Loogle!
Result
Found 51 declarations mentioning IsLocalization.map.
- IsLocalization.map_id_mk' π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] [IsLocalization M S] {Q : Type u_5} [CommSemiring Q] [Algebra R Q] [IsLocalization M Q] (x : R) (y : β₯M) : (IsLocalization.map Q (RingHom.id R) β―) (IsLocalization.mk' S x y) = IsLocalization.mk' Q x y - IsLocalization.map π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {T : Submonoid P} (Q : Type u_4) [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (g : R β+* P) (hy : M β€ Submonoid.comap g T) : S β+* Q - IsLocalization.map_id π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] [IsLocalization M S] (z : S) (h : M β€ Submonoid.comap (RingHom.id R) M := β―) : (IsLocalization.map S (RingHom.id R) h) z = z - IsLocalization.map_comp π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {g : R β+* P} {T : Submonoid P} {Q : Type u_4} [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (hy : M β€ Submonoid.comap g T) : (IsLocalization.map Q g hy).comp (algebraMap R S) = (algebraMap P Q).comp g - IsLocalization.map_eq π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {g : R β+* P} {T : Submonoid P} {Q : Type u_4} [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (hy : M β€ Submonoid.comap g T) (x : R) : (IsLocalization.map Q g hy) ((algebraMap R S) x) = (algebraMap P Q) (g x) - IsLocalization.map_smul π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {g : R β+* P} {T : Submonoid P} {Q : Type u_4} [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (hy : M β€ Submonoid.comap g T) (x : S) (z : R) : (IsLocalization.map Q g hy) (z β’ x) = g z β’ (IsLocalization.map Q g hy) x - IsLocalization.map_unique π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {g : R β+* P} {T : Submonoid P} {Q : Type u_4} [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (hy : M β€ Submonoid.comap g T) (j : S β+* Q) (hj : β (x : R), j ((algebraMap R S) x) = (algebraMap P Q) (g x)) : IsLocalization.map Q g hy = j - IsLocalization.map_injective_of_injective π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {g : R β+* P} (Q : Type u_4) [CommSemiring Q] [Algebra P Q] (h : Function.Injective βg) [IsLocalization (Submonoid.map g M) Q] : Function.Injective β(IsLocalization.map Q g β―) - IsLocalization.map_surjective_of_surjective π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {g : R β+* P} (Q : Type u_4) [CommSemiring Q] [Algebra P Q] (h : Function.Surjective βg) [IsLocalization (Submonoid.map g M) Q] : Function.Surjective β(IsLocalization.map Q g β―) - IsLocalization.ringEquivOfRingEquiv_apply π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {T : Submonoid P} (Q : Type u_4) [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (h : R β+* P) (H : Submonoid.map h.toMonoidHom M = T) (a : S) : (IsLocalization.ringEquivOfRingEquiv S Q h H) a = (IsLocalization.map Q βh β―) a - IsLocalization.map_mk' π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {g : R β+* P} {T : Submonoid P} {Q : Type u_4} [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (hy : M β€ Submonoid.comap g T) (x : R) (y : β₯M) : (IsLocalization.map Q g hy) (IsLocalization.mk' S x y) = IsLocalization.mk' Q (g x) β¨g βy, β―β© - IsLocalization.ringEquivOfRingEquiv_symm_apply π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {T : Submonoid P} (Q : Type u_4) [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (h : R β+* P) (H : Submonoid.map h.toMonoidHom M = T) (a : Q) : (IsLocalization.ringEquivOfRingEquiv S Q h H).symm a = (IsLocalization.map S βh.symm β―) a - IsLocalization.map_comp_map π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {g : R β+* P} {T : Submonoid P} {Q : Type u_4} [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (hy : M β€ Submonoid.comap g T) {A : Type u_5} [CommSemiring A] {U : Submonoid A} {W : Type u_6} [CommSemiring W] [Algebra A W] [IsLocalization U W] {l : P β+* A} (hl : T β€ Submonoid.comap l U) : (IsLocalization.map W l hl).comp (IsLocalization.map Q g hy) = IsLocalization.map W (l.comp g) β― - IsLocalization.map_map π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {g : R β+* P} {T : Submonoid P} {Q : Type u_4} [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (hy : M β€ Submonoid.comap g T) {A : Type u_5} [CommSemiring A] {U : Submonoid A} {W : Type u_6} [CommSemiring W] [Algebra A W] [IsLocalization U W] {l : P β+* A} (hl : T β€ Submonoid.comap l U) (x : S) : (IsLocalization.map W l hl) ((IsLocalization.map Q g hy) x) = (IsLocalization.map W (l.comp g) β―) x - IsLocalization.map.congr_simp π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M Mβ : Submonoid R} (e_M : M = Mβ) {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {T Tβ : Submonoid P} (e_T : T = Tβ) (Q : Type u_4) [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (g gβ : R β+* P) (e_g : g = gβ) (hy : M β€ Submonoid.comap g T) : IsLocalization.map Q g hy = IsLocalization.map Q gβ β― - IsLocalization.ringEquivOfRingEquiv_eq_map π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {T : Submonoid P} {Q : Type u_4} [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] {j : R β+* P} (H : Submonoid.map j.toMonoidHom M = T) : β(IsLocalization.ringEquivOfRingEquiv S Q j H) = IsLocalization.map Q βj β― - IsLocalization.algEquiv_apply π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (Q : Type u_4) [CommSemiring Q] [Algebra R Q] [IsLocalization M Q] (a : S) : (IsLocalization.algEquiv M S Q) a = (IsLocalization.map Q (RingHom.id R) β―) a - IsLocalization.algEquiv_symm_apply π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (Q : Type u_4) [CommSemiring Q] [Algebra R Q] [IsLocalization M Q] (a : Q) : (IsLocalization.algEquiv M S Q).symm a = (IsLocalization.map S (RingHom.id R) β―) a - Localization.algEquiv_apply π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (a : Localization M) : (Localization.algEquiv M S) a = (IsLocalization.map S (RingHom.id R) β―) a - Localization.algEquiv_symm_apply π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (a : S) : (Localization.algEquiv M S).symm a = (IsLocalization.map (Localization M) (RingHom.id R) β―) a - localizationAlgebraMap_def π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] (Rβ : Type u_4) (Sβ : Type u_5) [CommSemiring Rβ] [CommSemiring Sβ] [Algebra R Rβ] [IsLocalization M Rβ] [Algebra S Sβ] [i : IsLocalization (Algebra.algebraMapSubmonoid S M) Sβ] : algebraMap Rβ Sβ = IsLocalization.map Sβ (algebraMap R S) β― - IsLocalization.map_injective_of_injective' π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommRing R] (M : Submonoid R) (S : Type u_2) [CommRing S] {f : R β+* S} {Rβ : Type u_3} [CommRing Rβ] [Algebra R Rβ] [IsLocalization M Rβ] (Sβ : Type u_4) {N : Submonoid S} [CommRing Sβ] [Algebra S Sβ] [IsLocalization N Sβ] (hf : M β€ Submonoid.comap f N) (hN : 0 β N) [IsDomain S] (hf' : Function.Injective βf) : Function.Injective β(IsLocalization.map Sβ f hf) - IsLocalization.algebraMap_eq_map_map_submonoid π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] (Rβ : Type u_4) (Sβ : Type u_5) [CommSemiring Rβ] [CommSemiring Sβ] [Algebra R Rβ] [IsLocalization M Rβ] [Algebra S Sβ] [i : IsLocalization (Algebra.algebraMapSubmonoid S M) Sβ] [Algebra Rβ Sβ] [Algebra R Sβ] [IsScalarTower R Rβ Sβ] [IsScalarTower R S Sβ] : algebraMap Rβ Sβ = IsLocalization.map Sβ (algebraMap R S) β― - Localization.coe_algEquiv π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] [IsLocalization M S] : β(Localization.algEquiv M S) = IsLocalization.map S (RingHom.id R) β― - IsLocalization.algebraMap_apply_eq_map_map_submonoid π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] (Rβ : Type u_4) (Sβ : Type u_5) [CommSemiring Rβ] [CommSemiring Sβ] [Algebra R Rβ] [IsLocalization M Rβ] [Algebra S Sβ] [i : IsLocalization (Algebra.algebraMapSubmonoid S M) Sβ] [Algebra Rβ Sβ] [Algebra R Sβ] [IsScalarTower R Rβ Sβ] [IsScalarTower R S Sβ] (x : Rβ) : (algebraMap Rβ Sβ) x = (IsLocalization.map Sβ (algebraMap R S) β―) x - Localization.coe_algEquiv_symm π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] [IsLocalization M S] : β(Localization.algEquiv M S).symm = IsLocalization.map (Localization M) (RingHom.id R) β― - IsLocalization.algEquivOfAlgEquiv_apply π Mathlib.RingTheory.Localization.Basic
{A : Type u_4} [CommSemiring A] {R : Type u_5} [CommSemiring R] [Algebra A R] {M : Submonoid R} (S : Type u_6) [CommSemiring S] [Algebra A S] [Algebra R S] [IsScalarTower A R S] [IsLocalization M S] {P : Type u_7} [CommSemiring P] [Algebra A P] {T : Submonoid P} (Q : Type u_8) [CommSemiring Q] [Algebra A Q] [Algebra P Q] [IsScalarTower A P Q] [IsLocalization T Q] (h : R ββ[A] P) (H : Submonoid.map h M = T) (a : S) : (IsLocalization.algEquivOfAlgEquiv S Q h H) a = (IsLocalization.map Q βh β―) a - IsLocalization.algEquivOfAlgEquiv_symm_apply π Mathlib.RingTheory.Localization.Basic
