐ_apply 📋 Mathlib.RingTheory.LocalRing.ResidueField.Ideal
{R : Type u_1} {A : Type u_3} {B : Type u_4} [CommRing R] [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (I : Ideal A) [I.IsPrime] (J : Ideal B) [J.IsPrime] (f : A →ₐ[R] B) (hf : I = Ideal.comap f.toRingHom J) (x : I.ResidueField) : (Ideal.ResidueField.mapₐ I J f hf) x = (Ideal.ResidueField.map I J f.toRingHom hf) x
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision edaf32c