Loogle!
Result
Found 24 declarations mentioning IsAdjoinRoot.map.
- IsAdjoinRoot.map π Mathlib.RingTheory.IsAdjoinRoot
{R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {f : Polynomial R} (self : IsAdjoinRoot S f) : Polynomial R β+* S - IsAdjoinRoot.algebraMap_eq π Mathlib.RingTheory.IsAdjoinRoot
{R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {f : Polynomial R} (self : IsAdjoinRoot S f) : algebraMap R S = self.map.comp Polynomial.C - IsAdjoinRoot.map_surjective π Mathlib.RingTheory.IsAdjoinRoot
{R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {f : Polynomial R} (self : IsAdjoinRoot S f) : Function.Surjective βself.map - AdjoinRoot.isAdjoinRoot_map_eq_mk π Mathlib.RingTheory.IsAdjoinRoot
{R : Type u} [CommRing R] (f : Polynomial R) : (AdjoinRoot.isAdjoinRoot f).map = AdjoinRoot.mk f - IsAdjoinRoot.map_repr π Mathlib.RingTheory.IsAdjoinRoot
{R : Type u} {S : Type v} [CommRing R] [Ring S] {f : Polynomial R} [Algebra R S] (h : IsAdjoinRoot S f) (x : S) : h.map (h.repr x) = x - IsAdjoinRoot.map_X π Mathlib.RingTheory.IsAdjoinRoot
{R : Type u} {S : Type v} [CommRing R] [Ring S] {f : Polynomial R} [Algebra R S] (h : IsAdjoinRoot S f) : h.map Polynomial.X = h.root - IsAdjoinRoot.root.eq_1 π Mathlib.RingTheory.IsAdjoinRoot
{R : Type u} {S : Type v} [CommRing R] [Ring S] {f : Polynomial R} [Algebra R S] (h : IsAdjoinRoot S f) : h.root = h.map Polynomial.X - IsAdjoinRoot.map_self π Mathlib.RingTheory.IsAdjoinRoot
{R : Type u} {S : Type v} [CommRing R] [Ring S] {f : Polynomial R} [Algebra R S] (h : IsAdjoinRoot S f) : h.map f = 0 - AdjoinRoot.isAdjoinRootMonic_map_eq_mk π Mathlib.RingTheory.IsAdjoinRoot
{R : Type u} [CommRing R] (f : Polynomial R) (hf : f.Monic) : (AdjoinRoot.isAdjoinRootMonic f hf).map = AdjoinRoot.mk f - IsAdjoinRoot.ker_map π Mathlib.RingTheory.IsAdjoinRoot
{R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {f : Polynomial R} (self : IsAdjoinRoot S f) : RingHom.ker self.map = Ideal.span {f} - IsAdjoinRootMonic.modByMonic_repr_map π Mathlib.RingTheory.IsAdjoinRoot
{R : Type u} {S : Type v} [CommRing R] [Ring S] {f : Polynomial R} [Algebra R S] (h : IsAdjoinRootMonic S f) (g : Polynomial R) : h.repr (h.map g) %β f = g %β f - IsAdjoinRoot.map_eq_zero_iff π Mathlib.RingTheory.IsAdjoinRoot
{R : Type u} {S : Type v} [CommRing R] [Ring S] {f : Polynomial R} [Algebra R S] (h : IsAdjoinRoot S f) {p : Polynomial R} : h.map p = 0 β f β£ p - IsAdjoinRoot.evalβ_repr_eq_evalβ_of_map_eq π Mathlib.RingTheory.IsAdjoinRoot
{R : Type u} {S : Type v} [CommRing R] [Ring S] {f : Polynomial R} [Algebra R S] {T : Type u_1} [CommRing T] {i : R β+* T} {x : T} (hx : Polynomial.evalβ i x f = 0) (h : IsAdjoinRoot S f) (z : S) (w : Polynomial R) (hzw : h.map w = z) : Polynomial.evalβ i x (h.repr z) = Polynomial.evalβ i x w - IsAdjoinRoot.ext_map π Mathlib.RingTheory.IsAdjoinRoot