{A : Type u_4} [CommSemiring A] {R : Type u_5} [CommSemiring R] [Algebra A R] {M : Submonoid R} (S : Type u_6) [CommSemiring S] [Algebra A S] [Algebra R S] [IsScalarTower A R S] [IsLocalization M S] {P : Type u_7} [CommSemiring P] [Algebra A P] {T : Submonoid P} (Q : Type u_8) [CommSemiring Q] [Algebra A Q] [Algebra P Q] [IsScalarTower A P Q] [IsLocalization T Q] (h : R ββ[A] P) (H : Submonoid.map h M = T) (a : Q) : (IsLocalization.algEquivOfAlgEquiv S Q h H).symm a = (IsLocalization.map S β(βh).symm β―) a - IsLocalization.algEquivOfAlgEquiv_eq_map π Mathlib.RingTheory.Localization.Basic
{A : Type u_4} [CommSemiring A] {R : Type u_5} [CommSemiring R] [Algebra A R] {M : Submonoid R} {S : Type u_6} [CommSemiring S] [Algebra A S] [Algebra R S] [IsScalarTower A R S] [IsLocalization M S] {P : Type u_7} [CommSemiring P] [Algebra A P] {T : Submonoid P} {Q : Type u_8} [CommSemiring Q] [Algebra A Q] [Algebra P Q] [IsScalarTower A P Q] [IsLocalization T Q] {h : R ββ[A] P} (H : Submonoid.map h M = T) : β(IsLocalization.algEquivOfAlgEquiv S Q h H) = IsLocalization.map Q βh β― - IsLocalization.mapβ_coe π Mathlib.RingTheory.Localization.Algebra
{R : Type u_5} [CommSemiring R] (M : Submonoid R) {A : Type u_6} [CommSemiring A] [Algebra R A] {B : Type u_7} [CommSemiring B] [Algebra R B] (Rβ : Type u_8) [CommSemiring Rβ] [Algebra R Rβ] [IsLocalization M Rβ] (Aβ : Type u_9) [CommSemiring Aβ] [Algebra R Aβ] [Algebra A Aβ] [IsScalarTower R A Aβ] [IsLocalization (Algebra.algebraMapSubmonoid A M) Aβ] (Bβ : Type u_10) [CommSemiring Bβ] [Algebra R Bβ] [Algebra B Bβ] [IsScalarTower R B Bβ] [IsLocalization (Algebra.algebraMapSubmonoid B M) Bβ] [Algebra Rβ Aβ] [Algebra Rβ Bβ] [IsScalarTower R Rβ Aβ] [IsScalarTower R Rβ Bβ] (f : A ββ[R] B) : β(IsLocalization.mapβ M Rβ Aβ Bβ f) = β(IsLocalization.map Bβ f.toRingHom β―) - RingHom.toKerIsLocalization π Mathlib.RingTheory.Localization.Algebra
{R : Type u_1} (S : Type u_2) {P : Type u_3} (Q : Type u_4) [CommSemiring R] [CommSemiring S] [CommSemiring P] [CommSemiring Q] {M : Submonoid R} {T : Submonoid P} [Algebra R S] [Algebra P Q] [IsLocalization M S] [IsLocalization T Q] (g : R β+* P) (hy : M β€ Submonoid.comap g T) : β₯(RingHom.ker g) ββ[R] β₯(RingHom.ker (IsLocalization.map Q g hy)) - IsLocalization.ker_map π Mathlib.RingTheory.Localization.Algebra
{R : Type u_1} {S : Type u_2} {P : Type u_3} (Q : Type u_4) [CommSemiring R] [CommSemiring S] [CommSemiring P] [CommSemiring Q] {M : Submonoid R} {T : Submonoid P} [Algebra R S] [Algebra P Q] [IsLocalization M S] [IsLocalization T Q] (g : R β+* P) (hT : Submonoid.map g M = T) : RingHom.ker (IsLocalization.map Q g β―) = Ideal.map (algebraMap R S) (RingHom.ker g) - RingHom.toKerIsLocalization_apply π Mathlib.RingTheory.Localization.Algebra
{R : Type u_1} {S : Type u_2} {P : Type u_3} (Q : Type u_4) [CommSemiring R] [CommSemiring S] [CommSemiring P] [CommSemiring Q] {M : Submonoid R} {T : Submonoid P} [Algebra R S] [Algebra P Q] [IsLocalization M S] [IsLocalization T Q] (g : R β+* P) (hy : M β€ Submonoid.comap g T) (r : β₯(RingHom.ker g)) : β((RingHom.toKerIsLocalization S Q g hy) r) = (algebraMap R S) βr - AlgHom.toKerIsLocalization_apply π Mathlib.RingTheory.Localization.Algebra
