Loogle!
Result
Found 50 declarations mentioning IsLocalization.map.
- IsLocalization.map_id_mk' π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] [IsLocalization M S] {Q : Type u_5} [CommSemiring Q] [Algebra R Q] [IsLocalization M Q] (x : R) (y : β₯M) : (IsLocalization.map Q (RingHom.id R) β―) (IsLocalization.mk' S x y) = IsLocalization.mk' Q x y - IsLocalization.map π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {T : Submonoid P} (Q : Type u_4) [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (g : R β+* P) (hy : M β€ Submonoid.comap g T) : S β+* Q - IsLocalization.map_id π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] [IsLocalization M S] (z : S) (h : M β€ Submonoid.comap (RingHom.id R) M := β―) : (IsLocalization.map S (RingHom.id R) h) z = z - IsLocalization.map_comp π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {g : R β+* P} {T : Submonoid P} {Q : Type u_4} [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (hy : M β€ Submonoid.comap g T) : (IsLocalization.map Q g hy).comp (algebraMap R S) = (algebraMap P Q).comp g - IsLocalization.map_eq π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {g : R β+* P} {T : Submonoid P} {Q : Type u_4} [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (hy : M β€ Submonoid.comap g T) (x : R) : (IsLocalization.map Q g hy) ((algebraMap R S) x) = (algebraMap P Q) (g x) - IsLocalization.map_smul π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {g : R β+* P} {T : Submonoid P} {Q : Type u_4} [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (hy : M β€ Submonoid.comap g T) (x : S) (z : R) : (IsLocalization.map Q g hy) (z β’ x) = g z β’ (IsLocalization.map Q g hy) x - IsLocalization.map_unique π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {g : R β+* P} {T : Submonoid P} {Q : Type u_4} [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (hy : M β€ Submonoid.comap g T) (j : S β+* Q) (hj : β (x : R), j ((algebraMap R S) x) = (algebraMap P Q) (g x)) : IsLocalization.map Q g hy = j - IsLocalization.map_injective_of_injective π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {g : R β+* P} (Q : Type u_4) [CommSemiring Q] [Algebra P Q] (h : Function.Injective βg) [IsLocalization (Submonoid.map g M) Q] : Function.Injective β(IsLocalization.map Q g β―) - IsLocalization.map_surjective_of_surjective π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {g : R β+* P} (Q : Type u_4) [CommSemiring Q] [Algebra P Q] (h : Function.Surjective βg) [IsLocalization (Submonoid.map g M) Q] : Function.Surjective β(IsLocalization.map Q g β―) - IsLocalization.ringEquivOfRingEquiv_apply π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {T : Submonoid P} (Q : Type u_4) [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (h : R β+* P) (H : Submonoid.map h.toMonoidHom M = T) (a : S) : (IsLocalization.ringEquivOfRingEquiv S Q h H) a = (IsLocalization.map Q βh β―) a - IsLocalization.map_mk' π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {g : R β+* P} {T : Submonoid P} {Q : Type u_4} [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (hy : M β€ Submonoid.comap g T) (x : R) (y : β₯M) : (IsLocalization.map Q g hy) (IsLocalization.mk' S x y) = IsLocalization.mk' Q (g x) β¨g βy, β―β© - IsLocalization.ringEquivOfRingEquiv_symm_apply π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {T : Submonoid P} (Q : Type u_4) [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (h : R