Loogle!
Result
Found 8 definitions mentioning MonoidHom and IsCyclic.
- commGroupOfCyclicCenterQuotient π Mathlib.GroupTheory.SpecificGroups.Cyclic
{G : Type u_2} {G' : Type u_3} [Group G] [Group G'] [IsCyclic G'] (f : G β* G') (hf : f.ker β€ Subgroup.center G) : CommGroup G - MonoidHom.map_cyclic π Mathlib.GroupTheory.SpecificGroups.Cyclic
{G : Type u_2} [Group G] [h : IsCyclic G] (Ο : G β* G) : β m, β (g : G), Ο g = g ^ m - commutative_of_cyclic_center_quotient π Mathlib.GroupTheory.SpecificGroups.Cyclic
{G : Type u_2} {G' : Type u_3} [Group G] [Group G'] [IsCyclic G'] (f : G β* G') (hf : f.ker β€ Subgroup.center G) (a b : G) : a * b = b * a - commGroupOfCyclicCenterQuotient.eq_1 π Mathlib.GroupTheory.SpecificGroups.Cyclic
{G : Type u_2} {G' : Type u_3} [Group G] [Group G'] [IsCyclic G'] (f : G β* G') (hf : f.ker β€ Subgroup.center G) : commGroupOfCyclicCenterQuotient f hf = CommGroup.mk β― - isCyclic_of_subgroup_isDomain π Mathlib.RingTheory.IntegralDomain
{R : Type u_1} {G : Type u_2} [CommRing R] [IsDomain R] [Group G] [Finite G] (f : G β* R) (hf : Function.Injective βf) : IsCyclic G - IsCyclic.monoidHom_mulEquiv_rootsOfUnity π Mathlib.RingTheory.RootsOfUnity.Basic
(G : Type u_7) [CommGroup G] [IsCyclic G] (G' : Type u_8) [CommGroup G'] : Nonempty ((G β* G') β* β₯(rootsOfUnity (Nat.card G) G')) - IsCyclic.exists_apply_ne_one π Mathlib.RingTheory.RootsOfUnity.PrimitiveRoots
{G : Type u_7} {G' : Type u_8} [CommGroup G] [IsCyclic G] [Finite G] [CommGroup G'] (hG' : β ΞΆ, IsPrimitiveRoot ΞΆ (Nat.card G)) β¦a : Gβ¦ (ha : a β 1) : β Ο, Ο a β 1 - IsCyclic.monoidHom_equiv_self π Mathlib.RingTheory.RootsOfUnity.EnoughRootsOfUnity
(G : Type u_1) (M : Type u_2) [CommGroup G] [Finite G] [IsCyclic G] [CommMonoid M] [HasEnoughRootsOfUnity M (Nat.card G)] : Nonempty ((G β* MΛ£) β* G)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
woould find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 4e1aab0
serving mathlib revision 2d53f5f