{R : Type u_5} [CommSemiring R] (M : Submonoid R) {A : Type u_6} [CommSemiring A] [Algebra R A] {B : Type u_7} [CommSemiring B] [Algebra R B] (Rβ : Type u_8) [CommSemiring Rβ] [Algebra R Rβ] [IsLocalization M Rβ] (Aβ : Type u_9) [CommSemiring Aβ] [Algebra R Aβ] [Algebra A Aβ] [IsScalarTower R A Aβ] [IsLocalization (Algebra.algebraMapSubmonoid A M) Aβ] (Bβ : Type u_10) [CommSemiring Bβ] [Algebra R Bβ] [Algebra B Bβ] [IsScalarTower R B Bβ] [IsLocalization (Algebra.algebraMapSubmonoid B M) Bβ] [Algebra Rβ Aβ] [Algebra Rβ Bβ] [IsScalarTower R Rβ Aβ] [IsScalarTower R Rβ Bβ] (f : A ββ[R] B) (x : β₯(RingHom.ker f)) : (AlgHom.toKerIsLocalization M Rβ Aβ Bβ f) x = (RingHom.toKerIsLocalization Aβ Bβ f.toRingHom β―) x - RingHom.toKerIsLocalization_isLocalizedModule π Mathlib.RingTheory.Localization.Algebra
{R : Type u_1} {S : Type u_2} {P : Type u_3} (Q : Type u_4) [CommSemiring R] [CommSemiring S] [CommSemiring P] [CommSemiring Q] {M : Submonoid R} {T : Submonoid P} [Algebra R S] [Algebra P Q] [IsLocalization M S] [IsLocalization T Q] (g : R β+* P) (hT : Submonoid.map g M = T) : IsLocalizedModule M (RingHom.toKerIsLocalization S Q g β―) - IsLocalization.Away.map.eq_1 π Mathlib.RingTheory.LocalProperties.Basic
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] (Q : Type u_4) [CommSemiring Q] [Algebra P Q] (f : R β+* P) (r : R) [IsLocalization.Away r S] [IsLocalization.Away (f r) Q] : IsLocalization.Away.map S Q f r = IsLocalization.map Q f β― - RingHom.IsStableUnderBaseChange.isLocalization_map π Mathlib.RingTheory.LocalProperties.Basic
{P : {R S : Type u} β [inst : CommRing R] β [inst_1 : CommRing S] β (R β+* S) β Prop} (hP : RingHom.IsStableUnderBaseChange P) {R S Rα΅£ Sα΅£ : Type u} [CommRing R] [CommRing S] [CommRing Rα΅£] [CommRing Sα΅£] [Algebra R Rα΅£] [Algebra S Sα΅£] (M : Submonoid R) [IsLocalization M Rα΅£] (f : R β+* S) [IsLocalization (Submonoid.map f M) Sα΅£] (hf : P f) : P (IsLocalization.map Sα΅£ f β―) - isIntegral_localization π Mathlib.RingTheory.Localization.Integral
{R : Type u_1} [CommRing R] {M : Submonoid R} {S : Type u_2} [CommRing S] [Algebra R S] {Rβ : Type u_3} {Sβ : Type u_4} [CommRing Rβ] [CommRing Sβ] [Algebra R Rβ] [IsLocalization M Rβ] [Algebra S Sβ] [IsLocalization (Algebra.algebraMapSubmonoid S M) Sβ] [Algebra.IsIntegral R S] : (IsLocalization.map Sβ (algebraMap R S) β―).IsIntegral - RingHom.isIntegralElem_localization_at_leadingCoeff π Mathlib.RingTheory.Localization.Integral
{R : Type u_5} {S : Type u_6} [CommSemiring R] [CommSemiring S] (f : R β+* S) (x : S) (p : Polynomial R) (hf : Polynomial.evalβ f x p = 0) (M : Submonoid R) (hM : p.leadingCoeff β M) {Rβ : Type u_7} {Sβ : Type u_8} [CommRing Rβ] [CommRing Sβ] [Algebra R Rβ] [IsLocalization M Rβ] [Algebra S Sβ] [IsLocalization (Submonoid.map f M) Sβ] : (IsLocalization.map Sβ f β―).IsIntegralElem ((algebraMap S Sβ) x) - is_integral_localization_at_leadingCoeff π Mathlib.RingTheory.Localization.Integral
