Loogle!
Result
Found 57 declarations mentioning IntermediateField.map.
- IntermediateField.map_id š Mathlib.FieldTheory.IntermediateField.Basic
{K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] (S : IntermediateField K L) : IntermediateField.map (AlgHom.id K L) S = S - IntermediateField.map š Mathlib.FieldTheory.IntermediateField.Basic
{K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L āā[K] L') (S : IntermediateField K L) : IntermediateField K L' - IntermediateField.map_injective š Mathlib.FieldTheory.IntermediateField.Basic
{K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L āā[K] L') : Function.Injective (IntermediateField.map f) - IntermediateField.toSubalgebra_map š Mathlib.FieldTheory.IntermediateField.Basic
{K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (S : IntermediateField K L) (f : L āā[K] L') : (IntermediateField.map f S).toSubalgebra = Subalgebra.map f S.toSubalgebra - IntermediateField.gc_map_comap š Mathlib.FieldTheory.IntermediateField.Basic
{K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L āā[K] L') : GaloisConnection (IntermediateField.map f) (IntermediateField.comap f) - IntermediateField.map_mono š Mathlib.FieldTheory.IntermediateField.Basic
{K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L āā[K] L') {S T : IntermediateField K L} (h : S ⤠T) : IntermediateField.map f S ⤠IntermediateField.map f T - IntermediateField.coe_map š Mathlib.FieldTheory.IntermediateField.Basic
{K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (S : IntermediateField K L) (f : L āā[K] L') : ā(IntermediateField.map f S) = āf '' āS - IntermediateField.map_le_iff_le_comap š Mathlib.FieldTheory.IntermediateField.Basic
{K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] {f : L āā[K] L'} {s : IntermediateField K L} {t : IntermediateField K L'} : IntermediateField.map f s ⤠t ā s ⤠IntermediateField.comap f t - IntermediateField.map_map š Mathlib.FieldTheory.IntermediateField.Basic
{K : Type u_4} {Lā : Type u_5} {Lā : Type u_6} {Lā : Type u_7} [Field K] [Field Lā] [Algebra K Lā] [Field Lā] [Algebra K Lā] [Field Lā] [Algebra K Lā] (E : IntermediateField K Lā) (f : Lā āā[K] Lā) (g : Lā āā[K] Lā) : IntermediateField.map g (IntermediateField.map f E) = IntermediateField.map (g.comp f) E - IntermediateField.toSubfield_map š Mathlib.FieldTheory.IntermediateField.Basic
{K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (S : IntermediateField K L) (f : L āā[K] L') : (IntermediateField.map f S).toSubfield = Subfield.map (āf) S.toSubfield - IntermediateField.fieldRange_comp_val š Mathlib.FieldTheory.IntermediateField.Basic
{F : Type u_4} [Field F] {E : Type u_5} [Field E] [Algebra F E] {K : Type u_6} [Field K] [Algebra F K] (L : IntermediateField F E) (f : E āā[F] K) : (f.comp L.val).fieldRange = IntermediateField.map f L - IntermediateField.equivMap š Mathlib.FieldTheory.IntermediateField.Basic
{F : Type u_4} [Field F] {E : Type u_5} [Field E] [Algebra F E] {K : Type u_6} [Field K] [Algebra F K] (L : IntermediateField F E) (f : E āā[F] K) : ā„L āā[F] ā„(IntermediateField.map f L) - IntermediateField.intermediateFieldMap š Mathlib.FieldTheory.IntermediateField.Basic
{K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (e : L āā[K] L') (E : IntermediateField K L) : ā„E āā[K] ā„(IntermediateField.map (āe) E) - IntermediateField.coe_equivMap_apply š Mathlib.FieldTheory.IntermediateField.Basic