β+* P) (H : Submonoid.map h.toMonoidHom M = T) (a : Q) : (IsLocalization.ringEquivOfRingEquiv S Q h H).symm a = (IsLocalization.map S βh.symm β―) a - IsLocalization.map_comp_map π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {g : R β+* P} {T : Submonoid P} {Q : Type u_4} [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (hy : M β€ Submonoid.comap g T) {A : Type u_5} [CommSemiring A] {U : Submonoid A} {W : Type u_6} [CommSemiring W] [Algebra A W] [IsLocalization U W] {l : P β+* A} (hl : T β€ Submonoid.comap l U) : (IsLocalization.map W l hl).comp (IsLocalization.map Q g hy) = IsLocalization.map W (l.comp g) β― - IsLocalization.map_map π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {g : R β+* P} {T : Submonoid P} {Q : Type u_4} [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] (hy : M β€ Submonoid.comap g T) {A : Type u_5} [CommSemiring A] {U : Submonoid A} {W : Type u_6} [CommSemiring W] [Algebra A W] [IsLocalization U W] {l : P β+* A} (hl : T β€ Submonoid.comap l U) (x : S) : (IsLocalization.map W l hl) ((IsLocalization.map Q g hy) x) = (IsLocalization.map W (l.comp g) β―) x - IsLocalization.ringEquivOfRingEquiv_eq_map π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] [IsLocalization M S] {T : Submonoid P} {Q : Type u_4} [CommSemiring Q] [Algebra P Q] [IsLocalization T Q] {j : R β+* P} (H : Submonoid.map j.toMonoidHom M = T) : β(IsLocalization.ringEquivOfRingEquiv S Q j H) = IsLocalization.map Q βj β― - IsLocalization.algEquiv_apply π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (Q : Type u_4) [CommSemiring Q] [Algebra R Q] [IsLocalization M Q] (a : S) : (IsLocalization.algEquiv M S Q) a = (IsLocalization.map Q (RingHom.id R) β―) a - IsLocalization.algEquiv_symm_apply π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (Q : Type u_4) [CommSemiring Q] [Algebra R Q] [IsLocalization M Q] (a : Q) : (IsLocalization.algEquiv M S Q).symm a = (IsLocalization.map S (RingHom.id R) β―) a - Localization.algEquiv_apply π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (a : Localization M) : (Localization.algEquiv M S) a = (IsLocalization.map S (RingHom.id R) β―) a - Localization.algEquiv_symm_apply π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (a : S) : (Localization.algEquiv M S).symm a = (IsLocalization.map (Localization M) (RingHom.id R) β―) a - Localization.coe_algEquiv π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] [IsLocalization M S] : β(Localization.algEquiv M S) = IsLocalization.map S (RingHom.id R) β― - Localization.coe_algEquiv_symm π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] [IsLocalization M S] : β(Localization.algEquiv M S).symm = IsLocalization.map (Localization M) (RingHom.id R) β― - IsLocalization.algEquivOfAlgEquiv_apply π Mathlib.RingTheory.Localization.Basic
{A : Type u_4} [CommSemiring A] {R : Type u_5} [CommSemiring R] [Algebra A R] {M : Submonoid R} (S : Type u_6) [CommSemiring S] [Algebra A S] [Algebra R S] [IsScalarTower A R S] [IsLocalization M S] {P : Type u_7} [CommSemiring P] [Algebra A P] {T : Submonoid P} (Q : Type u_8) [CommSemiring Q] [Algebra A Q] [Algebra P Q] [IsScalarTower A P Q] [IsLocalization T Q] (h : R ββ[A] P) (H : Submonoid.map h M = T) (a : S) : (IsLocalization.algEquivOfAlgEquiv S Q h H) a = (IsLocalization.map Q βh β―) a - IsLocalization.algEquivOfAlgEquiv_symm_apply π Mathlib.RingTheory.Localization.Basic