{R : Type u_1} [CommRing R] {M : Submonoid R} {S : Type u_2} [CommRing S] [Algebra R S] {Rβ : Type u_3} {Sβ : Type u_4} [CommRing Rβ] [CommRing Sβ] [Algebra R Rβ] [IsLocalization M Rβ] [Algebra S Sβ] [IsLocalization (Algebra.algebraMapSubmonoid S M) Sβ] {x : S} (p : Polynomial R) (hp : (Polynomial.aeval x) p = 0) (hM : p.leadingCoeff β M) : (IsLocalization.map Sβ (algebraMap R S) β―).IsIntegralElem ((algebraMap S Sβ) x) - isIntegral_localization' π Mathlib.RingTheory.Localization.Integral
{R : Type u_5} {S : Type u_6} [CommRing R] [CommRing S] {f : R β+* S} (hf : f.IsIntegral) (M : Submonoid R) : (IsLocalization.map (Localization (Submonoid.map (βf) M)) f β―).IsIntegral - FractionalIdeal.canonicalEquiv_spanSingleton π Mathlib.RingTheory.FractionalIdeal.Operations
{R : Type u_1} [CommRing R] {S : Submonoid R} {P : Type u_2} [CommRing P] [Algebra R P] [IsLocalization S P] {P' : Type u_5} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : (FractionalIdeal.canonicalEquiv S P P') (FractionalIdeal.spanSingleton S x) = FractionalIdeal.spanSingleton S ((IsLocalization.map P' (RingHom.id R) β―) x) - FractionalIdeal.mem_canonicalEquiv_apply π Mathlib.RingTheory.FractionalIdeal.Operations
{R : Type u_1} [CommRing R] (S : Submonoid R) (P : Type u_2) [CommRing P] [Algebra R P] (P' : Type u_3) [CommRing P'] [Algebra R P'] [IsLocalization S P] [IsLocalization S P'] {I : FractionalIdeal S P} {x : P'} : x β (FractionalIdeal.canonicalEquiv S P P') I β β y β I, (IsLocalization.map P' (RingHom.id R) β―) y = x - AlgebraicGeometry.StructureSheaf.comap_basicOpen π Mathlib.AlgebraicGeometry.StructureSheaf
{R : Type u} [CommRing R] {S : Type u} [CommRing S] (f : R β+* S) (x : R) : AlgebraicGeometry.StructureSheaf.comap f (PrimeSpectrum.basicOpen x) (PrimeSpectrum.basicOpen (f x)) β― = IsLocalization.map (β((AlgebraicGeometry.Spec.structureSheaf S).val.obj (Opposite.op (PrimeSpectrum.basicOpen (f x))))) f β― - Polynomial.jacobson_bot_of_integral_localization π Mathlib.RingTheory.Jacobson.Ring
{S : Type u_2} [CommRing S] [IsDomain S] {R : Type u_5} [CommRing R] [IsDomain R] [IsJacobsonRing R] (Rβ : Type u_6) (Sβ : Type u_7) [CommRing Rβ] [CommRing Sβ] (Ο : R β+* S) (hΟ : Function.Injective βΟ) (x : R) (hx : x β 0) [Algebra R Rβ] [IsLocalization.Away x Rβ] [Algebra S Sβ] [IsLocalization (Submonoid.map Ο (Submonoid.powers x)) Sβ] (hΟ' : (IsLocalization.map Sβ Ο β―).IsIntegral) : β₯.jacobson = β₯ - Polynomial.isIntegral_isLocalization_polynomial_quotient π Mathlib.RingTheory.Jacobson.Ring
{R : Type u_1} [CommRing R] {Rβ : Type u_3} {Sβ : Type u_4} [CommRing Rβ] [CommRing Sβ] (P : Ideal (Polynomial R)) (pX : Polynomial R) (hpX : pX β P) [Algebra (R β§Έ Ideal.comap Polynomial.C P) Rβ] [IsLocalization.Away (Polynomial.map (Ideal.Quotient.mk (Ideal.comap Polynomial.C P)) pX).leadingCoeff Rβ] [Algebra (Polynomial R β§Έ P) Sβ] [IsLocalization (Submonoid.map (Ideal.quotientMap P Polynomial.C β―) (Submonoid.powers (Polynomial.map (Ideal.Quotient.mk (Ideal.comap Polynomial.C P)) pX).leadingCoeff)) Sβ] : (IsLocalization.map Sβ (Ideal.quotientMap P Polynomial.C β―) β―).IsIntegral - AlgebraicGeometry.ProjectiveSpectrum.Proj.awayToSection_apply π Mathlib.AlgebraicGeometry.ProjectiveSpectrum.Scheme
