Loogle!
Result
Found 17066 declarations mentioning List. Of these, only the first 200 are shown.
- List π Init.Prelude
(Ξ± : Type u) : Type u - List.nil π Init.Prelude
{Ξ± : Type u} : List Ξ± - List.toByteArray π Init.Prelude
(bs : List UInt8) : ByteArray - List.utf8Encode π Init.Prelude
(l : List Char) : ByteArray - String.utf8EncodeChar π Init.Prelude
(c : Char) : List UInt8 - Lean.MacroScopesView.scopes π Init.Prelude
(self : Lean.MacroScopesView) : List Lean.MacroScope - instInhabitedList π Init.Prelude
{Ξ± : Type u_1} : Inhabited (List Ξ±) - List.length π Init.Prelude
{Ξ± : Type u_1} : List Ξ± β β - List.lengthTR π Init.Prelude
{Ξ± : Type u_1} (as : List Ξ±) : β - Lean.Macro.resolveNamespace π Init.Prelude
(n : Lean.Name) : Lean.MacroM (List Lean.Name) - List.toByteArray.loop π Init.Prelude
: List UInt8 β ByteArray β ByteArray - Lean.Syntax.Preresolved.decl π Init.Prelude
(n : Lean.Name) (fields : List String) : Lean.Syntax.Preresolved - Array.mk π Init.Prelude
{Ξ± : Type u} (toList : List Ξ±) : Array Ξ± - Array.toList π Init.Prelude
{Ξ± : Type u} (self : Array Ξ±) : List Ξ± - List.lengthTRAux π Init.Prelude
{Ξ± : Type u_1} : List Ξ± β β β β - List.toArray π Init.Prelude
{Ξ± : Type u_1} (xs : List Ξ±) : Array Ξ± - Lean.Macro.Methods.resolveNamespace π Init.Prelude
(self : Lean.Macro.Methods) : Lean.Name β Lean.MacroM (List Lean.Name) - Lean.Macro.State.traceMsgs π Init.Prelude
(self : Lean.Macro.State) : List (Lean.Name Γ String) - instDecidableEqList π Init.Prelude
{Ξ± : Type u} [DecidableEq Ξ±] : DecidableEq (List Ξ±) - List.concat π Init.Prelude
{Ξ± : Type u} : List Ξ± β Ξ± β List Ξ± - List.cons π Init.Prelude
{Ξ± : Type u} (head : Ξ±) (tail : List Ξ±) : List Ξ± - List.ctorElimType π Init.Prelude
{Ξ± : Type u} {motive : List Ξ± β Sort u_1} (ctorIdx : β) : Sort (max 1 u_1 (imax (u + 1) (u + 1) u_1)) - List.flatten π Init.Prelude
{Ξ± : Type u_1} : List (List Ξ±) β List Ξ± - Lean.MacroScopesView.mk π Init.Prelude
(name imported ctx : Lean.Name) (scopes : List Lean.MacroScope) : Lean.MacroScopesView - Lean.Syntax.ident π Init.Prelude
(info : Lean.SourceInfo) (rawVal : Substring.Raw) (val : Lean.Name) (preresolved : List Lean.Syntax.Preresolved) : Lean.Syntax - List.append π Init.Prelude
{Ξ± : Type u_1} (xs ys : List Ξ±) : List Ξ± - List.set π Init.Prelude
{Ξ± : Type u_1} (l : List Ξ±) (n : β) (a : Ξ±) : List Ξ± - Lean.Macro.resolveGlobalName π Init.Prelude
(n : Lean.Name) : Lean.MacroM (List (Lean.Name Γ List String)) - List.get π Init.Prelude
{Ξ± : Type u} (as : List Ξ±) : Fin as.length β Ξ± - List.map π Init.Prelude
{Ξ± : Type u_1} {Ξ² : Type u_2} (f : Ξ± β Ξ²) (l : List Ξ±) : List Ξ² - Lean.Macro.Methods.resolveGlobalName π Init.Prelude
