Loogle!
Result
Found 23 declarations mentioning IsCompl and LinearEquiv.
- LinearMap.kerComplementEquivRange 📋 Mathlib.LinearAlgebra.Prod
{R : Type u_3} {M : Type u_4} {M₂ : Type u_5} [Ring R] [AddCommGroup M] [AddCommGroup M₂] [Module R M] [Module R M₂] (f : M →ₗ[R] M₂) {C : Submodule R M} (h : IsCompl C f.ker) : ↥C ≃ₗ[R] ↥f.range - LinearMap.kerComplementEquivRange_apply_coe 📋 Mathlib.LinearAlgebra.Prod
{R : Type u_3} {M : Type u_4} {M₂ : Type u_5} [Ring R] [AddCommGroup M] [AddCommGroup M₂] [Module R M] [Module R M₂] (f : M →ₗ[R] M₂) {C : Submodule R M} (h : IsCompl C f.ker) (a✝ : ↥C) : ↑((f.kerComplementEquivRange h) a✝) = f ↑a✝ - LinearMap.kerComplementEquivRange_symm_apply 📋 Mathlib.LinearAlgebra.Prod
{R : Type u_3} {M : Type u_4} {M₂ : Type u_5} [Ring R] [AddCommGroup M] [AddCommGroup M₂] [Module R M] [Module R M₂] (f : M →ₗ[R] M₂) {C : Submodule R M} (h : IsCompl C f.ker) (a✝ : ↥f.range) : (f.kerComplementEquivRange h).symm a✝ = (LinearEquiv.ofInjective (LinearMap.codRestrict f.range f ⋯ ∘ₗ C.subtype) ⋯).symm ((LinearEquiv.ofTop (LinearMap.codRestrict f.range f ⋯ ∘ₗ C.subtype).range ⋯).symm a✝) - Submodule.quotientEquivOfIsCompl 📋 Mathlib.LinearAlgebra.Projection
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] (p q : Submodule R E) (h : IsCompl p q) : (E ⧸ p) ≃ₗ[R] ↥q - LinearMap.equivProdOfSurjectiveOfIsCompl 📋 Mathlib.LinearAlgebra.Projection
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] {F : Type u_3} [AddCommGroup F] [Module R F] {G : Type u_4} [AddCommGroup G] [Module R G] (f : E →ₗ[R] F) (g : E →ₗ[R] G) (hf : f.range = ⊤) (hg : g.range = ⊤) (hfg : IsCompl f.ker g.ker) : E ≃ₗ[R] F × G - Submodule.prodEquivOfIsCompl 📋 Mathlib.LinearAlgebra.Projection
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] (p q : Submodule R E) (h : IsCompl p q) : (↥p × ↥q) ≃ₗ[R] E - Submodule.prodEquivOfIsCompl.congr_simp 📋 Mathlib.LinearAlgebra.Projection
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] (p q : Submodule R E) (h : IsCompl p q) : p.prodEquivOfIsCompl q h = p.prodEquivOfIsCompl q h - LinearMap.equivProdOfSurjectiveOfIsCompl_apply 📋 Mathlib.LinearAlgebra.Projection
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] {F : Type u_3} [AddCommGroup F] [Module R F] {G : Type u_4} [AddCommGroup G] [Module R G] {f : E →ₗ[R] F} {g : E →ₗ[R] G} (hf : f.range = ⊤) (hg : g.range = ⊤) (hfg : IsCompl f.ker g.ker) (x : E) : (f.equivProdOfSurjectiveOfIsCompl g hf hg hfg) x = (f x, g x) - Submodule.mk_quotientEquivOfIsCompl_apply 📋 Mathlib.LinearAlgebra.Projection
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] (p q : Submodule R E) (h : IsCompl p q) (x : E ⧸ p) : Submodule.Quotient.mk ↑((p.quotientEquivOfIsCompl q h) x) = x - Submodule.quotientEquivOfIsCompl_apply_mk_coe 📋 Mathlib.LinearAlgebra.Projection
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] (p q : Submodule R E) (h : IsCompl p q) (x : ↥q) : (p.quotientEquivOfIsCompl q h) (Submodule.Quotient.mk ↑x) = x - Submodule.quotientEquivOfIsCompl_symm_apply 📋 Mathlib.LinearAlgebra.Projection
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] (p q : Submodule R E) (h : IsCompl p q) (x : ↥q) : (p.quotientEquivOfIsCompl q h).symm x = Submodule.Quotient.mk ↑x - Submodule.prodComm_trans_prodEquivOfIsCompl 📋 Mathlib.LinearAlgebra.Projection