{A : Type u_4} [CommSemiring A] {R : Type u_5} [CommSemiring R] [Algebra A R] {M : Submonoid R} (S : Type u_6) [CommSemiring S] [Algebra A S] [Algebra R S] [IsScalarTower A R S] [IsLocalization M S] {P : Type u_7} [CommSemiring P] [Algebra A P] {T : Submonoid P} (Q : Type u_8) [CommSemiring Q] [Algebra A Q] [Algebra P Q] [IsScalarTower A P Q] [IsLocalization T Q] (h : R ββ[A] P) (H : Submonoid.map h M = T) (a : Q) : (IsLocalization.algEquivOfAlgEquiv S Q h H).symm a = (IsLocalization.map S β(βh).symm β―) a - IsLocalization.algEquivOfAlgEquiv_eq_map π Mathlib.RingTheory.Localization.Basic
{A : Type u_4} [CommSemiring A] {R : Type u_5} [CommSemiring R] [Algebra A R] {M : Submonoid R} {S : Type u_6} [CommSemiring S] [Algebra A S] [Algebra R S] [IsScalarTower A R S] [IsLocalization M S] {P : Type u_7} [CommSemiring P] [Algebra A P] {T : Submonoid P} {Q : Type u_8} [CommSemiring Q] [Algebra A Q] [Algebra P Q] [IsScalarTower A P Q] [IsLocalization T Q] {h : R ββ[A] P} (H : Submonoid.map h M = T) : β(IsLocalization.algEquivOfAlgEquiv S Q h H) = IsLocalization.map Q βh β― - localizationAlgebraMap_def π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommRing R] {M : Submonoid R} {S : Type u_2} [CommRing S] [Algebra R S] (Rβ : Type u_4) (Sβ : Type u_5) [CommRing Rβ] [CommRing Sβ] [Algebra R Rβ] [IsLocalization M Rβ] [Algebra S Sβ] [i : IsLocalization (Algebra.algebraMapSubmonoid S M) Sβ] : algebraMap Rβ Sβ = IsLocalization.map Sβ (algebraMap R S) β― - IsLocalization.algebraMap_eq_map_map_submonoid π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommRing R] (M : Submonoid R) (S : Type u_2) [CommRing S] [Algebra R S] (Rβ : Type u_4) (Sβ : Type u_5) [CommRing Rβ] [CommRing Sβ] [Algebra R Rβ] [IsLocalization M Rβ] [Algebra S Sβ] [i : IsLocalization (Algebra.algebraMapSubmonoid S M) Sβ] [Algebra Rβ Sβ] [Algebra R Sβ] [IsScalarTower R Rβ Sβ] [IsScalarTower R S Sβ] : algebraMap Rβ Sβ = IsLocalization.map Sβ (algebraMap R S) β― - IsLocalization.algebraMap_apply_eq_map_map_submonoid π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommRing R] (M : Submonoid R) (S : Type u_2) [CommRing S] [Algebra R S] (Rβ : Type u_4) (Sβ : Type u_5) [CommRing Rβ] [CommRing Sβ] [Algebra R Rβ] [IsLocalization M Rβ] [Algebra S Sβ] [i : IsLocalization (Algebra.algebraMapSubmonoid S M) Sβ] [Algebra Rβ Sβ] [Algebra R Sβ] [IsScalarTower R Rβ Sβ] [IsScalarTower R S Sβ] (x : Rβ) : (algebraMap Rβ Sβ) x = (IsLocalization.map Sβ (algebraMap R S) β―) x - IsLocalization.Away.map.eq_1 π Mathlib.RingTheory.LocalProperties.Basic
{R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] {P : Type u_3} [CommSemiring P] (Q : Type u_4) [CommSemiring Q] [Algebra P Q] (f : R β+* P) (r : R) [IsLocalization.Away r S] [IsLocalization.Away (f r) Q] : IsLocalization.Away.map S Q f r = IsLocalization.map Q f β― - RingHom.IsStableUnderBaseChange.isLocalization_map π Mathlib.RingTheory.LocalProperties.Basic
{P : {R S : Type u} β [inst : CommRing R] β [inst_1 : CommRing S] β (R β+* S) β Prop} (hP : RingHom.IsStableUnderBaseChange P) {R S Rα΅£ Sα΅£ : Type u} [CommRing R] [CommRing S] [CommRing Rα΅£] [CommRing Sα΅£] [Algebra R Rα΅£] [Algebra S Sα΅£] (M : Submonoid R) [IsLocalization M Rα΅£] (f : R β+* S) [IsLocalization (Submonoid.map f M) Sα΅£] (hf : P f) : P (IsLocalization.map Sα΅£ f β―) - RingHom.isIntegralElem_localization_at_leadingCoeff π Mathlib.RingTheory.Localization.Integral