(self : Lean.Macro.Methods) : Lean.Name β Lean.MacroM (List (Lean.Name Γ List String)) - List.flatMap π Init.Prelude
{Ξ± : Type u} {Ξ² : Type v} (b : Ξ± β List Ξ²) (as : List Ξ±) : List Ξ² - List.foldl π Init.Prelude
{Ξ± : Type u} {Ξ² : Type v} (f : Ξ± β Ξ² β Ξ±) (init : Ξ±) : List Ξ² β Ξ± - List.instDecidableEqNil π Init.Prelude
{Ξ± : Type u_1} (a : List Ξ±) : Decidable (a = []) - List.instDecidableNilEq π Init.Prelude
{Ξ± : Type u_1} (a : List Ξ±) : Decidable ([] = a) - ByteArray.IsValidUTF8.intro π Init.Prelude
{b : ByteArray} (m : List Char) (hm : b = m.utf8Encode) : b.IsValidUTF8 - List.hasDecEq π Init.Prelude
{Ξ± : Type u} [DecidableEq Ξ±] (a b : List Ξ±) : Decidable (a = b) - List.brecOn.go π Init.Prelude
{Ξ± : Type u} {motive : List Ξ± β Sort u_1} (t : List Ξ±) (F_1 : (t : List Ξ±) β List.below t β motive t) : motive t Γ' List.below t - Lean.Macro.Methods.mk π Init.Prelude
(expandMacro? : Lean.Syntax β Lean.MacroM (Option Lean.Syntax)) (getCurrNamespace : Lean.MacroM Lean.Name) (hasDecl : Lean.Name β Lean.MacroM Bool) (resolveNamespace : Lean.Name β Lean.MacroM (List Lean.Name)) (resolveGlobalName : Lean.Name β Lean.MacroM (List (Lean.Name Γ List String))) : Lean.Macro.Methods - List.brecOn.eq π Init.Prelude
{Ξ± : Type u} {motive : List Ξ± β Sort u_1} (t : List Ξ±) (F_1 : (t : List Ξ±) β List.below t β motive t) : List.brecOn t F_1 = F_1 t (List.brecOn.go t F_1).2 - Lean.Syntax.brecOn.go π Init.Prelude
{motive_1 : Lean.Syntax β Sort u} {motive_2 : Array Lean.Syntax β Sort u} {motive_3 : List Lean.Syntax β Sort u} (t : Lean.Syntax) (F_1 : (t : Lean.Syntax) β t.below β motive_1 t) (F_2 : (t : Array Lean.Syntax) β Lean.Syntax.below_1 t β motive_2 t) (F_3 : (t : List Lean.Syntax) β Lean.Syntax.below_2 t β motive_3 t) : motive_1 t Γ' t.below - Lean.Syntax.brecOn_1.go π Init.Prelude
{motive_1 : Lean.Syntax β Sort u} {motive_2 : Array Lean.Syntax β Sort u} {motive_3 : List Lean.Syntax β Sort u} (t : Array Lean.Syntax) (F_1 : (t : Lean.Syntax) β t.below β motive_1 t) (F_2 : (t : Array Lean.Syntax) β Lean.Syntax.below_1 t β motive_2 t) (F_3 : (t : List Lean.Syntax) β Lean.Syntax.below_2 t β motive_3 t) : motive_2 t Γ' Lean.Syntax.below_1 t - Lean.Syntax.brecOn_2.go π Init.Prelude
{motive_1 : Lean.Syntax β Sort u} {motive_2 : Array Lean.Syntax β Sort u} {motive_3 : List Lean.Syntax β Sort u} (t : List Lean.Syntax) (F_1 : (t : Lean.Syntax) β t.below β motive_1 t) (F_2 : (t : Array Lean.Syntax) β Lean.Syntax.below_1 t β motive_2 t) (F_3 : (t : List Lean.Syntax) β Lean.Syntax.below_2 t β motive_3 t) : motive_3 t Γ' Lean.Syntax.below_2 t - Lean.Syntax.brecOn.eq π Init.Prelude