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] (p q : Submodule R E) (h : IsCompl p q) : LinearEquiv.prodComm R ↥q ↥p ≪≫ₗ p.prodEquivOfIsCompl q h = q.prodEquivOfIsCompl p ⋯ - LinearMap.ofIsComplProdEquiv 📋 Mathlib.LinearAlgebra.Projection
{E : Type u_2} [AddCommGroup E] {F : Type u_3} [AddCommGroup F] {R₁ : Type u_7} [CommRing R₁] [Module R₁ E] [Module R₁ F] {p q : Submodule R₁ E} (h : IsCompl p q) : ((↥p →ₗ[R₁] F) × (↥q →ₗ[R₁] F)) ≃ₗ[R₁] E →ₗ[R₁] F - Submodule.coe_prodEquivOfIsCompl' 📋 Mathlib.LinearAlgebra.Projection
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] (p q : Submodule R E) (h : IsCompl p q) (x : ↥p × ↥q) : (p.prodEquivOfIsCompl q h) x = ↑x.1 + ↑x.2 - Submodule.prodEquivOfIsCompl_symm_apply_fst_eq_zero 📋 Mathlib.LinearAlgebra.Projection
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] (p q : Submodule R E) (h : IsCompl p q) {x : E} : ((p.prodEquivOfIsCompl q h).symm x).1 = 0 ↔ x ∈ q - Submodule.prodEquivOfIsCompl_symm_apply_snd_eq_zero 📋 Mathlib.LinearAlgebra.Projection
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] (p q : Submodule R E) (h : IsCompl p q) {x : E} : ((p.prodEquivOfIsCompl q h).symm x).2 = 0 ↔ x ∈ p - Submodule.prodEquivOfIsCompl_symm_apply_left 📋 Mathlib.LinearAlgebra.Projection
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] (p q : Submodule R E) (h : IsCompl p q) (x : ↥p) : (p.prodEquivOfIsCompl q h).symm ↑x = (x, 0) - Submodule.prodEquivOfIsCompl_symm_apply_right 📋 Mathlib.LinearAlgebra.Projection
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] (p q : Submodule R E) (h : IsCompl p q) (x : ↥q) : (p.prodEquivOfIsCompl q h).symm ↑x = (0, x) - Submodule.prodEquivOfIsCompl_symm_apply 📋 Mathlib.LinearAlgebra.Projection
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] {p q : Submodule R E} (hpq : IsCompl p q) (x : E) : (p.prodEquivOfIsCompl q hpq).symm x = ((p.linearProjOfIsCompl q hpq) x, (q.linearProjOfIsCompl p ⋯) x) - Submodule.quotientEquivOfIsCompl.congr_simp 📋 Mathlib.RingTheory.SimpleModule.Basic
{R : Type u_1} [Ring R] {E : Type u_2} [AddCommGroup E] [Module R E] (p q : Submodule R E) (h : IsCompl p q) : p.quotientEquivOfIsCompl q h = p.quotientEquivOfIsCompl q h - ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl_toLinearEquiv 📋 Mathlib.Analysis.Normed.Module.Complemented
{𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedAddCommGroup G] [NormedSpace 𝕜 G] [CompleteSpace E] [CompleteSpace (F × G)] {f : E →L[𝕜] F} {g : E →L[𝕜] G} (hf : (↑f).range = ⊤) (hg : (↑g).range = ⊤) (hfg : IsCompl (↑f).ker (↑g).ker) : (f.equivProdOfSurjectiveOfIsCompl g hf hg hfg).toLinearEquiv = (↑f).equivProdOfSurjectiveOfIsCompl (↑g) hf hg hfg - Submodule.coe_prodEquivOfClosedCompl 📋 Mathlib.Analysis.Normed.Module.Complemented
{𝕜 : Type u_1} {E : Type u_2} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [CompleteSpace E] {p q : Subspace 𝕜 E} (h : IsCompl p q) (hp : IsClosed ↑p) (hq : IsClosed ↑q) : ⇑(Submodule.prodEquivOfClosedCompl p q h hp hq) = ⇑(Submodule.prodEquivOfIsCompl p q h) - Submodule.coe_prodEquivOfClosedCompl_symm 📋 Mathlib.Analysis.Normed.Module.Complemented
{𝕜 : Type u_1} {E : Type u_2} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [CompleteSpace E] {p q : Subspace 𝕜 E} (h : IsCompl p q) (hp : IsClosed ↑p) (hq : IsClosed ↑q) : ⇑(Submodule.prodEquivOfClosedCompl p q h hp hq).symm = ⇑(Submodule.prodEquivOfIsCompl p q h).symm
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision 519f454