{A : Type u_1} {Ο : Type u_2} [CommRing A] [SetLike Ο A] [AddSubgroupClass Ο A] (π : β β Ο) [GradedRing π] (f : A) (x : β{ carrier := HomogeneousLocalization.Away π f, commRing := HomogeneousLocalization.homogeneousLocalizationCommRing }) (p : β₯(Opposite.unop (Opposite.op (ProjectiveSpectrum.basicOpen π f)))) : HomogeneousLocalization.val (β((AlgebraicGeometry.ProjectiveSpectrum.Proj.awayToSection π f).hom' x) p) = (IsLocalization.map (Localization (βp).asHomogeneousIdeal.toIdeal.primeCompl) (RingHom.id A) β―) (HomogeneousLocalization.val x) - AlgebraicGeometry.Proj.toBasicOpenOfGlobalSections.eq_1 π Mathlib.AlgebraicGeometry.ProjectiveSpectrum.Basic
{Ο : Type u_1} {A : Type u} [CommRing A] [SetLike Ο A] [AddSubgroupClass Ο A] (π : β β Ο) [GradedRing π] {X : AlgebraicGeometry.Scheme} (f : A β+* β(X.presheaf.obj (Opposite.op β€))) {x : β(X.presheaf.obj (Opposite.op β€))} {t : A} {d : β} (H : f t = x) (h0d : 0 < d) (hd : t β π d) : AlgebraicGeometry.Proj.toBasicOpenOfGlobalSections π f H h0d hd = CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp (X.isoOfEq β―).inv (CategoryTheory.CategoryStruct.comp (X.toSpecΞ β£_ PrimeSpectrum.basicOpen x) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.basicOpenIsoSpecAway x).hom (AlgebraicGeometry.Spec.map (CommRingCat.ofHom ((IsLocalization.map (Localization.Away x) f β―).comp (algebraMap (HomogeneousLocalization.Away π t) (Localization.Away t)))))))) (AlgebraicGeometry.Proj.basicOpenIsoSpec π t hd h0d).inv - Localization.localRingHom.eq_1 π Mathlib.RingTheory.Unramified.LocalRing
{R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (I : Ideal R) [hI : I.IsPrime] (J : Ideal P) [J.IsPrime] (f : R β+* P) (hIJ : I = Ideal.comap f J) : Localization.localRingHom I J f hIJ = IsLocalization.map (Localization.AtPrime J) f β― - FractionalIdeal.coe_extended_eq_span π Mathlib.RingTheory.FractionalIdeal.Extended
{A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] {f : A β+* B} {K : Type u_3} {M : Submonoid A} [CommRing K] [Algebra A K] [IsLocalization M K] (L : Type u_4) {N : Submonoid B} [CommRing L] [Algebra B L] [IsLocalization N L] (hf : M β€ Submonoid.comap f N) (I : FractionalIdeal M K) : β(FractionalIdeal.extended L hf I) = Submodule.span B (β(IsLocalization.map L f hf) '' βI) - FractionalIdeal.mem_extended_iff π Mathlib.RingTheory.FractionalIdeal.Extended
{A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] {f : A β+* B} {K : Type u_3} {M : Submonoid A} [CommRing K] [Algebra A K] [IsLocalization M K] (L : Type u_4) {N : Submonoid B} [CommRing L] [Algebra B L] [IsLocalization N L] (hf : M β€ Submonoid.comap f N) (I : FractionalIdeal M K) (x : L) : x β FractionalIdeal.extended L hf I β x β Submodule.span B (β(IsLocalization.map L f hf) '' βI)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision edaf32c