Loogle!
Result
Found 32 declarations mentioning LieIdeal.map.
- LieIdeal.map π Mathlib.Algebra.Lie.Ideal
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieRing L'] [LieAlgebra R L'] [LieAlgebra R L] (f : L βββ Rβ L') (I : LieIdeal R L) : LieIdeal R L' - LieHom.idealRange_eq_map π Mathlib.Algebra.Lie.Ideal
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieRing L'] [LieAlgebra R L'] [LieAlgebra R L] (f : L βββ Rβ L') : f.idealRange = LieIdeal.map f β€ - LieIdeal.map_sup_ker_eq_map π Mathlib.Algebra.Lie.Ideal
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieRing L'] [LieAlgebra R L'] [LieAlgebra R L] {f : L βββ Rβ L'} {I : LieIdeal R L} : LieIdeal.map f (I β f.ker) = LieIdeal.map f I - LieHom.map_le_idealRange π Mathlib.Algebra.Lie.Ideal
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieRing L'] [LieAlgebra R L'] [LieAlgebra R L] (f : L βββ Rβ L') (I : LieIdeal R L) : LieIdeal.map f I β€ f.idealRange - LieIdeal.map_comap_eq π Mathlib.Algebra.Lie.Ideal
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieRing L'] [LieAlgebra R L'] [LieAlgebra R L] {f : L βββ Rβ L'} {J : LieIdeal R L'} (h : f.IsIdealMorphism) : LieIdeal.map f (LieIdeal.comap f J) = f.idealRange β J - LieIdeal.map_sup_ker_eq_map' π Mathlib.Algebra.Lie.Ideal
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieRing L'] [LieAlgebra R L'] [LieAlgebra R L] {f : L βββ Rβ L'} {I : LieIdeal R L} : LieIdeal.map f I β LieIdeal.map f f.ker = LieIdeal.map f I - LieIdeal.comap_map_le π Mathlib.Algebra.Lie.Ideal
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieRing L'] [LieAlgebra R L'] [LieAlgebra R L] {f : L βββ Rβ L'} {I : LieIdeal R L} : I β€ LieIdeal.comap f (LieIdeal.map f I) - LieIdeal.map_comap_le π Mathlib.Algebra.Lie.Ideal
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieRing L'] [LieAlgebra R L'] [LieAlgebra R L] {f : L βββ Rβ L'} {J : LieIdeal R L'} : LieIdeal.map f (LieIdeal.comap f J) β€ J - LieIdeal.map_mono π Mathlib.Algebra.Lie.Ideal
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieRing L'] [LieAlgebra R L'] [LieAlgebra R L] {f : L βββ Rβ L'} : Monotone (LieIdeal.map f) - LieIdeal.map_sup π Mathlib.Algebra.Lie.Ideal
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieRing L'] [LieAlgebra R L'] [LieAlgebra R L] {f : L βββ Rβ L'} {I Iβ : LieIdeal R L} : LieIdeal.map f (I β Iβ) = LieIdeal.map f I β LieIdeal.map f Iβ - LieIdeal.bot_of_map_eq_bot π Mathlib.Algebra.Lie.Ideal
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieRing L'] [LieAlgebra R L'] [LieAlgebra R L] {f : L βββ Rβ L'} {I : LieIdeal R L} (hβ : Function.Injective βf) (hβ : LieIdeal.map f I = β₯) : I = β₯ - LieIdeal.gc_map_comap π Mathlib.Algebra.Lie.Ideal
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieRing L'] [LieAlgebra R L'] [LieAlgebra R L] (f : L βββ Rβ L') : GaloisConnection (LieIdeal.map f) (LieIdeal.comap f) - LieIdeal.mem_map π Mathlib.Algebra.Lie.Ideal
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieRing L'] [LieAlgebra R L'] [LieAlgebra R L] {f : L βββ Rβ L'} {I : LieIdeal R L} {x : L} (hx : x β I) : f x β LieIdeal.map f I - LieIdeal.map_eq_bot_iff π Mathlib.Algebra.Lie.Ideal
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieRing L'] [LieAlgebra R L'] [LieAlgebra R L] {f : L βββ Rβ L'} {I : LieIdeal R L} : LieIdeal.map f I = β₯ β I β€ f.ker - LieIdeal.map_of_image π Mathlib.Algebra.Lie.Ideal
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieRing L'] [LieAlgebra R L'] [LieAlgebra R L] {f : L βββ Rβ L'} {I : LieIdeal R L} {J : LieIdeal R L'} (h : βf '' βI = βJ) : LieIdeal.map f I = J - LieIdeal.map_le_iff_le_comap π Mathlib.Algebra.Lie.Ideal
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieRing L'] [LieAlgebra R L'] [LieAlgebra R L] {f : L βββ Rβ L'} {I : LieIdeal R L} {J : LieIdeal R L'} : LieIdeal.map f I β€ J β I β€ LieIdeal.comap f J - LieIdeal.comap_map_eq π Mathlib.Algebra.Lie.Ideal
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieRing L'] [LieAlgebra R L'] [LieAlgebra R L] {f : L βββ Rβ L'} {I : LieIdeal R L} (h : β(LieIdeal.map f I) = βf '' βI) : LieIdeal.comap f (LieIdeal.map f I) = I β f.ker - LieIdeal.map_le π Mathlib.Algebra.Lie.Ideal
