Loogle!
Result
Found 12 declarations mentioning IsLocalization.Away.map.
- IsLocalization.Away.map ๐ Mathlib.RingTheory.Localization.Away.Basic
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] (Q : Type u_4) [CommSemiring Q] [Algebra P Q] (f : R โ+* P) (r : R) [IsLocalization.Away r S] [IsLocalization.Away (f r) Q] : S โ+* Q - IsLocalization.Away.mapโ_apply ๐ Mathlib.RingTheory.Localization.Away.Basic
{R : Type u_1} [CommSemiring R] {A : Type u_5} [CommSemiring A] [Algebra R A] {B : Type u_6} [CommSemiring B] [Algebra R B] (Aโ : Type u_7) [CommSemiring Aโ] [Algebra A Aโ] [Algebra R Aโ] [IsScalarTower R A Aโ] (Bโ : Type u_8) [CommSemiring Bโ] [Algebra B Bโ] [Algebra R Bโ] [IsScalarTower R B Bโ] (f : A โโ[R] B) (a : A) [IsLocalization.Away a Aโ] [IsLocalization.Away (f a) Bโ] (x : Aโ) : (IsLocalization.Away.mapโ Aโ Bโ f a) x = (IsLocalization.Away.map Aโ Bโ f.toRingHom a) x - RingHom.RespectsIso.isLocalization_away_iff ๐ Mathlib.RingTheory.RingHomProperties
{P : {R S : Type u} โ [inst : CommRing R] โ [inst_1 : CommRing S] โ (R โ+* S) โ Prop} (hP : RingHom.RespectsIso P) {R S : Type u} (R' S' : Type u) [CommRing R] [CommRing S] [CommRing R'] [CommRing S'] [Algebra R R'] [Algebra S S'] (f : R โ+* S) (r : R) [IsLocalization.Away r R'] [IsLocalization.Away (f r) S'] : P (Localization.awayMap f r) โ P (IsLocalization.Away.map R' S' f r) - RingHom.RespectsIso.is_localization_away_iff ๐ Mathlib.RingTheory.RingHomProperties
{P : {R S : Type u} โ [inst : CommRing R] โ [inst_1 : CommRing S] โ (R โ+* S) โ Prop} (hP : RingHom.RespectsIso P) {R S : Type u} (R' S' : Type u) [CommRing R] [CommRing S] [CommRing R'] [CommRing S'] [Algebra R R'] [Algebra S S'] (f : R โ+* S) (r : R) [IsLocalization.Away r R'] [IsLocalization.Away (f r) S'] : P (Localization.awayMap f r) โ P (IsLocalization.Away.map R' S' f r) - IsLocalization.Away.map.eq_1 ๐ Mathlib.RingTheory.LocalProperties.Basic
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] (Q : Type u_4) [CommSemiring Q] [Algebra P Q] (f : R โ+* P) (r : R) [IsLocalization.Away r S] [IsLocalization.Away (f r) Q] : IsLocalization.Away.map S Q f r = IsLocalization.map Q f โฏ - RingHom.OfLocalizationSpan.ofIsLocalization' ๐ Mathlib.RingTheory.LocalProperties.Basic
{P : {R S : Type u} โ [inst : CommRing R] โ [inst_1 : CommRing S] โ (R โ+* S) โ Prop} (hP : RingHom.OfLocalizationSpan fun {R S} [CommRing R] [CommRing S] => P) (hPi : RingHom.RespectsIso fun {R S} [CommRing R] [CommRing S] => P) {R S : Type u} [CommRing R] [CommRing S] (f : R โ+* S) (s : Set R) (hs : Ideal.span s = โค) (hT : โ (r : โs), โ Rแตฃ Sแตฃ x x_1 x_2 x_3, โ (x_4 : IsLocalization.Away (โr) Rแตฃ) (x_5 : IsLocalization.Away (f โr) Sแตฃ), P (IsLocalization.Away.map Rแตฃ Sแตฃ f โr)) : P f - Localization.awayMap.eq_1 ๐ Mathlib.RingTheory.RingHom.Surjective
