Loogle!
Result
Found 37 declarations mentioning IsLocalizedModule.map.
- IsLocalizedModule.map π Mathlib.Algebra.Module.LocalizedModule.Basic
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} {M' : Type u_3} [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R M'] (f : M ββ[R] M') [IsLocalizedModule S f] {N : Type u_6} {N' : Type u_7} [AddCommMonoid N] [AddCommMonoid N'] [Module R N] [Module R N'] (g : N ββ[R] N') [IsLocalizedModule S g] : (M ββ[R] N) ββ[R] M' ββ[R] N' - IsLocalizedModule.map_id π Mathlib.Algebra.Module.LocalizedModule.Basic
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} {M' : Type u_3} [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R M'] (f : M ββ[R] M') [IsLocalizedModule S f] : (IsLocalizedModule.map S f f) LinearMap.id = LinearMap.id - IsLocalizedModule.map_injective π Mathlib.Algebra.Module.LocalizedModule.Basic
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} {M' : Type u_3} [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R M'] (f : M ββ[R] M') [IsLocalizedModule S f] {N : Type u_6} {N' : Type u_7} [AddCommMonoid N] [AddCommMonoid N'] [Module R N] [Module R N'] (g : N ββ[R] N') [IsLocalizedModule S g] (h : M ββ[R] N) (h_inj : Function.Injective βh) : Function.Injective β((IsLocalizedModule.map S f g) h) - IsLocalizedModule.map_surjective π Mathlib.Algebra.Module.LocalizedModule.Basic
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} {M' : Type u_3} [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R M'] (f : M ββ[R] M') [IsLocalizedModule S f] {N : Type u_6} {N' : Type u_7} [AddCommMonoid N] [AddCommMonoid N'] [Module R N] [Module R N'] (g : N ββ[R] N') [IsLocalizedModule S g] (h : M ββ[R] N) (h_surj : Function.Surjective βh) : Function.Surjective β((IsLocalizedModule.map S f g) h) - IsLocalizedModule.map_comp π Mathlib.Algebra.Module.LocalizedModule.Basic
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} {M' : Type u_3} [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R M'] (f : M ββ[R] M') [IsLocalizedModule S f] {N : Type u_6} {N' : Type u_7} [AddCommMonoid N] [AddCommMonoid N'] [Module R N] [Module R N'] (g : N ββ[R] N') [IsLocalizedModule S g] (h : M ββ[R] N) : (IsLocalizedModule.map S f g) h ββ f = g ββ h - IsLocalizedModule.map_mk' π Mathlib.Algebra.Module.LocalizedModule.Basic
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} {M' : Type u_3} [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R M'] (f : M ββ[R] M') [IsLocalizedModule S f] {N : Type u_6} {N' : Type u_7} [AddCommMonoid N] [AddCommMonoid N'] [Module R N] [Module R N'] (g : N ββ[R] N') [IsLocalizedModule S g] (h : M ββ[R] N) (x : M) (s : β₯S) : ((IsLocalizedModule.map S f g) h) (IsLocalizedModule.mk' f x s) = IsLocalizedModule.mk' g (h x) s - IsLocalizedModule.map_apply π Mathlib.Algebra.Module.LocalizedModule.Basic
