Loogle!
Result
Found 19 declarations mentioning KaehlerDifferential.map.
- KaehlerDifferential.map π Mathlib.RingTheory.Kaehler.Basic
(R : Type u) (S : Type v) [CommRing R] [CommRing S] [Algebra R S] (A : Type u_2) (B : Type u_3) [CommRing A] [CommRing B] [Algebra R A] [Algebra A B] [Algebra S B] [Algebra R B] [IsScalarTower R A B] [IsScalarTower R S B] [SMulCommClass S A B] : Ξ©[AβR] ββ[A] Ξ©[BβS] - KaehlerDifferential.map_surjective π Mathlib.RingTheory.Kaehler.Basic
(R : Type u) (S : Type v) [CommRing R] [CommRing S] [Algebra R S] (B : Type u_3) [CommRing B] [Algebra S B] [Algebra R B] [IsScalarTower R S B] : Function.Surjective β(KaehlerDifferential.map R S B B) - KaehlerDifferential.map_surjective_of_surjective π Mathlib.RingTheory.Kaehler.Basic
(R : Type u) (S : Type v) [CommRing R] [CommRing S] [Algebra R S] (A : Type u_2) (B : Type u_3) [CommRing A] [CommRing B] [Algebra R A] [Algebra A B] [Algebra S B] [Algebra R B] [IsScalarTower R A B] [IsScalarTower R S B] [SMulCommClass S A B] (h : Function.Surjective β(algebraMap A B)) : Function.Surjective β(KaehlerDifferential.map R S A B) - KaehlerDifferential.map_D π Mathlib.RingTheory.Kaehler.Basic
(R : Type u) (S : Type v) [CommRing R] [CommRing S] [Algebra R S] (A : Type u_2) (B : Type u_3) [CommRing A] [CommRing B] [Algebra R A] [Algebra A B] [Algebra S B] [Algebra R B] [IsScalarTower R A B] [IsScalarTower R S B] [SMulCommClass S A B] (x : A) : (KaehlerDifferential.map R S A B) ((KaehlerDifferential.D R A) x) = (KaehlerDifferential.D S B) ((algebraMap A B) x) - KaehlerDifferential.exact_mapBaseChange_map π Mathlib.RingTheory.Kaehler.Basic
(R : Type u) [CommRing R] (A : Type u_2) (B : Type u_3) [CommRing A] [CommRing B] [Algebra R A] [Algebra A B] [Algebra R B] [IsScalarTower R A B] : Function.Exact β(KaehlerDifferential.mapBaseChange R A B) β(KaehlerDifferential.map R A B B) - KaehlerDifferential.mapBaseChange_tmul π Mathlib.RingTheory.Kaehler.Basic
(R : Type u) [CommRing R] (A : Type u_2) (B : Type u_3) [CommRing A] [CommRing B] [Algebra R A] [Algebra A B] [Algebra R B] [IsScalarTower R A B] (x : B) (y : Ξ©[AβR]) : (KaehlerDifferential.mapBaseChange R A B) (x ββ[A] y) = x β’ (KaehlerDifferential.map R R A B) y - KaehlerDifferential.range_mapBaseChange π Mathlib.RingTheory.Kaehler.Basic
(R : Type u) [CommRing R] (A : Type u_2) (B : Type u_3) [CommRing A] [CommRing B] [Algebra R A] [Algebra A B] [Algebra R B] [IsScalarTower R A B] : LinearMap.range (KaehlerDifferential.mapBaseChange R A B) = LinearMap.ker (KaehlerDifferential.map R A B B) - KaehlerDifferential.ker_map π Mathlib.RingTheory.Kaehler.Basic
(R : Type u) (S : Type v) [CommRing R] [CommRing S] [Algebra R S] (A : Type u_2) (B : Type u_3) [CommRing A] [CommRing B] [Algebra R A] [Algebra A B] [Algebra S B] [Algebra R B] [IsScalarTower R A B] [IsScalarTower R S B] [SMulCommClass S A B] : LinearMap.ker (KaehlerDifferential.map R S A B) = Submodule.map (Finsupp.linearCombination A β(KaehlerDifferential.D R A)) (Submodule.comap (Finsupp.mapRange.linearMap (Algebra.linearMap A B) ββ Finsupp.lmapDomain A A β(algebraMap A B)) (Submodule.restrictScalars A (KaehlerDifferential.kerTotal S B))) - KaehlerDifferential.ker_map_of_surjective π Mathlib.RingTheory.Kaehler.Basic
(R : Type u) [CommRing R] (A : Type u_2) (B : Type u_3) [CommRing A] [CommRing B] [Algebra R A] [Algebra A B] [Algebra R B] [IsScalarTower R A B] (h : Function.Surjective β(algebraMap A B)) : LinearMap.ker (KaehlerDifferential.map R R A B) = Submodule.map (Finsupp.linearCombination A β(KaehlerDifferential.D R A)) (LinearMap.ker (Finsupp.mapRange.linearMap (Algebra.linearMap A B) ββ Finsupp.lmapDomain A A β(algebraMap A B))) - KaehlerDifferential.map_compDer π Mathlib.RingTheory.Kaehler.Basic
(R : Type u) (S : Type v) [CommRing R] [CommRing S] [Algebra R S] (A : Type u_2) (B : Type u_3) [CommRing A] [CommRing B] [Algebra R A] [Algebra A B] [Algebra S B] [Algebra R B] [IsScalarTower R A B] [IsScalarTower R S B] [SMulCommClass S A B] : (KaehlerDifferential.map R S A B).compDer (KaehlerDifferential.D R A) = Derivation.compAlgebraMap A (Derivation.restrictScalars R (KaehlerDifferential.D S B)) - Algebra.Extension.CotangentSpace.map.eq_1 π Mathlib.RingTheory.Kaehler.CotangentComplex