{F : Type u_4} [Field F] {E : Type u_5} [Field E] [Algebra F E] {K : Type u_6} [Field K] [Algebra F K] (L : IntermediateField F E) (f : E āā[F] K) (x : ā„L) : ā((L.equivMap f) x) = f āx - IntermediateField.intermediateFieldMap_apply_coe š Mathlib.FieldTheory.IntermediateField.Basic
{K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (e : L āā[K] L') (E : IntermediateField K L) (a : ā„E) : ā((IntermediateField.intermediateFieldMap e E) a) = e āa - IntermediateField.intermediateFieldMap_symm_apply_coe š Mathlib.FieldTheory.IntermediateField.Basic
{K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (e : L āā[K] L') (E : IntermediateField K L) (a : ā„(IntermediateField.map (āe) E)) : ā((IntermediateField.intermediateFieldMap e E).symm a) = e.symm āa - IntermediateField.comap_map š Mathlib.FieldTheory.IntermediateField.Adjoin.Defs
{K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L āā[K] L') (S : IntermediateField K L) : IntermediateField.comap f (IntermediateField.map f S) = S - AlgHom.fieldRange_eq_map š Mathlib.FieldTheory.IntermediateField.Adjoin.Defs
{F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] {K : Type u_3} [Field K] [Algebra F K] (f : E āā[F] K) : f.fieldRange = IntermediateField.map f ⤠- IntermediateField.map_bot š Mathlib.FieldTheory.IntermediateField.Adjoin.Defs
{F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] {K : Type u_3} [Field K] [Algebra F K] (f : E āā[F] K) : IntermediateField.map f ā„ = ā„ - IntermediateField.map_comap_eq š Mathlib.FieldTheory.IntermediateField.Adjoin.Defs
{K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] (f : L āā[K] L') (S : IntermediateField K L') : IntermediateField.map f (IntermediateField.comap f S) = S ā f.fieldRange - IntermediateField.map_comap_eq_self š Mathlib.FieldTheory.IntermediateField.Adjoin.Defs
{K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] {f : L āā[K] L'} {S : IntermediateField K L'} (h : S ⤠f.fieldRange) : IntermediateField.map f (IntermediateField.comap f S) = S - IntermediateField.adjoin_map š Mathlib.FieldTheory.IntermediateField.Adjoin.Defs
(F : Type u_1) [Field F] {E : Type u_2} [Field E] [Algebra F E] (S : Set E) {E' : Type u_3} [Field E'] [Algebra F E'] (f : E āā[F] E') : IntermediateField.map f (IntermediateField.adjoin F S) = IntermediateField.adjoin F (āf '' S) - IntermediateField.map_comap_eq_self_of_surjective š Mathlib.FieldTheory.IntermediateField.Adjoin.Defs
{K : Type u_1} {L : Type u_2} {L' : Type u_3} [Field K] [Field L] [Field L'] [Algebra K L] [Algebra K L'] {f : L āā[K] L'} (hf : Function.Surjective āf) (S : IntermediateField K L') : IntermediateField.map f (IntermediateField.comap f S) = S - IntermediateField.map_iSup š Mathlib.FieldTheory.IntermediateField.Adjoin.Defs
{F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] {K : Type u_3} [Field K] [Algebra F K] {ι : Sort u_4} (f : E āā[F] K) (s : ι ā IntermediateField F E) : IntermediateField.map f (iSup s) = ⨠i, IntermediateField.map f (s i) - IntermediateField.map_iInf š Mathlib.FieldTheory.IntermediateField.Adjoin.Defs
{F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] {K : Type u_3} [Field K] [Algebra F K] {ι : Sort u_4} [Nonempty ι] (f : E āā[F] K) (s : ι ā IntermediateField F E) : IntermediateField.map f (iInf s) = ⨠i, IntermediateField.map f (s i) - AlgHom.map_fieldRange š Mathlib.FieldTheory.IntermediateField.Adjoin.Defs