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} {M' : Type u_3} [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R M'] (f : M ββ[R] M') [IsLocalizedModule S f] {N : Type u_6} {N' : Type u_7} [AddCommMonoid N] [AddCommMonoid N'] [Module R N] [Module R N'] (g : N ββ[R] N') [IsLocalizedModule S g] (h : M ββ[R] N) (x : M) : ((IsLocalizedModule.map S f g) h) (f x) = g (h x) - IsLocalizedModule.map.eq_1 π Mathlib.Algebra.Module.LocalizedModule.Basic
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} {M' : Type u_3} [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R M'] (f : M ββ[R] M') [IsLocalizedModule S f] {N : Type u_6} {N' : Type u_7} [AddCommMonoid N] [AddCommMonoid N'] [Module R N] [Module R N'] (g : N ββ[R] N') [IsLocalizedModule S g] : IsLocalizedModule.map S f g = { toFun := fun h => IsLocalizedModule.lift S f (g ββ h) β―, map_add' := β―, map_smul' := β― } - IsLocalizedModule.map_LocalizedModules π Mathlib.Algebra.Module.LocalizedModule.Basic
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {Mβ : Type u_6} [AddCommMonoid Mβ] [Module R Mβ] {Mβ : Type u_7} [AddCommMonoid Mβ] [Module R Mβ] (g : Mβ ββ[R] Mβ) (m : Mβ) (s : β₯S) : ((IsLocalizedModule.map S (LocalizedModule.mkLinearMap S Mβ) (LocalizedModule.mkLinearMap S Mβ)) g) (LocalizedModule.mk m s) = LocalizedModule.mk (g m) s - IsLocalizedModule.map_comp' π Mathlib.Algebra.Module.LocalizedModule.Basic
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {Mβ : Type u_6} {Mβ' : Type u_9} [AddCommMonoid Mβ] [AddCommMonoid Mβ'] [Module R Mβ] [Module R Mβ'] (fβ : Mβ ββ[R] Mβ') [IsLocalizedModule S fβ] {Mβ : Type u_7} {Mβ' : Type u_11} [AddCommMonoid Mβ] [AddCommMonoid Mβ'] [Module R Mβ] [Module R Mβ'] (fβ : Mβ ββ[R] Mβ') [IsLocalizedModule S fβ] {Mβ : Type u_8} {Mβ' : Type u_10} [AddCommMonoid Mβ] [AddCommMonoid Mβ'] [Module R Mβ] [Module R Mβ'] (fβ : Mβ ββ[R] Mβ') [IsLocalizedModule S fβ] (g : Mβ ββ[R] Mβ) (h : Mβ ββ[R] Mβ) : (IsLocalizedModule.map S fβ fβ) (h ββ g) = (IsLocalizedModule.map S fβ fβ) h ββ (IsLocalizedModule.map S fβ fβ) g - IsLocalizedModule.map_iso_commute π Mathlib.Algebra.Module.LocalizedModule.Basic
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {Mβ : Type u_6} {Mβ' : Type u_9} [AddCommMonoid Mβ] [AddCommMonoid Mβ'] [Module R Mβ] [Module R Mβ'] (fβ : Mβ ββ[R] Mβ') [IsLocalizedModule S fβ] {Mβ : Type u_7} {Mβ' : Type u_8} [AddCommMonoid Mβ] [AddCommMonoid Mβ'] [Module R Mβ] [Module R Mβ'] (fβ : Mβ ββ[R] Mβ') [IsLocalizedModule S fβ] (g : Mβ ββ[R] Mβ) : (IsLocalizedModule.map S fβ fβ) g ββ β(IsLocalizedModule.iso S fβ) = β(IsLocalizedModule.iso S fβ) ββ (IsLocalizedModule.map S (LocalizedModule.mkLinearMap S Mβ) (LocalizedModule.mkLinearMap S Mβ)) g - IsLocalizedModule.mapEquiv_apply π Mathlib.RingTheory.Localization.Module
