Loogle!
Result
Found 16 declarations mentioning IsOpen and Set.Countable.
- TopologicalSpace.isOpen_sUnion_countable π Mathlib.Topology.Bases
{Ξ± : Type u} [t : TopologicalSpace Ξ±] [SecondCountableTopology Ξ±] (S : Set (Set Ξ±)) (H : β s β S, IsOpen s) : β T, T.Countable β§ T β S β§ ββ T = ββ S - TopologicalSpace.isOpen_iUnion_countable π Mathlib.Topology.Bases
{Ξ± : Type u} [t : TopologicalSpace Ξ±] [SecondCountableTopology Ξ±] {ΞΉ : Type u_1} (s : ΞΉ β Set Ξ±) (H : β (i : ΞΉ), IsOpen (s i)) : β T, T.Countable β§ β i β T, s i = β i, s i - Set.PairwiseDisjoint.countable_of_isOpen π Mathlib.Topology.Bases
{Ξ± : Type u} [t : TopologicalSpace Ξ±] [TopologicalSpace.SeparableSpace Ξ±] {ΞΉ : Type u_2} {s : ΞΉ β Set Ξ±} {a : Set ΞΉ} (h : a.PairwiseDisjoint s) (ho : β i β a, IsOpen (s i)) (hne : β i β a, (s i).Nonempty) : a.Countable - TopologicalSpace.isOpen_biUnion_countable π Mathlib.Topology.Bases
{Ξ± : Type u} [t : TopologicalSpace Ξ±] [SecondCountableTopology Ξ±] {ΞΉ : Type u_1} (I : Set ΞΉ) (s : ΞΉ β Set Ξ±) (H : β i β I, IsOpen (s i)) : β T β I, T.Countable β§ β i β T, s i = β i β I, s i - eq_open_union_countable π Mathlib.Topology.Compactness.Lindelof
{X : Type u} [TopologicalSpace X] [HereditarilyLindelofSpace X] {ΞΉ : Type u} (U : ΞΉ β Set X) (h : β (i : ΞΉ), IsOpen (U i)) : β t, t.Countable β§ β i β t, U i = β i, U i - isLindelof_of_countable_subcover π Mathlib.Topology.Compactness.Lindelof
{X : Type u} [TopologicalSpace X] {s : Set X} (h : β {ΞΉ : Type u} (U : ΞΉ β Set X), (β (i : ΞΉ), IsOpen (U i)) β s β β i, U i β β t, t.Countable β§ s β β i β t, U i) : IsLindelof s - isLindelof_open_iff_eq_countable_iUnion_of_isTopologicalBasis π Mathlib.Topology.Compactness.Lindelof
{X : Type u} {ΞΉ : Type u_1} [TopologicalSpace X] (b : ΞΉ β Set X) (hb : TopologicalSpace.IsTopologicalBasis (Set.range b)) (hb' : β (i : ΞΉ), IsLindelof (b i)) (U : Set X) : IsLindelof U β§ IsOpen U β β s, s.Countable β§ U = β i β s, b i - IsLindelof.elim_countable_subcover π Mathlib.Topology.Compactness.Lindelof
{X : Type u} [TopologicalSpace X] {s : Set X} {ΞΉ : Type v} (hs : IsLindelof s) (U : ΞΉ β Set X) (hUo : β (i : ΞΉ), IsOpen (U i)) (hsU : s β β i, U i) : β r, r.Countable β§ s β β i β r, U i - isLindelof_iff_countable_subcover π Mathlib.Topology.Compactness.Lindelof
{X : Type u} [TopologicalSpace X] {s : Set X} : IsLindelof s β β {ΞΉ : Type u} (U : ΞΉ β Set X), (β (i : ΞΉ), IsOpen (U i)) β s β β i, U i β β t, t.Countable β§ s β β i β t, U i - IsLindelof.elim_countable_subcover_image π Mathlib.Topology.Compactness.Lindelof
{X : Type u} {ΞΉ : Type u_1} [TopologicalSpace X] {s : Set X} {b : Set ΞΉ} {c : ΞΉ β Set X} (hs : IsLindelof s) (hcβ : β i β b, IsOpen (c i)) (hcβ : s β β i β b, c i) : β b' β b, b'.Countable β§ s β β i β b', c i - IsGΞ΄.biInter_of_isOpen π Mathlib.Topology.GDelta.Basic
{X : Type u_1} {ΞΉ : Type u_3} [TopologicalSpace X] {I : Set ΞΉ} (hI : I.Countable) {f : ΞΉ β Set X} (hf : β i β I, IsOpen (f i)) : IsGΞ΄ (β i β I, f i) - mem_residual_iff π Mathlib.Topology.GDelta.Basic
{X : Type u_1} [TopologicalSpace X] {s : Set X} : s β residual X β β S, (β t β S, IsOpen t) β§ (β t β S, Dense t) β§ S.Countable β§ ββ S β s - MeasureTheory.LocallyIntegrableOn.exists_countable_integrableOn π Mathlib.MeasureTheory.Function.LocallyIntegrable
{X : Type u_1} {E : Type u_3} [MeasurableSpace X] [TopologicalSpace X] [NormedAddCommGroup E] {f : X β E} {ΞΌ : MeasureTheory.Measure X} {s : Set X} [SecondCountableTopology X] (hf : MeasureTheory.LocallyIntegrableOn f s ΞΌ) : β T, T.Countable β§ (β u β T, IsOpen u) β§ s β β u β T, u β§ β u β T, MeasureTheory.IntegrableOn f (u β© s) ΞΌ - dense_sInter_of_isOpen π Mathlib.Topology.Baire.Lemmas
{X : Type u_1} [TopologicalSpace X] [BaireSpace X] {S : Set (Set X)} (ho : β s β S, IsOpen s) (hS : S.Countable) (hd : β s β S, Dense s) : Dense (ββ S) - dense_biInter_of_isOpen π Mathlib.Topology.Baire.Lemmas
{X : Type u_1} {Ξ± : Type u_2} [TopologicalSpace X] [BaireSpace X] {S : Set Ξ±} {f : Ξ± β Set X} (ho : β s β S, IsOpen (f s)) (hS : S.Countable) (hd : β s β S, Dense (f s)) : Dense (β s β S, f s) - ContinuousMap.secondCountableTopology π Mathlib.Topology.ContinuousMap.SecondCountableSpace
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] [SecondCountableTopology Y] (hX : β S, S.Countable β§ (β K β S, IsCompact K) β§ β (f : C(X, Y)) (V : Set Y), IsOpen V β β x β βf β»ΒΉ' V, β K β S, K β nhds x β§ Set.MapsTo (βf) K V) : SecondCountableTopology C(X, Y)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 1bd7adb