{R : Type u_5} {S : Type u_6} [CommSemiring R] [CommSemiring S] (f : R β+* S) (x : S) (p : Polynomial R) (hf : Polynomial.evalβ f x p = 0) (M : Submonoid R) (hM : p.leadingCoeff β M) {Rβ : Type u_7} {Sβ : Type u_8} [CommRing Rβ] [CommRing Sβ] [Algebra R Rβ] [IsLocalization M Rβ] [Algebra S Sβ] [IsLocalization (Submonoid.map f M) Sβ] : (IsLocalization.map Sβ f β―).IsIntegralElem ((algebraMap S Sβ) x) - isIntegral_localization π Mathlib.RingTheory.Localization.Integral
{R : Type u_1} [CommRing R] {M : Submonoid R} {S : Type u_2} [CommRing S] [Algebra R S] {Rβ : Type u_3} {Sβ : Type u_4} [CommRing Rβ] [CommRing Sβ] [Algebra R Rβ] [IsLocalization M Rβ] [Algebra S Sβ] [IsLocalization (Algebra.algebraMapSubmonoid S M) Sβ] [Algebra.IsIntegral R S] : (IsLocalization.map Sβ (algebraMap R S) β―).IsIntegral - is_integral_localization_at_leadingCoeff π Mathlib.RingTheory.Localization.Integral
{R : Type u_1} [CommRing R] {M : Submonoid R} {S : Type u_2} [CommRing S] [Algebra R S] {Rβ : Type u_3} {Sβ : Type u_4} [CommRing Rβ] [CommRing Sβ] [Algebra R Rβ] [IsLocalization M Rβ] [Algebra S Sβ] [IsLocalization (Algebra.algebraMapSubmonoid S M) Sβ] {x : S} (p : Polynomial R) (hp : (Polynomial.aeval x) p = 0) (hM : p.leadingCoeff β M) : (IsLocalization.map Sβ (algebraMap R S) β―).IsIntegralElem ((algebraMap S Sβ) x) - isIntegral_localization' π Mathlib.RingTheory.Localization.Integral
{R : Type u_5} {S : Type u_6} [CommRing R] [CommRing S] {f : R β+* S} (hf : f.IsIntegral) (M : Submonoid R) : (IsLocalization.map (Localization (Submonoid.map (βf) M)) f β―).IsIntegral - IsLocalization.mapβ_coe π Mathlib.RingTheory.Localization.Algebra
{R : Type u} [CommRing R] (M : Submonoid R) {A : Type v} [CommRing A] [Algebra R A] {B : Type w} [CommRing B] [Algebra R B] (Rβ : Type u') [CommRing Rβ] [Algebra R Rβ] [IsLocalization M Rβ] (Aβ : Type v') [CommRing Aβ] [Algebra R Aβ] [Algebra A Aβ] [IsScalarTower R A Aβ] [IsLocalization (Algebra.algebraMapSubmonoid A M) Aβ] (Bβ : Type v') [CommRing Bβ] [Algebra R Bβ] [Algebra B Bβ] [IsScalarTower R B Bβ] [IsLocalization (Algebra.algebraMapSubmonoid B M) Bβ] [Algebra Rβ Aβ] [Algebra Rβ Bβ] [IsScalarTower R Rβ Aβ] [IsScalarTower R Rβ Bβ] (f : A ββ[R] B) : β(IsLocalization.mapβ M Rβ Aβ Bβ f) = β(IsLocalization.map Bβ f.toRingHom β―) - RingHom.toKerIsLocalization π Mathlib.RingTheory.Localization.Algebra
{R : Type u_1} (S : Type u_2) {P : Type u_3} (Q : Type u_4) [CommSemiring R] [CommSemiring S] [CommSemiring P] [CommSemiring Q] {M : Submonoid R} {T : Submonoid P} [Algebra R S] [Algebra P Q] [IsLocalization M S] [IsLocalization T Q] (g : R β+* P) (hy : M β€ Submonoid.comap g T) : β₯(RingHom.ker g) ββ[R] β₯(RingHom.ker (IsLocalization.map Q g hy)) - IsLocalization.ker_map π Mathlib.RingTheory.Localization.Algebra
{R : Type u_1} {S : Type u_2} {P : Type u_3} (Q : Type u_4) [CommSemiring R] [CommSemiring S] [CommSemiring P] [CommSemiring Q] {M : Submonoid R} {T : Submonoid P} [Algebra R S] [Algebra P Q] [IsLocalization M S] [IsLocalization T Q] (g : R β+* P) (hT : Submonoid.map g M = T) : RingHom.ker (IsLocalization.map Q g β―) = Ideal.map (algebraMap R S) (RingHom.ker g) - RingHom.toKerIsLocalization_apply π Mathlib.RingTheory.Localization.Algebra
{R : Type u_1} {S : Type u_2} {P : Type u_3} (Q : Type u_4) [CommSemiring R] [CommSemiring S] [CommSemiring P] [CommSemiring Q] {M : Submonoid R} {T : Submonoid P} [Algebra R S] [Algebra P Q] [IsLocalization M S] [IsLocalization T Q] (g : R β+* P) (hy : M β€ Submonoid.comap g T) (r : β₯(RingHom.ker g)) : β((RingHom.toKerIsLocalization S Q g hy) r) = (algebraMap R S) βr - RingHom.toKerIsLocalization_isLocalizedModule π Mathlib.RingTheory.Localization.Algebra