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} {M' : Type u_3} [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R M'] (f : M ββ[R] M') [IsLocalizedModule S f] {N : Type u_4} {N' : Type u_5} [AddCommMonoid N] [AddCommMonoid N'] [Module R N] [Module R N'] (g : N ββ[R] N') [IsLocalizedModule S g] (Rβ : Type u_6) [CommSemiring Rβ] [Algebra R Rβ] [Module Rβ M'] [Module Rβ N'] [IsScalarTower R Rβ M'] [IsScalarTower R Rβ N'] [IsLocalization S Rβ] (e : M ββ[R] N) (a : M') : (IsLocalizedModule.mapEquiv S f g Rβ e) a = ((IsLocalizedModule.map S f g) βe) a - IsLocalizedModule.mapEquiv_symm_apply π Mathlib.RingTheory.Localization.Module
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} {M' : Type u_3} [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R M'] (f : M ββ[R] M') [IsLocalizedModule S f] {N : Type u_4} {N' : Type u_5} [AddCommMonoid N] [AddCommMonoid N'] [Module R N] [Module R N'] (g : N ββ[R] N') [IsLocalizedModule S g] (Rβ : Type u_6) [CommSemiring Rβ] [Algebra R Rβ] [Module Rβ M'] [Module Rβ N'] [IsScalarTower R Rβ M'] [IsScalarTower R Rβ N'] [IsLocalization S Rβ] (e : M ββ[R] N) (a : N') : (IsLocalizedModule.mapEquiv S f g Rβ e).symm a = ((IsLocalizedModule.map S g f) βe.symm) a - IsLocalizedModule.mapExtendScalars_apply_apply π Mathlib.RingTheory.Localization.Module
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} {M' : Type u_3} [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R M'] (f : M ββ[R] M') [IsLocalizedModule S f] {N : Type u_4} {N' : Type u_5} [AddCommMonoid N] [AddCommMonoid N'] [Module R N] [Module R N'] (g : N ββ[R] N') [IsLocalizedModule S g] (Rβ : Type u_6) [CommSemiring Rβ] [Algebra R Rβ] [Module Rβ M'] [Module Rβ N'] [IsScalarTower R Rβ M'] [IsScalarTower R Rβ N'] [IsLocalization S Rβ] (aβ : M ββ[R] N) (a : M') : ((IsLocalizedModule.mapExtendScalars S f g Rβ) aβ) a = ((IsLocalizedModule.map S f g) aβ) a - LocalizedModule.restrictScalars_map_eq π Mathlib.RingTheory.Localization.Module
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} [AddCommMonoid M] [Module R M] {N : Type u_5} [AddCommMonoid N] [Module R N] {M' : Type u_3} {N' : Type u_4} [AddCommMonoid M'] [AddCommMonoid N'] [Module R M'] [Module R N'] (gβ : M ββ[R] M') (gβ : N ββ[R] N') [IsLocalizedModule S gβ] [IsLocalizedModule S gβ] (l : M ββ[R] N) : βR ((LocalizedModule.map S) l) = β(IsLocalizedModule.iso S gβ).symm ββ (IsLocalizedModule.map S gβ gβ) l ββ β(IsLocalizedModule.iso S gβ) - IsLocalizedModule.map_lTensor π Mathlib.RingTheory.Localization.BaseChange
{R : Type u_1} [CommSemiring R] (A : Type u_2) [CommSemiring A] [Algebra R A] {M : Type u_3} [AddCommMonoid M] [Module R M] {M' : Type u_4} [AddCommMonoid M'] [Module R M'] [Module A M'] [IsScalarTower R A M'] (S : Submonoid A) {N : Type u_7} [AddCommMonoid N] [Module R N] [Module A M] [IsScalarTower R A M] {P : Type u_8} [AddCommMonoid P] [Module R P] (f : N ββ[R] P) (g : M ββ[A] M') [h : IsLocalizedModule S g] : (IsLocalizedModule.map S ((TensorProduct.AlgebraTensorModule.rTensor R N) g) ((TensorProduct.AlgebraTensorModule.rTensor R P) g)) ((TensorProduct.AlgebraTensorModule.lTensor A M) f) = (TensorProduct.AlgebraTensorModule.lTensor A M') f - LinearMap.ker_localizedMap_eq_localizedβ_ker π Mathlib.Algebra.Module.LocalizedModule.Submodule
