Loogle!
Result
Found 11 declarations mentioning IsLocalRing.ResidueField.map.
- IsLocalRing.ResidueField.map_id đ Mathlib.RingTheory.LocalRing.ResidueField.Basic
{R : Type u_1} [CommRing R] [IsLocalRing R] : IsLocalRing.ResidueField.map (RingHom.id R) = RingHom.id (IsLocalRing.ResidueField R) - IsLocalRing.ResidueField.map đ Mathlib.RingTheory.LocalRing.ResidueField.Basic
{R : Type u_1} {S : Type u_2} [CommRing R] [IsLocalRing R] [CommRing S] [IsLocalRing S] (f : R â+* S) [IsLocalHom f] : IsLocalRing.ResidueField R â+* IsLocalRing.ResidueField S - IsLocalRing.ResidueField.map_id_apply đ Mathlib.RingTheory.LocalRing.ResidueField.Basic
{R : Type u_1} [CommRing R] [IsLocalRing R] (x : IsLocalRing.ResidueField R) : (IsLocalRing.ResidueField.map (RingHom.id R)) x = x - IsLocalRing.ResidueField.map_comp_residue đ Mathlib.RingTheory.LocalRing.ResidueField.Basic
{R : Type u_1} {S : Type u_2} [CommRing R] [IsLocalRing R] [CommRing S] [IsLocalRing S] (f : R â+* S) [IsLocalHom f] : (IsLocalRing.ResidueField.map f).comp (IsLocalRing.residue R) = (IsLocalRing.residue S).comp f - IsLocalRing.ResidueField.map.congr_simp đ Mathlib.RingTheory.LocalRing.ResidueField.Basic
{R : Type u_1} {S : Type u_2} [CommRing R] [IsLocalRing R] [CommRing S] [IsLocalRing S] (f fâ : R â+* S) (e_f : f = fâ) [IsLocalHom f] : IsLocalRing.ResidueField.map f = IsLocalRing.ResidueField.map fâ - IsLocalRing.ResidueField.map_comp đ Mathlib.RingTheory.LocalRing.ResidueField.Basic
{R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [IsLocalRing R] [CommRing S] [IsLocalRing S] [CommRing T] [IsLocalRing T] (f : T â+* R) (g : R â+* S) [IsLocalHom f] [IsLocalHom g] : IsLocalRing.ResidueField.map (g.comp f) = (IsLocalRing.ResidueField.map g).comp (IsLocalRing.ResidueField.map f) - IsLocalRing.ResidueField.map_residue đ Mathlib.RingTheory.LocalRing.ResidueField.Basic
{R : Type u_1} {S : Type u_2} [CommRing R] [IsLocalRing R] [CommRing S] [IsLocalRing S] (f : R â+* S) [IsLocalHom f] (r : R) : (IsLocalRing.ResidueField.map f) ((IsLocalRing.residue R) r) = (IsLocalRing.residue S) (f r) - IsLocalRing.ResidueField.map_map đ Mathlib.RingTheory.LocalRing.ResidueField.Basic
{R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [IsLocalRing R] [CommRing S] [IsLocalRing S] [CommRing T] [IsLocalRing T] (f : R â+* S) (g : S â+* T) (x : IsLocalRing.ResidueField R) [IsLocalHom f] [IsLocalHom g] : (IsLocalRing.ResidueField.map g) ((IsLocalRing.ResidueField.map f) x) = (IsLocalRing.ResidueField.map (g.comp f)) x - IsLocalRing.ResidueField.mapEquiv_apply đ Mathlib.RingTheory.LocalRing.ResidueField.Basic
{R : Type u_1} {S : Type u_2} [CommRing R] [IsLocalRing R] [CommRing S] [IsLocalRing S] (f : R â+* S) (a : IsLocalRing.ResidueField R) : (IsLocalRing.ResidueField.mapEquiv f) a = (IsLocalRing.ResidueField.map âf) a - AlgebraicGeometry.LocallyRingedSpace.residueFieldMap.eq_1 đ Mathlib.Geometry.RingedSpace.LocallyRingedSpace.ResidueField
{X Y : AlgebraicGeometry.LocallyRingedSpace} (f : X âś Y) (x : âX.toTopCat) : AlgebraicGeometry.LocallyRingedSpace.residueFieldMap f x = CommRingCat.ofHom (IsLocalRing.ResidueField.map (CommRingCat.Hom.hom (AlgebraicGeometry.LocallyRingedSpace.Hom.stalkMap f x))) - AlgebraicGeometry.Scheme.Hom.residueFieldMap.eq_1 đ Mathlib.AlgebraicGeometry.ResidueField
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) (x : âĽX) : f.residueFieldMap x = CommRingCat.ofHom (IsLocalRing.ResidueField.map (CommRingCat.Hom.hom (f.stalkMap x)))
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
đReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
đ"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
đ_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
đReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
đ(?a -> ?b) -> List ?a -> List ?b
đList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
đ|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allâ
andâ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
đ|- _ < _ â tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
đ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ â _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ee8c038
serving mathlib revision 7a9e177