{R : Type u_1} {S : Type u_2} {P : Type u_3} (Q : Type u_4) [CommSemiring R] [CommSemiring S] [CommSemiring P] [CommSemiring Q] {M : Submonoid R} {T : Submonoid P} [Algebra R S] [Algebra P Q] [IsLocalization M S] [IsLocalization T Q] (g : R β+* P) (hT : Submonoid.map g M = T) : IsLocalizedModule M (RingHom.toKerIsLocalization S Q g β―) - AlgHom.toKerIsLocalization_apply π Mathlib.RingTheory.Localization.Algebra
{R : Type u} [CommRing R] (M : Submonoid R) {A : Type v} [CommRing A] [Algebra R A] {B : Type w} [CommRing B] [Algebra R B] (Rβ : Type u') [CommRing Rβ] [Algebra R Rβ] [IsLocalization M Rβ] (Aβ : Type v') [CommRing Aβ] [Algebra R Aβ] [Algebra A Aβ] [IsScalarTower R A Aβ] [IsLocalization (Algebra.algebraMapSubmonoid A M) Aβ] (Bβ : Type v') [CommRing Bβ] [Algebra R Bβ] [Algebra B Bβ] [IsScalarTower R B Bβ] [IsLocalization (Algebra.algebraMapSubmonoid B M) Bβ] [Algebra Rβ Aβ] [Algebra Rβ Bβ] [IsScalarTower R Rβ Aβ] [IsScalarTower R Rβ Bβ] (f : A ββ[R] B) (x : β₯(RingHom.ker f)) : (AlgHom.toKerIsLocalization M Rβ Aβ Bβ f) x = (RingHom.toKerIsLocalization Aβ Bβ f.toRingHom β―) x - FractionalIdeal.canonicalEquiv_spanSingleton π Mathlib.RingTheory.FractionalIdeal.Operations
{R : Type u_1} [CommRing R] {S : Submonoid R} {P : Type u_2} [CommRing P] [Algebra R P] [IsLocalization S P] {P' : Type u_5} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : (FractionalIdeal.canonicalEquiv S P P') (FractionalIdeal.spanSingleton S x) = FractionalIdeal.spanSingleton S ((IsLocalization.map P' (RingHom.id R) β―) x) - FractionalIdeal.mem_canonicalEquiv_apply π Mathlib.RingTheory.FractionalIdeal.Operations
{R : Type u_1} [CommRing R] (S : Submonoid R) (P : Type u_2) [CommRing P] [Algebra R P] (P' : Type u_3) [CommRing P'] [Algebra R P'] [IsLocalization S P] [IsLocalization S P'] {I : FractionalIdeal S P} {x : P'} : x β (FractionalIdeal.canonicalEquiv S P P') I β β y β I, (IsLocalization.map P' (RingHom.id R) β―) y = x - AlgebraicGeometry.StructureSheaf.comap_basicOpen π Mathlib.AlgebraicGeometry.StructureSheaf
{R : Type u} [CommRing R] {S : Type u} [CommRing S] (f : R β+* S) (x : R) : AlgebraicGeometry.StructureSheaf.comap f (PrimeSpectrum.basicOpen x) (PrimeSpectrum.basicOpen (f x)) β― = IsLocalization.map (β((AlgebraicGeometry.Spec.structureSheaf S).val.obj (Opposite.op (PrimeSpectrum.basicOpen (f x))))) f β― - Polynomial.jacobson_bot_of_integral_localization π Mathlib.RingTheory.Jacobson.Ring
{S : Type u_2} [CommRing S] [IsDomain S] {R : Type u_5} [CommRing R] [IsDomain R] [IsJacobsonRing R] (Rβ : Type u_6) (Sβ : Type u_7) [CommRing Rβ] [CommRing Sβ] (Ο : R β+* S) (hΟ : Function.Injective βΟ) (x : R) (hx : x β 0) [Algebra R Rβ] [IsLocalization.Away x Rβ] [Algebra S Sβ] [IsLocalization (Submonoid.map Ο (Submonoid.powers x)) Sβ] (hΟ' : (IsLocalization.map Sβ Ο β―).IsIntegral) : β₯.jacobson = β₯ - Ideal.Polynomial.jacobson_bot_of_integral_localization π Mathlib.RingTheory.Jacobson.Ring
{S : Type u_2} [CommRing S] [IsDomain S] {R : Type u_5} [CommRing R] [IsDomain R] [IsJacobsonRing R] (Rβ : Type u_6) (Sβ : Type u_7) [CommRing Rβ] [CommRing Sβ] (Ο : R β+* S) (hΟ : Function.Injective βΟ) (x : R) (hx : x β 0) [Algebra R Rβ] [IsLocalization.Away x Rβ] [Algebra S Sβ] [IsLocalization (Submonoid.map Ο (Submonoid.powers x)) Sβ] (hΟ' : (IsLocalization.map Sβ Ο β―).IsIntegral) : β₯.jacobson = β₯ - Polynomial.isIntegral_isLocalization_polynomial_quotient π Mathlib.RingTheory.Jacobson.Ring
