Loogle!
Result
Found 11 declarations mentioning LieSubalgebra.map.
- LieSubalgebra.map 📋 Mathlib.Algebra.Lie.Subalgebra
{R : Type u} {L : Type v} [CommRing R] [LieRing L] [LieAlgebra R L] {L₂ : Type w} [LieRing L₂] [LieAlgebra R L₂] (f : L →ₗ⁅R⁆ L₂) (K : LieSubalgebra R L) : LieSubalgebra R L₂ - LieHom.range_eq_map 📋 Mathlib.Algebra.Lie.Subalgebra
{R : Type u} {L : Type v} [CommRing R] [LieRing L] [LieAlgebra R L] {L₂ : Type w} [LieRing L₂] [LieAlgebra R L₂] (f : L →ₗ⁅R⁆ L₂) : f.range = LieSubalgebra.map f ⊤ - LieSubalgebra.gc_map_comap 📋 Mathlib.Algebra.Lie.Subalgebra
{R : Type u} {L : Type v} [CommRing R] [LieRing L] [LieAlgebra R L] {L₂ : Type w} [LieRing L₂] [LieAlgebra R L₂] {f : L →ₗ⁅R⁆ L₂} : GaloisConnection (LieSubalgebra.map f) (LieSubalgebra.comap f) - LieSubalgebra.map_le_iff_le_comap 📋 Mathlib.Algebra.Lie.Subalgebra
{R : Type u} {L : Type v} [CommRing R] [LieRing L] [LieAlgebra R L] {L₂ : Type w} [LieRing L₂] [LieAlgebra R L₂] {f : L →ₗ⁅R⁆ L₂} {K : LieSubalgebra R L} {K' : LieSubalgebra R L₂} : LieSubalgebra.map f K ≤ K' ↔ K ≤ LieSubalgebra.comap f K' - LieSubalgebra.mem_map 📋 Mathlib.Algebra.Lie.Subalgebra
{R : Type u} {L : Type v} [CommRing R] [LieRing L] [LieAlgebra R L] {L₂ : Type w} [LieRing L₂] [LieAlgebra R L₂] (f : L →ₗ⁅R⁆ L₂) (K : LieSubalgebra R L) (x : L₂) : x ∈ LieSubalgebra.map f K ↔ ∃ y ∈ K, f y = x - LieEquiv.ofSubalgebras 📋 Mathlib.Algebra.Lie.Subalgebra
{R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] (L₁' : LieSubalgebra R L₁) (L₂' : LieSubalgebra R L₂) (e : L₁ ≃ₗ⁅R⁆ L₂) (h : LieSubalgebra.map e.toLieHom L₁' = L₂') : ↥L₁' ≃ₗ⁅R⁆ ↥L₂' - LieEquiv.lieSubalgebraMap 📋 Mathlib.Algebra.Lie.Subalgebra
{R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] (L₁'' : LieSubalgebra R L₁) (e : L₁ ≃ₗ⁅R⁆ L₂) : ↥L₁'' ≃ₗ⁅R⁆ ↥(LieSubalgebra.map e.toLieHom L₁'') - LieSubalgebra.mem_map_submodule 📋 Mathlib.Algebra.Lie.Subalgebra
{R : Type u} {L : Type v} [CommRing R] [LieRing L] [LieAlgebra R L] {L₂ : Type w} [LieRing L₂] [LieAlgebra R L₂] (K : LieSubalgebra R L) (e : L ≃ₗ⁅R⁆ L₂) (x : L₂) : x ∈ LieSubalgebra.map e.toLieHom K ↔ x ∈ Submodule.map (↑e.toLinearEquiv) K.toSubmodule - LieEquiv.ofSubalgebras_apply 📋 Mathlib.Algebra.Lie.Subalgebra
{R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] (L₁' : LieSubalgebra R L₁) (L₂' : LieSubalgebra R L₂) (e : L₁ ≃ₗ⁅R⁆ L₂) (h : LieSubalgebra.map e.toLieHom L₁' = L₂') (x : ↥L₁') : ↑((LieEquiv.ofSubalgebras L₁' L₂' e h) x) = e ↑x - LieEquiv.ofSubalgebras_symm_apply 📋 Mathlib.Algebra.Lie.Subalgebra
{R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] (L₁' : LieSubalgebra R L₁) (L₂' : LieSubalgebra R L₂) (e : L₁ ≃ₗ⁅R⁆ L₂) (h : LieSubalgebra.map e.toLieHom L₁' = L₂') (x : ↥L₂') : ↑((LieEquiv.ofSubalgebras L₁' L₂' e h).symm x) = e.symm ↑x - LieEquiv.lieSubalgebraMap_apply 📋 Mathlib.Algebra.Lie.Subalgebra
{R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] (L₁'' : LieSubalgebra R L₁) (e : L₁ ≃ₗ⁅R⁆ L₂) (x : ↥L₁'') : ↑((LieEquiv.lieSubalgebraMap L₁'' e) x) = e ↑x
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65