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] {P : Algebra.Extension R S} {R' : Type u'} {S' : Type v'} [CommRing R'] [CommRing S'] [Algebra R' S'] {P' : Algebra.Extension R' S'} [Algebra R R'] [Algebra S S'] [Algebra R S'] [IsScalarTower R R' S'] (f : P.Hom P') : Algebra.Extension.CotangentSpace.map f = LinearMap.liftBaseChange S (βP.Ring ((TensorProduct.mk P'.Ring S' (Ξ©[P'.RingβR'])) 1) ββ KaehlerDifferential.map R R' P.Ring P'.Ring) - KaehlerDifferential.isLocalizedModule_map π Mathlib.RingTheory.Etale.Kaehler
(R S T : Type u) [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (M : Submonoid S) [IsLocalization M T] : IsLocalizedModule M (KaehlerDifferential.map R R S T) - KaehlerDifferential.isBaseChange_of_formallyEtale π Mathlib.RingTheory.Etale.Kaehler
(R S T : Type u) [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] [Algebra S T] [IsScalarTower R S T] [Algebra.FormallyEtale S T] : IsBaseChange T (KaehlerDifferential.map R R S T) - KaehlerDifferential.isLocalizedModule π Mathlib.RingTheory.Kaehler.TensorProduct
(R : Type u_1) (S : Type u_2) (A : Type u_3) (B : Type u_4) [CommRing R] [CommRing S] [Algebra R S] [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] [Algebra A B] [Algebra S B] [IsScalarTower R A B] [IsScalarTower R S B] (p : Submonoid R) [IsLocalization p S] [IsLocalization (Algebra.algebraMapSubmonoid A p) B] : IsLocalizedModule p (βR (KaehlerDifferential.map R S A B)) - KaehlerDifferential.isLocalizedModule_of_isLocalizedModule π Mathlib.RingTheory.Kaehler.TensorProduct
(R : Type u_1) (S : Type u_2) (A : Type u_3) (B : Type u_4) [CommRing R] [CommRing S] [Algebra R S] [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] [Algebra A B] [Algebra S B] [IsScalarTower R A B] [IsScalarTower R S B] (p : Submonoid R) [IsLocalization p S] [IsLocalizedModule p (IsScalarTower.toAlgHom R A B).toLinearMap] : IsLocalizedModule p (βR (KaehlerDifferential.map R S A B)) - KaehlerDifferential.isBaseChange π Mathlib.RingTheory.Kaehler.TensorProduct
(R : Type u_1) (S : Type u_2) (A : Type u_3) (B : Type u_4) [CommRing R] [CommRing S] [Algebra R S] [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] [Algebra A B] [Algebra S B] [IsScalarTower R A B] [IsScalarTower R S B] [h : Algebra.IsPushout R S A B] : IsBaseChange S (βR (KaehlerDifferential.map R S A B)) - KaehlerDifferential.tensorKaehlerEquiv_tmul π Mathlib.RingTheory.Kaehler.TensorProduct
(R : Type u_1) (S : Type u_2) (A : Type u_3) (B : Type u_4) [CommRing R] [CommRing S] [Algebra R S] [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] [Algebra A B] [Algebra S B] [IsScalarTower R A B] [IsScalarTower R S B] [Algebra.IsPushout R S A B] (a : S) (b : Ξ©[AβR]) : (KaehlerDifferential.tensorKaehlerEquiv R S A B) (a ββ[R] b) = a β’ (KaehlerDifferential.map R S A B) b - KaehlerDifferential.map_liftBaseChange_smul π Mathlib.RingTheory.Kaehler.TensorProduct
(R : Type u_1) (S : Type u_2) (A : Type u_3) (B : Type u_4) [CommRing R] [CommRing S] [Algebra R S] [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] [Algebra A B] [Algebra S B] [IsScalarTower R A B] [IsScalarTower R S B] [h : Algebra.IsPushout R S A B] (b : B) (x : TensorProduct R S (Ξ©[AβR])) : (LinearMap.liftBaseChange S (βR (KaehlerDifferential.map R S A B))) (b β’ x) = b β’ (LinearMap.liftBaseChange S (βR (KaehlerDifferential.map R S A B))) x - KaehlerDifferential.tensorKaehlerEquiv_left_inv π Mathlib.RingTheory.Kaehler.TensorProduct
(R : Type u_1) (S : Type u_2) (A : Type u_3) (B : Type u_4) [CommRing R] [CommRing S] [Algebra R S] [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] [Algebra A B] [Algebra S B] [IsScalarTower R A B] [IsScalarTower R S B] [Algebra.IsPushout R S A B] : βS (KaehlerDifferential.derivationTensorProduct R S A B).liftKaehlerDifferential ββ LinearMap.liftBaseChange S (βR (KaehlerDifferential.map R S A B)) = LinearMap.id
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08