{F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] {K : Type u_3} [Field K] [Algebra F K] {L : Type u_4} [Field L] [Algebra F L] (f : E āā[F] K) (g : K āā[F] L) : IntermediateField.map g f.fieldRange = (g.comp f).fieldRange - IntermediateField.map_inf š Mathlib.FieldTheory.IntermediateField.Adjoin.Defs
{F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] {K : Type u_3} [Field K] [Algebra F K] (s t : IntermediateField F E) (f : E āā[F] K) : IntermediateField.map f (s ā t) = IntermediateField.map f s ā IntermediateField.map f t - IntermediateField.map_sup š Mathlib.FieldTheory.IntermediateField.Adjoin.Defs
{F : Type u_1} [Field F] {E : Type u_2} [Field E] [Algebra F E] {K : Type u_3} [Field K] [Algebra F K] (s t : IntermediateField F E) (f : E āā[F] K) : IntermediateField.map f (s ā t) = IntermediateField.map f s ā IntermediateField.map f t - IntermediateField.lift.eq_1 š Mathlib.FieldTheory.IntermediateField.Adjoin.Defs
{K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {F : IntermediateField K L} (E : IntermediateField K ā„F) : IntermediateField.lift E = IntermediateField.map F.val E - im_finiteDimensional š Mathlib.FieldTheory.IntermediateField.Algebraic
{K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {E : IntermediateField K L} (f : L āā[K] L) [FiniteDimensional K ā„E] : FiniteDimensional K ā„(IntermediateField.map f E) - IntermediateField.finiteDimensional_map š Mathlib.FieldTheory.IntermediateField.Algebraic
{K : Type u_1} {L : Type u_2} [Field K] [Field L] [Algebra K L] {E : IntermediateField K L} (f : L āā[K] L) [FiniteDimensional K ā„E] : FiniteDimensional K ā„(IntermediateField.map f E) - IntermediateField.normal_iff_forall_map_eq š Mathlib.FieldTheory.Normal.Closure
{F : Type u_1} {L : Type u_3} [Field F] [Field L] [Algebra F L] [Normal F L] {K : IntermediateField F L} : Normal F ā„K ā ā (Ļ : L āā[F] L), IntermediateField.map Ļ K = K - IntermediateField.normal_iff_forall_map_le š Mathlib.FieldTheory.Normal.Closure
{F : Type u_1} {L : Type u_3} [Field F] [Field L] [Algebra F L] [Normal F L] {K : IntermediateField F L} : Normal F ā„K ā ā (Ļ : L āā[F] L), IntermediateField.map Ļ K ⤠K - IntermediateField.normalClosure_def' š Mathlib.FieldTheory.Normal.Closure
{F : Type u_1} {L : Type u_3} [Field F] [Field L] [Algebra F L] (K : IntermediateField F L) [Normal F L] : IntermediateField.normalClosure F (ā„K) L = ⨠f, IntermediateField.map f K - IntermediateField.normal_iff_forall_map_eq' š Mathlib.FieldTheory.Normal.Closure
{F : Type u_1} {L : Type u_3} [Field F] [Field L] [Algebra F L] [Normal F L] {K : IntermediateField F L} : Normal F ā„K ā ā (Ļ : L āā[F] L), IntermediateField.map (āĻ) K = K - IntermediateField.normalClosure_map_eq š Mathlib.FieldTheory.Normal.Closure
{F : Type u_1} {L : Type u_3} [Field F] [Field L] [Algebra F L] [Normal F L] (K : IntermediateField F L) (Ļ : L āā[F] L) : IntermediateField.normalClosure F (ā„(IntermediateField.map Ļ K)) L = IntermediateField.normalClosure F (ā„K) L - IntermediateField.normal_iff_forall_map_le' š Mathlib.FieldTheory.Normal.Closure
{F : Type u_1} {L : Type u_3} [Field F] [Field L] [Algebra F L] [Normal F L] {K : IntermediateField F L} : Normal F ā„K ā ā (Ļ : L āā[F] L), IntermediateField.map (āĻ) K ⤠K - IntermediateField.normalClosure_def'' š Mathlib.FieldTheory.Normal.Closure
{F : Type u_1} {L : Type u_3} [Field F] [Field L] [Algebra F L] (K : IntermediateField F L) [Normal F L] : IntermediateField.normalClosure F (ā„K) L = ⨠f, IntermediateField.map (āf) K - IsGalois.map_fixingSubgroup š Mathlib.FieldTheory.Galois.Basic