{R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M ββ[R] N) [IsLocalizedModule p f] {P : Type u_5} [AddCommMonoid P] [Module R P] {Q : Type u_6} [AddCommMonoid Q] [Module R Q] (f' : P ββ[R] Q) [IsLocalizedModule p f'] (g : M ββ[R] P) : LinearMap.ker ((IsLocalizedModule.map p f f') g) = Submodule.localizedβ p f (LinearMap.ker g) - LinearMap.range_localizedMap_eq_localizedβ_range π Mathlib.Algebra.Module.LocalizedModule.Submodule
{R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M ββ[R] N) [IsLocalizedModule p f] {P : Type u_5} [AddCommMonoid P] [Module R P] {Q : Type u_6} [AddCommMonoid Q] [Module R Q] (f' : P ββ[R] Q) [IsLocalizedModule p f'] (g : M ββ[R] P) : LinearMap.range ((IsLocalizedModule.map p f f') g) = Submodule.localizedβ p f' (LinearMap.range g) - LinearMap.localized'_ker_eq_ker_localizedMap π Mathlib.Algebra.Module.LocalizedModule.Submodule
{R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M ββ[R] N) [IsLocalizedModule p f] {P : Type u_5} [AddCommMonoid P] [Module R P] {Q : Type u_6} [AddCommMonoid Q] [Module R Q] [Module S Q] [IsScalarTower R S Q] (f' : P ββ[R] Q) [IsLocalizedModule p f'] (g : M ββ[R] P) : Submodule.localized' S p f (LinearMap.ker g) = LinearMap.ker (LinearMap.extendScalarsOfIsLocalization p S ((IsLocalizedModule.map p f f') g)) - LinearMap.ker_localizedMap_eq_localized'_ker π Mathlib.Algebra.Module.LocalizedModule.Submodule
{R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M ββ[R] N) [IsLocalizedModule p f] {P : Type u_5} [AddCommMonoid P] [Module R P] {Q : Type u_6} [AddCommMonoid Q] [Module R Q] [Module S Q] [IsScalarTower R S Q] (f' : P ββ[R] Q) [IsLocalizedModule p f'] (g : M ββ[R] P) : LinearMap.ker ((IsLocalizedModule.map p f f') g) = Submodule.restrictScalars R (Submodule.localized' S p f (LinearMap.ker g)) - LinearMap.localized'_range_eq_range_localizedMap π Mathlib.Algebra.Module.LocalizedModule.Submodule
{R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M ββ[R] N) [IsLocalizedModule p f] {P : Type u_5} [AddCommMonoid P] [Module R P] {Q : Type u_6} [AddCommMonoid Q] [Module R Q] [Module S Q] [IsScalarTower R S Q] (f' : P ββ[R] Q) [IsLocalizedModule p f'] (g : M ββ[R] P) : Submodule.localized' S p f' (LinearMap.range g) = LinearMap.range (LinearMap.extendScalarsOfIsLocalization p S ((IsLocalizedModule.map p f f') g)) - LinearMap.toKerIsLocalized π Mathlib.Algebra.Module.LocalizedModule.Submodule
{R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M ββ[R] N) [IsLocalizedModule p f] {P : Type u_5} [AddCommMonoid P] [Module R P] {Q : Type u_6} [AddCommMonoid Q] [Module R Q] (f' : P ββ[R] Q) [IsLocalizedModule p f'] (g : M ββ[R] P) : β₯(LinearMap.ker g) ββ[R] β₯(LinearMap.ker ((IsLocalizedModule.map p f f') g)) - LinearMap.toKerLocalized_isLocalizedModule π Mathlib.Algebra.Module.LocalizedModule.Submodule