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieRing L'] [LieAlgebra R L'] [LieAlgebra R L] (f : L βββ Rβ L') (I : LieIdeal R L) (J : LieIdeal R L') : LieIdeal.map f I β€ J β βf '' βI β βJ - LieIdeal.map.eq_1 π Mathlib.Algebra.Lie.Ideal
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieRing L'] [LieAlgebra R L'] [LieAlgebra R L] (f : L βββ Rβ L') (I : LieIdeal R L) : LieIdeal.map f I = LieSubmodule.lieSpan R L' β(Submodule.map (βf) (LieIdeal.toLieSubalgebra R L I).toSubmodule) - LieIdeal.mem_map_of_surjective π Mathlib.Algebra.Lie.Ideal
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieRing L'] [LieAlgebra R L'] [LieAlgebra R L] {f : L βββ Rβ L'} {I : LieIdeal R L} {y : L'} (hβ : Function.Surjective βf) (hβ : y β LieIdeal.map f I) : β x, f βx = y - LieIdeal.coe_map_of_surjective π Mathlib.Algebra.Lie.Ideal
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieRing L'] [LieAlgebra R L'] [LieAlgebra R L] {f : L βββ Rβ L'} {I : LieIdeal R L} (h : Function.Surjective βf) : β(LieIdeal.map f I) = Submodule.map βf βI - LieIdeal.map_coeSubmodule π Mathlib.Algebra.Lie.Ideal
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieRing L'] [LieAlgebra R L'] [LieAlgebra R L] (f : L βββ Rβ L') (I : LieIdeal R L) (h : β(LieIdeal.map f I) = βf '' βI) : β(LieIdeal.map f I) = Submodule.map βf βI - LieIdeal.map_toSubmodule π Mathlib.Algebra.Lie.Ideal
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieRing L'] [LieAlgebra R L'] [LieAlgebra R L] (f : L βββ Rβ L') (I : LieIdeal R L) (h : β(LieIdeal.map f I) = βf '' βI) : β(LieIdeal.map f I) = Submodule.map βf βI - LieIdeal.map_bracket_eq π Mathlib.Algebra.Lie.IdealOperations
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing L'] [LieAlgebra R L'] (f : L βββ Rβ L') {Iβ Iβ : LieIdeal R L} (h : Function.Surjective βf) : LieIdeal.map f β Iβ, Iββ = β LieIdeal.map f Iβ, LieIdeal.map f Iββ - LieIdeal.map_bracket_le π Mathlib.Algebra.Lie.IdealOperations
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing L'] [LieAlgebra R L'] (f : L βββ Rβ L') {Iβ Iβ : LieIdeal R L} : LieIdeal.map f β Iβ, Iββ β€ β LieIdeal.map f Iβ, LieIdeal.map f Iββ - LieIdeal.map_comap_bracket_eq π Mathlib.Algebra.Lie.IdealOperations
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing L'] [LieAlgebra R L'] {f : L βββ Rβ L'} {Jβ Jβ : LieIdeal R L'} (h : f.IsIdealMorphism) : LieIdeal.map f β LieIdeal.comap f Jβ, LieIdeal.comap f Jββ = β f.idealRange β Jβ, f.idealRange β Jββ - LieIdeal.map_comap_incl π Mathlib.Algebra.Lie.IdealOperations
{R : Type u} {L : Type v} [CommRing R] [LieRing L] [LieAlgebra R L] {Iβ Iβ : LieIdeal R L} : LieIdeal.map Iβ.incl (LieIdeal.comap Iβ.incl Iβ) = Iβ β Iβ - LieIdeal.derivedSeries_map_eq π Mathlib.Algebra.Lie.Solvable
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing L'] [LieAlgebra R L'] {f : L' βββ Rβ L} (k : β) (h : Function.Surjective βf) : LieIdeal.map f (LieAlgebra.derivedSeries R L' k) = LieAlgebra.derivedSeries R L k - LieIdeal.derivedSeries_map_le π Mathlib.Algebra.Lie.Solvable
{R : Type u} {L : Type v} {L' : Type wβ} [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing L'] [LieAlgebra R L'] {f : L' βββ Rβ L} (k : β) : LieIdeal.map f (LieAlgebra.derivedSeries R L' k) β€ LieAlgebra.derivedSeries R L k - LieIdeal.derivedSeries_eq_derivedSeriesOfIdeal_map π Mathlib.Algebra.Lie.Solvable
{R : Type u} {L : Type v} [CommRing R] [LieRing L] [LieAlgebra R L] (I : LieIdeal R L) (k : β) : LieIdeal.map I.incl (LieAlgebra.derivedSeries R (β₯I) k) = LieAlgebra.derivedSeriesOfIdeal R L k I - LieIdeal.lowerCentralSeries_map_eq π Mathlib.Algebra.Lie.Nilpotent
{R : Type u} {L : Type v} {L' : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing L'] [LieAlgebra R L'] (k : β) {f : L βββ Rβ L'} (h : Function.Surjective βf) : LieIdeal.map f (LieModule.lowerCentralSeries R L L k) = LieModule.lowerCentralSeries R L' L' k - LieIdeal.map_lowerCentralSeries_le π Mathlib.Algebra.Lie.Nilpotent
{R : Type u} {L : Type v} {L' : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing L'] [LieAlgebra R L'] (k : β) {f : L βββ Rβ L'} : LieIdeal.map f (LieModule.lowerCentralSeries R L L k) β€ LieModule.lowerCentralSeries R L' L' k
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08