{K : Type u_3} {L : Type u_4} [Field K] [Field L] [Algebra K L] (E : IntermediateField K L) (Ļ : L āā[K] L) : (IntermediateField.map (āĻ) E).fixingSubgroup = MulAut.conj Ļ ā¢ E.fixingSubgroup - IntermediateField.map_fixingSubgroup_index š Mathlib.FieldTheory.KrullTopology
{k : Type u_1} {E : Type u_2} (K : Type u_3) [Field k] [Field E] [Field K] [Algebra k E] [Algebra k K] [Algebra E K] [IsScalarTower k E K] (L : IntermediateField k E) [Normal k E] [Normal k K] : (IntermediateField.map (IsScalarTower.toAlgHom k E K) L).fixingSubgroup.index = L.fixingSubgroup.index - IntermediateField.map_fixingSubgroup š Mathlib.FieldTheory.KrullTopology
{k : Type u_1} {E : Type u_2} (K : Type u_3) [Field k] [Field E] [Field K] [Algebra k E] [Algebra k K] [Algebra E K] [IsScalarTower k E K] (L : IntermediateField k E) [Normal k E] : (IntermediateField.map (IsScalarTower.toAlgHom k E K) L).fixingSubgroup = Subgroup.comap (AlgEquiv.restrictNormalHom E) L.fixingSubgroup - algebraicClosure.map_le_of_algHom š Mathlib.FieldTheory.AlgebraicClosure
{F : Type u_1} {E : Type u_2} [Field F] [Field E] [Algebra F E] {K : Type u_3} [Field K] [Algebra F K] (i : E āā[F] K) : IntermediateField.map i (algebraicClosure F E) ⤠algebraicClosure F K - algebraicClosure.map_eq_of_algebraicClosure_eq_bot š Mathlib.FieldTheory.AlgebraicClosure
(F : Type u_1) {E : Type u_2} [Field F] [Field E] [Algebra F E] {K : Type u_3} [Field K] [Algebra F K] [Algebra E K] [IsScalarTower F E K] (h : algebraicClosure E K = ā„) : IntermediateField.map (IsScalarTower.toAlgHom F E K) (algebraicClosure F E) = algebraicClosure F K - algebraicClosure.map_eq_of_algEquiv š Mathlib.FieldTheory.AlgebraicClosure
{F : Type u_1} {E : Type u_2} [Field F] [Field E] [Algebra F E] {K : Type u_3} [Field K] [Algebra F K] (i : E āā[F] K) : IntermediateField.map (āi) (algebraicClosure F E) = algebraicClosure F K - separableClosure.map_le_of_algHom š Mathlib.FieldTheory.SeparableClosure
{F : Type u} {E : Type v} [Field F] [Field E] [Algebra F E] {K : Type w} [Field K] [Algebra F K] (i : E āā[F] K) : IntermediateField.map i (separableClosure F E) ⤠separableClosure F K - separableClosure.map_eq_of_separableClosure_eq_bot š Mathlib.FieldTheory.SeparableClosure
(F : Type u) {E : Type v} [Field F] [Field E] [Algebra F E] {K : Type w} [Field K] [Algebra F K] [Algebra E K] [IsScalarTower F E K] (h : separableClosure E K = ā„) : IntermediateField.map (IsScalarTower.toAlgHom F E K) (separableClosure F E) = separableClosure F K - separableClosure.map_eq_of_algEquiv š Mathlib.FieldTheory.SeparableClosure
{F : Type u} {E : Type v} [Field F] [Field E] [Algebra F E] {K : Type w} [Field K] [Algebra F K] (i : E āā[F] K) : IntermediateField.map (āi) (separableClosure F E) = separableClosure F K - IntermediateField.LinearDisjoint.map' š Mathlib.FieldTheory.LinearDisjoint
{F : Type u} {E : Type v} [Field F] [Field E] [Algebra F E] {A : IntermediateField F E} {L : Type w} [Field L] [Algebra F L] [Algebra L E] [IsScalarTower F L E] (H : A.LinearDisjoint L) (K : Type u_1) [Field K] [Algebra F K] [Algebra L K] [IsScalarTower F L K] [Algebra E K] [IsScalarTower F E K] [IsScalarTower L E K] : (IntermediateField.map (IsScalarTower.toAlgHom F E K) A).LinearDisjoint L - IntermediateField.LinearDisjoint.map š Mathlib.FieldTheory.LinearDisjoint