{motive_1 : Lean.Syntax β Sort u} {motive_2 : Array Lean.Syntax β Sort u} {motive_3 : List Lean.Syntax β Sort u} (t : Lean.Syntax) (F_1 : (t : Lean.Syntax) β t.below β motive_1 t) (F_2 : (t : Array Lean.Syntax) β Lean.Syntax.below_1 t β motive_2 t) (F_3 : (t : List Lean.Syntax) β Lean.Syntax.below_2 t β motive_3 t) : t.brecOn F_1 F_2 F_3 = F_1 t (Lean.Syntax.brecOn.go t F_1 F_2 F_3).2 - Lean.Syntax.brecOn_1.eq π Init.Prelude
{motive_1 : Lean.Syntax β Sort u} {motive_2 : Array Lean.Syntax β Sort u} {motive_3 : List Lean.Syntax β Sort u} (t : Array Lean.Syntax) (F_1 : (t : Lean.Syntax) β t.below β motive_1 t) (F_2 : (t : Array Lean.Syntax) β Lean.Syntax.below_1 t β motive_2 t) (F_3 : (t : List Lean.Syntax) β Lean.Syntax.below_2 t β motive_3 t) : Lean.Syntax.brecOn_1 t F_1 F_2 F_3 = F_2 t (Lean.Syntax.brecOn_1.go t F_1 F_2 F_3).2 - Lean.Syntax.brecOn_2.eq π Init.Prelude
{motive_1 : Lean.Syntax β Sort u} {motive_2 : Array Lean.Syntax β Sort u} {motive_3 : List Lean.Syntax β Sort u} (t : List Lean.Syntax) (F_1 : (t : Lean.Syntax) β t.below β motive_1 t) (F_2 : (t : Array Lean.Syntax) β Lean.Syntax.below_1 t β motive_2 t) (F_3 : (t : List Lean.Syntax) β Lean.Syntax.below_2 t β motive_3 t) : Lean.Syntax.brecOn_2 t F_1 F_2 F_3 = F_3 t (Lean.Syntax.brecOn_2.go t F_1 F_2 F_3).2 - List.nil.sizeOf_spec π Init.SizeOf
{Ξ± : Type u} [SizeOf Ξ±] : sizeOf [] = 1 - Array.mk.sizeOf_spec π Init.SizeOf
{Ξ± : Type u} [SizeOf Ξ±] (toList : List Ξ±) : sizeOf { toList := toList } = 1 + sizeOf toList - Lean.Macro.Methods.mk.sizeOf_spec π Init.SizeOf
(expandMacro? : Lean.Syntax β Lean.MacroM (Option Lean.Syntax)) (getCurrNamespace : Lean.MacroM Lean.Name) (hasDecl : Lean.Name β Lean.MacroM Bool) (resolveNamespace : Lean.Name β Lean.MacroM (List Lean.Name)) (resolveGlobalName : Lean.Name β Lean.MacroM (List (Lean.Name Γ List String))) : sizeOf { expandMacro? := expandMacro?, getCurrNamespace := getCurrNamespace, hasDecl := hasDecl, resolveNamespace := resolveNamespace, resolveGlobalName := resolveGlobalName } = 1 - List.cons.sizeOf_spec π Init.SizeOf
{Ξ± : Type u} [SizeOf Ξ±] (head : Ξ±) (tail : List Ξ±) : sizeOf (head :: tail) = 1 + sizeOf head + sizeOf tail - Lean.MacroScopesView.mk.sizeOf_spec π Init.SizeOf
(name imported ctx : Lean.Name) (scopes : List Lean.MacroScope) : sizeOf { name := name, imported := imported, ctx := ctx, scopes := scopes } = 1 + sizeOf name + sizeOf imported + sizeOf ctx + sizeOf scopes - Lean.Syntax.ident.sizeOf_spec π Init.SizeOf
(info : Lean.SourceInfo) (rawVal : Substring.Raw) (val : Lean.Name) (preresolved : List Lean.Syntax.Preresolved) : sizeOf (Lean.Syntax.ident info rawVal val preresolved) = 1 + sizeOf info + sizeOf rawVal + sizeOf val + sizeOf preresolved - Array.mk.injEq π Init.Core