{R : Type u_1} (S : Type u_2) {M : Type u_3} {N : Type u_4} [CommSemiring R] [CommSemiring S] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M ββ[R] N) [IsLocalizedModule p f] {P : Type u_5} [AddCommMonoid P] [Module R P] {Q : Type u_6} [AddCommMonoid Q] [Module R Q] [Module S Q] [IsScalarTower R S Q] (f' : P ββ[R] Q) [IsLocalizedModule p f'] (g : M ββ[R] P) : IsLocalizedModule p (LinearMap.toKerIsLocalized p f f' g) - LinearMap.toKerIsLocalized_apply_coe π Mathlib.Algebra.Module.LocalizedModule.Submodule
{R : Type u_1} {M : Type u_3} {N : Type u_4} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [Module R M] [Module R N] (p : Submonoid R) (f : M ββ[R] N) [IsLocalizedModule p f] {P : Type u_5} [AddCommMonoid P] [Module R P] {Q : Type u_6} [AddCommMonoid Q] [Module R Q] (f' : P ββ[R] Q) [IsLocalizedModule p f'] (g : M ββ[R] P) (c : β₯(LinearMap.ker g)) : β((LinearMap.toKerIsLocalized p f f' g) c) = f βc - LinearMap.eq_of_localization_maximal π Mathlib.RingTheory.LocalProperties.Submodule
{R : Type u_1} {M : Type u_2} {Mβ : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid Mβ] [Module R Mβ] (Mβ : (P : Ideal R) β [P.IsMaximal] β Type u_5) [(P : Ideal R) β [inst : P.IsMaximal] β AddCommMonoid (Mβ P)] [(P : Ideal R) β [inst : P.IsMaximal] β Module R (Mβ P)] (f : (P : Ideal R) β [inst : P.IsMaximal] β M ββ[R] Mβ P) [β (P : Ideal R) [inst : P.IsMaximal], IsLocalizedModule P.primeCompl (f P)] (Mββ : (P : Ideal R) β [P.IsMaximal] β Type u_6) [(P : Ideal R) β [inst : P.IsMaximal] β AddCommMonoid (Mββ P)] [(P : Ideal R) β [inst : P.IsMaximal] β Module R (Mββ P)] (fβ : (P : Ideal R) β [inst : P.IsMaximal] β Mβ ββ[R] Mββ P) [β (P : Ideal R) [inst : P.IsMaximal], IsLocalizedModule P.primeCompl (fβ P)] (g g' : M ββ[R] Mβ) (h : β (P : Ideal R) [inst : P.IsMaximal], (IsLocalizedModule.map P.primeCompl (f P) (fβ P)) g = (IsLocalizedModule.map P.primeCompl (f P) (fβ P)) g') : g = g' - bijective_of_isLocalized_span π Mathlib.RingTheory.LocalProperties.Exactness
{R : Type u_1} {M : Type u_2} {N : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (s : Set R) (spn : Ideal.span s = β€) (Mβ : βs β Type u_5) [(r : βs) β AddCommMonoid (Mβ r)] [(r : βs) β Module R (Mβ r)] (f : (r : βs) β M ββ[R] Mβ r) [β (r : βs), IsLocalizedModule.Away (βr) (f r)] (Nβ : βs β Type u_6) [(r : βs) β AddCommMonoid (Nβ r)] [(r : βs) β Module R (Nβ r)] (g : (r : βs) β N ββ[R] Nβ r) [β (r : βs), IsLocalizedModule.Away (βr) (g r)] (F : M ββ[R] N) (H : β (r : βs), Function.Bijective β((IsLocalizedModule.map (Submonoid.powers βr) (f r) (g r)) F)) : Function.Bijective βF - injective_of_isLocalized_span π Mathlib.RingTheory.LocalProperties.Exactness