{F : Type u} {E : Type v} [Field F] [Field E] [Algebra F E] {A B : IntermediateField F E} (H : A.LinearDisjoint ā„B) {K : Type u_1} [Field K] [Algebra F K] (f : E āā[F] K) : (IntermediateField.map f A).LinearDisjoint ā„(IntermediateField.map f B) - perfectClosure.map_eq_of_algEquiv š Mathlib.FieldTheory.PurelyInseparable.PerfectClosure
{F : Type u} {E : Type v} [Field F] [Field E] [Algebra F E] {K : Type w} [Field K] [Algebra F K] (i : E āā[F] K) : IntermediateField.map (āi) (perfectClosure F E) = perfectClosure F K - perfectClosure.map_le_of_algHom š Mathlib.FieldTheory.PurelyInseparable.PerfectClosure
{F : Type u} {E : Type v} [Field F] [Field E] [Algebra F E] {K : Type w} [Field K] [Algebra F K] (i : E āā[F] K) : IntermediateField.map i (perfectClosure F E) ⤠perfectClosure F K - IntermediateField.relfinrank_comap š Mathlib.FieldTheory.Relrank
{F : Type u} {E : Type v} [Field F] [Field E] [Algebra F E] {L : Type w} [Field L] [Algebra F L] (A : IntermediateField F E) (f : L āā[F] E) (B : IntermediateField F L) : (IntermediateField.comap f A).relfinrank B = A.relfinrank (IntermediateField.map f B) - IntermediateField.relfinrank_map_map š Mathlib.FieldTheory.Relrank
{F : Type u} {E : Type v} [Field F] [Field E] [Algebra F E] {L : Type w} [Field L] [Algebra F L] (A B : IntermediateField F E) (f : E āā[F] L) : (IntermediateField.map f A).relfinrank (IntermediateField.map f B) = A.relfinrank B - IntermediateField.relrank_comap š Mathlib.FieldTheory.Relrank
{F : Type u} {E : Type v} [Field F] [Field E] [Algebra F E] (A : IntermediateField F E) {L : Type v} [Field L] [Algebra F L] (f : L āā[F] E) (B : IntermediateField F L) : (IntermediateField.comap f A).relrank B = A.relrank (IntermediateField.map f B) - IntermediateField.relrank_map_map š Mathlib.FieldTheory.Relrank
{F : Type u} {E : Type v} [Field F] [Field E] [Algebra F E] (A B : IntermediateField F E) {L : Type v} [Field L] [Algebra F L] (f : E āā[F] L) : (IntermediateField.map f A).relrank (IntermediateField.map f B) = A.relrank B - IntermediateField.lift_relrank_comap š Mathlib.FieldTheory.Relrank
{F : Type u} {E : Type v} [Field F] [Field E] [Algebra F E] {L : Type w} [Field L] [Algebra F L] (A : IntermediateField F E) (f : L āā[F] E) (B : IntermediateField F L) : Cardinal.lift.{v, w} ((IntermediateField.comap f A).relrank B) = Cardinal.lift.{w, v} (A.relrank (IntermediateField.map f B)) - IntermediateField.lift_relrank_map_map š Mathlib.FieldTheory.Relrank
{F : Type u} {E : Type v} [Field F] [Field E] [Algebra F E] {L : Type w} [Field L] [Algebra F L] (A B : IntermediateField F E) (f : E āā[F] L) : Cardinal.lift.{v, w} ((IntermediateField.map f A).relrank (IntermediateField.map f B)) = Cardinal.lift.{w, v} (A.relrank B)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
šReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
š"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
š_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
šReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
š(?a -> ?b) -> List ?a -> List ?b
šList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
š|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allā
andā
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
š|- _ < _ ā tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
š Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ ā _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65