{R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (f : R โ+* P) (r : R) : Localization.awayMap f r = IsLocalization.Away.map (Localization.Away r) (Localization.Away (f r)) f r - AlgebraicGeometry.IsAffineOpen.appBasicOpenIsoAwayMap ๐ Mathlib.AlgebraicGeometry.AffineScheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) {U : Y.Opens} (hU : AlgebraicGeometry.IsAffineOpen U) (h : AlgebraicGeometry.IsAffineOpen ((TopologicalSpace.Opens.map f.base).obj U)) (r : โ(Y.presheaf.obj (Opposite.op U))) : CategoryTheory.Arrow.mk (AlgebraicGeometry.Scheme.Hom.app f (Y.basicOpen r)) โ CategoryTheory.Arrow.mk (CommRingCat.ofHom (IsLocalization.Away.map (โ(Y.presheaf.obj (Opposite.op (Y.basicOpen r)))) (โ(X.presheaf.obj (Opposite.op (X.basicOpen ((CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.Scheme.Hom.app f U)) r))))) (CommRingCat.Hom.hom (AlgebraicGeometry.Scheme.Hom.app f U)) r)) - AlgebraicGeometry.IsAffineOpen.app_basicOpen_eq_away_map ๐ Mathlib.AlgebraicGeometry.AffineScheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) {U : Y.Opens} (hU : AlgebraicGeometry.IsAffineOpen U) (h : AlgebraicGeometry.IsAffineOpen ((TopologicalSpace.Opens.map f.base).obj U)) (r : โ(Y.presheaf.obj (Opposite.op U))) : AlgebraicGeometry.Scheme.Hom.app f (Y.basicOpen r) = CategoryTheory.CategoryStruct.comp (CommRingCat.ofHom (IsLocalization.Away.map (โ(Y.presheaf.obj (Opposite.op (Y.basicOpen r)))) (โ(X.presheaf.obj (Opposite.op (X.basicOpen ((CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.Scheme.Hom.app f U)) r))))) (CommRingCat.Hom.hom (AlgebraicGeometry.Scheme.Hom.app f U)) r)) (X.presheaf.map (CategoryTheory.eqToHom โฏ).op) - AlgebraicGeometry.IsAffineOpen.appLE_eq_away_map ๐ Mathlib.AlgebraicGeometry.AffineScheme
{X Y : AlgebraicGeometry.Scheme} (f : X โถ Y) {U : Y.Opens} (hU : AlgebraicGeometry.IsAffineOpen U) {V : X.Opens} (hV : AlgebraicGeometry.IsAffineOpen V) (e : V โค (TopologicalSpace.Opens.map f.base).obj U) (r : โ(Y.presheaf.obj (Opposite.op U))) : AlgebraicGeometry.Scheme.Hom.appLE f (Y.basicOpen r) (X.basicOpen ((CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.Scheme.Hom.appLE f U V e)) r)) โฏ = CommRingCat.ofHom (IsLocalization.Away.map (โ(Y.presheaf.toPrefunctor.1 (Opposite.op (Y.basicOpen r)))) (โ(X.presheaf.toPrefunctor.1 (Opposite.op (X.basicOpen ((CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.Scheme.Hom.appLE f U V e)) r))))) (CommRingCat.Hom.hom (AlgebraicGeometry.Scheme.Hom.appLE f U V e)) r) - RingHom.localization_away_map_finite ๐ Mathlib.RingTheory.RingHom.Finite
{R S : Type u} [CommRing R] [CommRing S] (f : R โ+* S) (R' S' : Type u) [CommRing R'] [CommRing S'] [Algebra R R'] [Algebra S S'] (r : R) [IsLocalization.Away r R'] [IsLocalization.Away (f r) S'] (hf : f.Finite) : (IsLocalization.Away.map R' S' f r).Finite - RingHom.localization_away_map_finiteType ๐ Mathlib.RingTheory.RingHom.FiniteType
{R S : Type u} [CommRing R] [CommRing S] (f : R โ+* S) (R' S' : Type u) [CommRing R'] [CommRing S'] [Algebra R R'] [Algebra S S'] (r : R) [IsLocalization.Away r R'] [IsLocalization.Away (f r) S'] (hf : f.FiniteType) : (IsLocalization.Away.map R' S' f r).FiniteType
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65