{R : Type u_1} {M : Type u_2} {N : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (s : Set R) (spn : Ideal.span s = β€) (Mβ : βs β Type u_5) [(r : βs) β AddCommMonoid (Mβ r)] [(r : βs) β Module R (Mβ r)] (f : (r : βs) β M ββ[R] Mβ r) [β (r : βs), IsLocalizedModule.Away (βr) (f r)] (Nβ : βs β Type u_6) [(r : βs) β AddCommMonoid (Nβ r)] [(r : βs) β Module R (Nβ r)] (g : (r : βs) β N ββ[R] Nβ r) [β (r : βs), IsLocalizedModule.Away (βr) (g r)] (F : M ββ[R] N) (H : β (r : βs), Function.Injective β((IsLocalizedModule.map (Submonoid.powers βr) (f r) (g r)) F)) : Function.Injective βF - surjective_of_isLocalized_span π Mathlib.RingTheory.LocalProperties.Exactness
{R : Type u_1} {M : Type u_2} {N : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (s : Set R) (spn : Ideal.span s = β€) (Mβ : βs β Type u_5) [(r : βs) β AddCommMonoid (Mβ r)] [(r : βs) β Module R (Mβ r)] (f : (r : βs) β M ββ[R] Mβ r) [β (r : βs), IsLocalizedModule.Away (βr) (f r)] (Nβ : βs β Type u_6) [(r : βs) β AddCommMonoid (Nβ r)] [(r : βs) β Module R (Nβ r)] (g : (r : βs) β N ββ[R] Nβ r) [β (r : βs), IsLocalizedModule.Away (βr) (g r)] (F : M ββ[R] N) (H : β (r : βs), Function.Surjective β((IsLocalizedModule.map (Submonoid.powers βr) (f r) (g r)) F)) : Function.Surjective βF - bijective_of_isLocalized_maximal π Mathlib.RingTheory.LocalProperties.Exactness
{R : Type u_1} {M : Type u_2} {N : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (Mβ : (P : Ideal R) β [P.IsMaximal] β Type u_5) [(P : Ideal R) β [inst : P.IsMaximal] β AddCommMonoid (Mβ P)] [(P : Ideal R) β [inst : P.IsMaximal] β Module R (Mβ P)] (f : (P : Ideal R) β [inst : P.IsMaximal] β M ββ[R] Mβ P) [β (P : Ideal R) [inst : P.IsMaximal], IsLocalizedModule.AtPrime P (f P)] (Nβ : (P : Ideal R) β [P.IsMaximal] β Type u_6) [(P : Ideal R) β [inst : P.IsMaximal] β AddCommMonoid (Nβ P)] [(P : Ideal R) β [inst : P.IsMaximal] β Module R (Nβ P)] (g : (P : Ideal R) β [inst : P.IsMaximal] β N ββ[R] Nβ P) [β (P : Ideal R) [inst : P.IsMaximal], IsLocalizedModule.AtPrime P (g P)] (F : M ββ[R] N) (H : β (P : Ideal R) [inst : P.IsMaximal], Function.Bijective β((IsLocalizedModule.map P.primeCompl (f P) (g P)) F)) : Function.Bijective βF - injective_of_isLocalized_maximal π Mathlib.RingTheory.LocalProperties.Exactness
{R : Type u_1} {M : Type u_2} {N : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (Mβ : (P : Ideal R) β [P.IsMaximal] β Type u_5) [(P : Ideal R) β [inst : P.IsMaximal] β AddCommMonoid (Mβ P)] [(P : Ideal R) β [inst : P.IsMaximal] β Module R (Mβ P)] (f : (P : Ideal R) β [inst : P.IsMaximal] β M ββ[R] Mβ P) [β (P : Ideal R) [inst : P.IsMaximal], IsLocalizedModule.AtPrime P (f P)] (Nβ : (P : Ideal R) β [P.IsMaximal] β Type u_6) [(P : Ideal R) β [inst : P.IsMaximal] β AddCommMonoid (Nβ P)] [(P : Ideal R) β [inst : P.IsMaximal] β Module R (Nβ P)] (g : (P : Ideal R) β [inst : P.IsMaximal] β N ββ[R] Nβ P) [β (P : Ideal R) [inst : P.IsMaximal], IsLocalizedModule.AtPrime P (g P)] (F : M ββ[R] N) (H : β (P : Ideal R) [inst : P.IsMaximal], Function.Injective β((IsLocalizedModule.map P.primeCompl (f P) (g P)) F)) : Function.Injective βF - surjective_of_isLocalized_maximal π Mathlib.RingTheory.LocalProperties.Exactness