{R : Type u_1} [CommRing R] {Rβ : Type u_3} {Sβ : Type u_4} [CommRing Rβ] [CommRing Sβ] (P : Ideal (Polynomial R)) (pX : Polynomial R) (hpX : pX β P) [Algebra (R β§Έ Ideal.comap Polynomial.C P) Rβ] [IsLocalization.Away (Polynomial.map (Ideal.Quotient.mk (Ideal.comap Polynomial.C P)) pX).leadingCoeff Rβ] [Algebra (Polynomial R β§Έ P) Sβ] [IsLocalization (Submonoid.map (Ideal.quotientMap P Polynomial.C β―) (Submonoid.powers (Polynomial.map (Ideal.Quotient.mk (Ideal.comap Polynomial.C P)) pX).leadingCoeff)) Sβ] : (IsLocalization.map Sβ (Ideal.quotientMap P Polynomial.C β―) β―).IsIntegral - Ideal.Polynomial.isIntegral_isLocalization_polynomial_quotient π Mathlib.RingTheory.Jacobson.Ring
{R : Type u_1} [CommRing R] {Rβ : Type u_3} {Sβ : Type u_4} [CommRing Rβ] [CommRing Sβ] (P : Ideal (Polynomial R)) (pX : Polynomial R) (hpX : pX β P) [Algebra (R β§Έ Ideal.comap Polynomial.C P) Rβ] [IsLocalization.Away (Polynomial.map (Ideal.Quotient.mk (Ideal.comap Polynomial.C P)) pX).leadingCoeff Rβ] [Algebra (Polynomial R β§Έ P) Sβ] [IsLocalization (Submonoid.map (Ideal.quotientMap P Polynomial.C β―) (Submonoid.powers (Polynomial.map (Ideal.Quotient.mk (Ideal.comap Polynomial.C P)) pX).leadingCoeff)) Sβ] : (IsLocalization.map Sβ (Ideal.quotientMap P Polynomial.C β―) β―).IsIntegral - AlgebraicGeometry.ProjectiveSpectrum.Proj.awayToSection_apply π Mathlib.AlgebraicGeometry.ProjectiveSpectrum.Scheme
{R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (π : β β Submodule R A) [GradedAlgebra π] (f : A) (x : β(CommRingCat.of (HomogeneousLocalization.Away π f))) (p : β₯(Opposite.unop (Opposite.op (ProjectiveSpectrum.basicOpen π f)))) : HomogeneousLocalization.val (β((AlgebraicGeometry.ProjectiveSpectrum.Proj.awayToSection π f).hom' x) p) = (IsLocalization.map (Localization (βp).asHomogeneousIdeal.toIdeal.primeCompl) (RingHom.id A) β―) (HomogeneousLocalization.val x) - FractionalIdeal.coe_extended_eq_span π Mathlib.RingTheory.FractionalIdeal.Extended
{A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] {f : A β+* B} {K : Type u_3} {M : Submonoid A} [CommRing K] [Algebra A K] [IsLocalization M K] (L : Type u_4) {N : Submonoid B} [CommRing L] [Algebra B L] [IsLocalization N L] (hf : M β€ Submonoid.comap f N) (I : FractionalIdeal M K) : β(FractionalIdeal.extended L hf I) = Submodule.span B (β(IsLocalization.map L f hf) '' βI) - FractionalIdeal.mem_extended_iff π Mathlib.RingTheory.FractionalIdeal.Extended
{A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] {f : A β+* B} {K : Type u_3} {M : Submonoid A} [CommRing K] [Algebra A K] [IsLocalization M K] (L : Type u_4) {N : Submonoid B} [CommRing L] [Algebra B L] [IsLocalization N L] (hf : M β€ Submonoid.comap f N) (I : FractionalIdeal M K) (x : L) : x β FractionalIdeal.extended L hf I β x β Submodule.span B (β(IsLocalization.map L f hf) '' βI) - Localization.localRingHom.eq_1 π Mathlib.RingTheory.Spectrum.Prime.FreeLocus
{R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (I : Ideal R) [hI : I.IsPrime] (J : Ideal P) [J.IsPrime] (f : R β+* P) (hIJ : I = Ideal.comap f J) : Localization.localRingHom I J f hIJ = IsLocalization.map (Localization.AtPrime J) f β―
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65