Loogle!
Result
Found 13 declarations mentioning IsTensorProduct.
- TensorProduct.isTensorProduct 📋 Mathlib.RingTheory.IsTensorProduct
(R : Type u_1) [CommSemiring R] (M : Type u_4) [AddCommMonoid M] [Module R M] (N : Type u_8) [AddCommMonoid N] [Module R N] : IsTensorProduct (TensorProduct.mk R M N) - IsTensorProduct 📋 Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} [CommSemiring R] {M₁ : Type u_2} {M₂ : Type u_3} {M : Type u_4} [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M] [Module R M₁] [Module R M₂] [Module R M] (f : M₁ →ₗ[R] M₂ →ₗ[R] M) : Prop - IsTensorProduct.equiv 📋 Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} [CommSemiring R] {M₁ : Type u_2} {M₂ : Type u_3} {M : Type u_4} [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M] [Module R M₁] [Module R M₂] [Module R M] {f : M₁ →ₗ[R] M₂ →ₗ[R] M} (h : IsTensorProduct f) : TensorProduct R M₁ M₂ ≃ₗ[R] M - IsTensorProduct.eq_1 📋 Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} [CommSemiring R] {M₁ : Type u_2} {M₂ : Type u_3} {M : Type u_4} [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M] [Module R M₁] [Module R M₂] [Module R M] (f : M₁ →ₗ[R] M₂ →ₗ[R] M) : IsTensorProduct f = Function.Bijective ⇑(TensorProduct.lift f) - IsTensorProduct.equiv_toLinearMap 📋 Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} [CommSemiring R] {M₁ : Type u_2} {M₂ : Type u_3} {M : Type u_4} [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M] [Module R M₁] [Module R M₂] [Module R M] {f : M₁ →ₗ[R] M₂ →ₗ[R] M} (h : IsTensorProduct f) : ↑h.equiv = TensorProduct.lift f - IsTensorProduct.lift 📋 Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} [CommSemiring R] {M₁ : Type u_2} {M₂ : Type u_3} {M : Type u_4} {M' : Type u_5} [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M] [AddCommMonoid M'] [Module R M₁] [Module R M₂] [Module R M] [Module R M'] {f : M₁ →ₗ[R] M₂ →ₗ[R] M} (h : IsTensorProduct f) (f' : M₁ →ₗ[R] M₂ →ₗ[R] M') : M →ₗ[R] M' - IsTensorProduct.map 📋 Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} [CommSemiring R] {M₁ : Type u_2} {M₂ : Type u_3} {M : Type u_4} [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M] [Module R M₁] [Module R M₂] [Module R M] {f : M₁ →ₗ[R] M₂ →ₗ[R] M} {N₁ : Type u_6} {N₂ : Type u_7} {N : Type u_8} [AddCommMonoid N₁] [AddCommMonoid N₂] [AddCommMonoid N] [Module R N₁] [Module R N₂] [Module R N] {g : N₁ →ₗ[R] N₂ →ₗ[R] N} (hf : IsTensorProduct f) (hg : IsTensorProduct g) (i₁ : M₁ →ₗ[R] N₁) (i₂ : M₂ →ₗ[R] N₂) : M →ₗ[R] N - IsTensorProduct.inductionOn 📋 Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} [CommSemiring R] {M₁ : Type u_2} {M₂ : Type u_3} {M : Type u_4} [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M] [Module R M₁] [Module R M₂] [Module R M] {f : M₁ →ₗ[R] M₂ →ₗ[R] M} (h : IsTensorProduct f) {motive : M → Prop} (m : M) (zero : motive 0) (tmul : ∀ (x : M₁) (y : M₂), motive ((f x) y)) (add : ∀ (x y : M), motive x → motive y → motive (x + y)) : motive m - IsTensorProduct.equiv_apply 📋 Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} [CommSemiring R] {M₁ : Type u_2} {M₂ : Type u_3} {M : Type u_4} [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M] [Module R M₁] [Module R M₂] [Module R M] {f : M₁ →ₗ[R] M₂ →ₗ[R] M} (h : IsTensorProduct f) (a✝ : TensorProduct R M₁ M₂) : h.equiv a✝ = (TensorProduct.lift f) a✝ - IsTensorProduct.of_equiv 📋 Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} [CommSemiring R] {M₁ : Type u_2} {M₂ : Type u_3} {M : Type u_4} [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M] [Module R M₁] [Module R M₂] [Module R M] {f : M₁ →ₗ[R] M₂ →ₗ[R] M} (e : TensorProduct R M₁ M₂ ≃ₗ[R] M) (he : ∀ (x : M₁) (y : M₂), e (x ⊗ₜ[R] y) = (f x) y) : IsTensorProduct f - IsTensorProduct.equiv_symm_apply 📋 Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} [CommSemiring R] {M₁ : Type u_2} {M₂ : Type u_3} {M : Type u_4} [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M] [Module R M₁] [Module R M₂] [Module R M] {f : M₁ →ₗ[R] M₂ →ₗ[R] M} (h : IsTensorProduct f) (x₁ : M₁) (x₂ : M₂) : h.equiv.symm ((f x₁) x₂) = x₁ ⊗ₜ[R] x₂ - IsTensorProduct.lift_eq 📋 Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} [CommSemiring R] {M₁ : Type u_2} {M₂ : Type u_3} {M : Type u_4} {M' : Type u_5} [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M] [AddCommMonoid M'] [Module R M₁] [Module R M₂] [Module R M] [Module R M'] {f : M₁ →ₗ[R] M₂ →ₗ[R] M} (h : IsTensorProduct f) (f' : M₁ →ₗ[R] M₂ →ₗ[R] M') (x₁ : M₁) (x₂ : M₂) : (h.lift f') ((f x₁) x₂) = (f' x₁) x₂ - IsTensorProduct.map_eq 📋 Mathlib.RingTheory.IsTensorProduct
{R : Type u_1} [CommSemiring R] {M₁ : Type u_2} {M₂ : Type u_3} {M : Type u_4} [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M] [Module R M₁] [Module R M₂] [Module R M] {f : M₁ →ₗ[R] M₂ →ₗ[R] M} {N₁ : Type u_6} {N₂ : Type u_7} {N : Type u_8} [AddCommMonoid N₁] [AddCommMonoid N₂] [AddCommMonoid N] [Module R N₁] [Module R N₂] [Module R N] {g : N₁ →ₗ[R] N₂ →ₗ[R] N} (hf : IsTensorProduct f) (hg : IsTensorProduct g) (i₁ : M₁ →ₗ[R] N₁) (i₂ : M₂ →ₗ[R] N₂) (x₁ : M₁) (x₂ : M₂) : (hf.map hg i₁ i₂) ((f x₁) x₂) = (g (i₁ x₁)) (i₂ x₂)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision f167e8d