{R : Type u_1} {M : Type u_2} {N : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (Mβ : (P : Ideal R) β [P.IsMaximal] β Type u_5) [(P : Ideal R) β [inst : P.IsMaximal] β AddCommMonoid (Mβ P)] [(P : Ideal R) β [inst : P.IsMaximal] β Module R (Mβ P)] (f : (P : Ideal R) β [inst : P.IsMaximal] β M ββ[R] Mβ P) [β (P : Ideal R) [inst : P.IsMaximal], IsLocalizedModule.AtPrime P (f P)] (Nβ : (P : Ideal R) β [P.IsMaximal] β Type u_6) [(P : Ideal R) β [inst : P.IsMaximal] β AddCommMonoid (Nβ P)] [(P : Ideal R) β [inst : P.IsMaximal] β Module R (Nβ P)] (g : (P : Ideal R) β [inst : P.IsMaximal] β N ββ[R] Nβ P) [β (P : Ideal R) [inst : P.IsMaximal], IsLocalizedModule.AtPrime P (g P)] (F : M ββ[R] N) (H : β (P : Ideal R) [inst : P.IsMaximal], Function.Surjective β((IsLocalizedModule.map P.primeCompl (f P) (g P)) F)) : Function.Surjective βF - exact_of_isLocalized_span π Mathlib.RingTheory.LocalProperties.Exactness
{R : Type u_1} {M : Type u_2} {N : Type u_3} {L : Type u_4} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid L] [Module R L] (s : Set R) (spn : Ideal.span s = β€) (Mβ : βs β Type u_5) [(r : βs) β AddCommMonoid (Mβ r)] [(r : βs) β Module R (Mβ r)] (f : (r : βs) β M ββ[R] Mβ r) [β (r : βs), IsLocalizedModule.Away (βr) (f r)] (Nβ : βs β Type u_6) [(r : βs) β AddCommMonoid (Nβ r)] [(r : βs) β Module R (Nβ r)] (g : (r : βs) β N ββ[R] Nβ r) [β (r : βs), IsLocalizedModule.Away (βr) (g r)] (Lβ : βs β Type u_7) [(r : βs) β AddCommMonoid (Lβ r)] [(r : βs) β Module R (Lβ r)] (h : (r : βs) β L ββ[R] Lβ r) [β (r : βs), IsLocalizedModule.Away (βr) (h r)] (F : M ββ[R] N) (G : N ββ[R] L) (H : β (r : βs), Function.Exact β((IsLocalizedModule.map (Submonoid.powers βr) (f r) (g r)) F) β((IsLocalizedModule.map (Submonoid.powers βr) (g r) (h r)) G)) : Function.Exact βF βG - exact_of_isLocalized_maximal π Mathlib.RingTheory.LocalProperties.Exactness
{R : Type u_1} {M : Type u_2} {N : Type u_3} {L : Type u_4} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid L] [Module R L] (Mβ : (P : Ideal R) β [P.IsMaximal] β Type u_5) [(P : Ideal R) β [inst : P.IsMaximal] β AddCommMonoid (Mβ P)] [(P : Ideal R) β [inst : P.IsMaximal] β Module R (Mβ P)] (f : (P : Ideal R) β [inst : P.IsMaximal] β M ββ[R] Mβ P) [β (P : Ideal R) [inst : P.IsMaximal], IsLocalizedModule.AtPrime P (f P)] (Nβ : (P : Ideal R) β [P.IsMaximal] β Type u_6) [(P : Ideal R) β [inst : P.IsMaximal] β AddCommMonoid (Nβ P)] [(P : Ideal R) β [inst : P.IsMaximal] β Module R (Nβ P)] (g : (P : Ideal R) β [inst : P.IsMaximal] β N ββ[R] Nβ P) [β (P : Ideal R) [inst : P.IsMaximal], IsLocalizedModule.AtPrime P (g P)] (Lβ : (P : Ideal R) β [P.IsMaximal] β Type u_7) [(P : Ideal R) β [inst : P.IsMaximal] β AddCommMonoid (Lβ P)] [(P : Ideal R) β [inst : P.IsMaximal] β Module R (Lβ P)] (h : (P : Ideal R) β [inst : P.IsMaximal] β L ββ[R] Lβ P) [β (P : Ideal R) [inst : P.IsMaximal], IsLocalizedModule.AtPrime P (h P)] (F : M ββ[R] N) (G : N ββ[R] L) (H : β (J : Ideal R) [inst : J.IsMaximal], Function.Exact β((IsLocalizedModule.map J.primeCompl (f J) (g J)) F) β((IsLocalizedModule.map J.primeCompl (g J) (h J)) G)) : Function.Exact βF βG - Module.FinitePresentation.isLocalizedModule_map π Mathlib.Algebra.Module.FinitePresentation
{R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (S : Submonoid R) {M' : Type u_1} [AddCommGroup M'] [Module R M'] (f : M ββ[R] M') [IsLocalizedModule S f] {N' : Type u_2} [AddCommGroup N'] [Module R N'] (g : N ββ[R] N') [IsLocalizedModule S g] [Module.FinitePresentation R M] : IsLocalizedModule S (IsLocalizedModule.map S f g) - exists_bijective_map_powers π Mathlib.Algebra.Module.FinitePresentation
{R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (S : Submonoid R) {M' : Type u_1} [AddCommGroup M'] [Module R M'] (f : M ββ[R] M') [IsLocalizedModule S f] {N' : Type u_2} [AddCommGroup N'] [Module R N'] (g : N ββ[R] N') [IsLocalizedModule S g] [Module.Finite R M] [Module.FinitePresentation R N] (l : M ββ[R] N) (hf : Function.Bijective β((IsLocalizedModule.map S f g) l)) : β r β S, β (t : R), r β£ t β Function.Bijective β((LocalizedModule.map (Submonoid.powers t)) l) - IsLocalizedModule.map_exact π Mathlib.Algebra.Module.LocalizedModule.Exact
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {Mβ : Type u_2} {Mβ' : Type u_5} [AddCommMonoid Mβ] [AddCommMonoid Mβ'] [Module R Mβ] [Module R Mβ'] (fβ : Mβ ββ[R] Mβ') [IsLocalizedModule S fβ] {Mβ : Type u_3} {Mβ' : Type u_6} [AddCommMonoid Mβ] [AddCommMonoid Mβ'] [Module R Mβ] [Module R Mβ'] (fβ : Mβ ββ[R] Mβ') [IsLocalizedModule S fβ] {Mβ : Type u_4} {Mβ' : Type u_7} [AddCommMonoid Mβ] [AddCommMonoid Mβ'] [Module R Mβ] [Module R Mβ'] (fβ : Mβ ββ[R] Mβ') [IsLocalizedModule S fβ] (g : Mβ ββ[R] Mβ) (h : Mβ ββ[R] Mβ) (ex : Function.Exact βg βh) : Function.Exact β((IsLocalizedModule.map S fβ fβ) g) β((IsLocalizedModule.map S fβ fβ) h) - LocalizedModule.map_exact π Mathlib.Algebra.Module.LocalizedModule.Exact
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {Mβ : Type u_2} [AddCommMonoid Mβ] [Module R Mβ] {Mβ : Type u_3} [AddCommMonoid Mβ] [Module R Mβ] {Mβ : Type u_4} [AddCommMonoid Mβ] [Module R Mβ] (g : Mβ ββ[R] Mβ) (h : Mβ ββ[R] Mβ) (ex : Function.Exact βg βh) : Function.Exact β((IsLocalizedModule.map S (LocalizedModule.mkLinearMap S Mβ) (LocalizedModule.mkLinearMap S Mβ)) g) β((IsLocalizedModule.map S (LocalizedModule.mkLinearMap S Mβ) (LocalizedModule.mkLinearMap S Mβ)) h)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65