{R : Type u} {S : Type v} [CommRing R] [Ring S] {f : Polynomial R} [Algebra R S] (h h' : IsAdjoinRoot S f) (eq : β (x : Polynomial R), h.map x = h'.map x) : h = h' - IsAdjoinRoot.aeval_eq π Mathlib.RingTheory.IsAdjoinRoot
{R : Type u} {S : Type v} [CommRing R] [Ring S] {f : Polynomial R} [Algebra R S] (h : IsAdjoinRoot S f) (p : Polynomial R) : (Polynomial.aeval h.root) p = h.map p - IsAdjoinRootMonic.map_modByMonic π Mathlib.RingTheory.IsAdjoinRoot
{R : Type u} {S : Type v} [CommRing R] [Ring S] {f : Polynomial R} [Algebra R S] (h : IsAdjoinRootMonic S f) (g : Polynomial R) : h.map (g %β f) = h.map g - IsAdjoinRoot.algebraMap_apply π Mathlib.RingTheory.IsAdjoinRoot
{R : Type u} {S : Type v} [CommRing R] [Ring S] {f : Polynomial R} [Algebra R S] (h : IsAdjoinRoot S f) (x : R) : (algebraMap R S) x = h.map (Polynomial.C x) - IsAdjoinRoot.lift_map π Mathlib.RingTheory.IsAdjoinRoot
{R : Type u} {S : Type v} [CommRing R] [Ring S] {f : Polynomial R} [Algebra R S] {T : Type u_1} [CommRing T] {i : R β+* T} {x : T} (hx : Polynomial.evalβ i x f = 0) (h : IsAdjoinRoot S f) (z : Polynomial R) : (IsAdjoinRoot.lift i x h hx) (h.map z) = Polynomial.evalβ i x z - IsAdjoinRoot.aequiv_map π Mathlib.RingTheory.IsAdjoinRoot
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {f : Polynomial R} {T : Type u_1} [CommRing T] [Algebra R T] (h : IsAdjoinRoot S f) (h' : IsAdjoinRoot T f) (z : Polynomial R) : (h.aequiv h') (h.map z) = h'.map z - IsAdjoinRoot.ofEquiv_map_apply π Mathlib.RingTheory.IsAdjoinRoot
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {f : Polynomial R} {T : Type u_1} [CommRing T] [Algebra R T] (h : IsAdjoinRoot S f) (e : S ββ[R] T) (aβ : Polynomial R) : (h.ofEquiv e).map aβ = e (h.map aβ) - IsAdjoinRoot.mem_ker_map π Mathlib.RingTheory.IsAdjoinRoot
{R : Type u} {S : Type v} [CommRing R] [Ring S] {f : Polynomial R} [Algebra R S] (h : IsAdjoinRoot S f) {p : Polynomial R} : p β RingHom.ker h.map β f β£ p - IsAdjoinRootMonic.map_modByMonicHom π Mathlib.RingTheory.IsAdjoinRoot
{R : Type u} {S : Type v} [CommRing R] [Ring S] {f : Polynomial R} [Algebra R S] (h : IsAdjoinRootMonic S f) (x : S) : h.map (h.modByMonicHom x) = x - IsAdjoinRootMonic.modByMonicHom_map π Mathlib.RingTheory.IsAdjoinRoot
{R : Type u} {S : Type v} [CommRing R] [Ring S] {f : Polynomial R} [Algebra R S] (h : IsAdjoinRootMonic S f) (g : Polynomial R) : h.modByMonicHom (h.map g) = g %β f - IsAdjoinRoot.liftHom_map π Mathlib.RingTheory.IsAdjoinRoot
{R : Type u} {S : Type v} [CommRing R] [Ring S] {f : Polynomial R} [Algebra R S] {T : Type u_1} [CommRing T] {x : T} [Algebra R T] (hx' : (Polynomial.aeval x) f = 0) (h : IsAdjoinRoot S f) (z : Polynomial R) : (IsAdjoinRoot.liftHom x hx' h) (h.map z) = (Polynomial.aeval x) z
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65