{Ξ± : Type u} (toList toListβ : List Ξ±) : ({ toList := toList } = { toList := toListβ }) = (toList = toListβ) - List.cons.injEq π Init.Core
{Ξ± : Type u} (head : Ξ±) (tail : List Ξ±) (headβ : Ξ±) (tailβ : List Ξ±) : (head :: tail = headβ :: tailβ) = (head = headβ β§ tail = tailβ) - Lean.Syntax.ident.injEq π Init.Core
(info : Lean.SourceInfo) (rawVal : Substring.Raw) (val : Lean.Name) (preresolved : List Lean.Syntax.Preresolved) (infoβ : Lean.SourceInfo) (rawValβ : Substring.Raw) (valβ : Lean.Name) (preresolvedβ : List Lean.Syntax.Preresolved) : (Lean.Syntax.ident info rawVal val preresolved = Lean.Syntax.ident infoβ rawValβ valβ preresolvedβ) = (info = infoβ β§ rawVal = rawValβ β§ val = valβ β§ preresolved = preresolvedβ) - Lean.Meta.Occurrences.neg π Init.MetaTypes
(idxs : List β) : Lean.Meta.Occurrences - Lean.Meta.Occurrences.pos π Init.MetaTypes
(idxs : List β) : Lean.Meta.Occurrences - Lean.Meta.instCoeListNatOccurrences π Init.MetaTypes
: Coe (List β) Lean.Meta.Occurrences - Lean.Meta.Occurrences.neg.injEq π Init.MetaTypes
(idxs idxsβ : List β) : (Lean.Meta.Occurrences.neg idxs = Lean.Meta.Occurrences.neg idxsβ) = (idxs = idxsβ) - Lean.Meta.Occurrences.pos.injEq π Init.MetaTypes
(idxs idxsβ : List β) : (Lean.Meta.Occurrences.pos idxs = Lean.Meta.Occurrences.pos idxsβ) = (idxs = idxsβ) - Lean.Meta.Occurrences.neg.sizeOf_spec π Init.MetaTypes
(idxs : List β) : sizeOf (Lean.Meta.Occurrences.neg idxs) = 1 + sizeOf idxs - Lean.Meta.Occurrences.pos.sizeOf_spec π Init.MetaTypes
(idxs : List β) : sizeOf (Lean.Meta.Occurrences.pos idxs) = 1 + sizeOf idxs - List.and π Init.Data.List.Basic
(bs : List Bool) : Bool - List.or π Init.Data.List.Basic
(bs : List Bool) : Bool - List.range π Init.Data.List.Basic
(n : β) : List β - List.Nodup π Init.Data.List.Basic
{Ξ± : Type u} : List Ξ± β Prop - List.instAppend π Init.Data.List.Basic
{Ξ± : Type u} : Append (List Ξ±) - List.instEmptyCollection π Init.Data.List.Basic
{Ξ± : Type u} : EmptyCollection (List Ξ±) - List.instHasSubset π Init.Data.List.Basic
{Ξ± : Type u} : HasSubset (List Ξ±) - List.isEmpty π Init.Data.List.Basic
{Ξ± : Type u} : List Ξ± β Bool - List.singleton π Init.Data.List.Basic
{Ξ± : Type u} (a : Ξ±) : List Ξ± - List.Mem π Init.Data.List.Basic
{Ξ± : Type u} (a : Ξ±) : List Ξ± β Prop - List.dropLast π Init.Data.List.Basic
{Ξ± : Type u_1} : List Ξ± β List Ξ± - List.getLast? π Init.Data.List.Basic
{Ξ± : Type u} : List Ξ± β Option Ξ± - List.getLastD π Init.Data.List.Basic
{Ξ± : Type u} (as : List Ξ±) (fallback : Ξ±) : Ξ± - List.head? π Init.Data.List.Basic
{Ξ± : Type u} : List Ξ± β Option Ξ± - List.headD π Init.Data.List.Basic
{Ξ± : Type u} (as : List Ξ±) (fallback : Ξ±) : Ξ± - List.instMembership π Init.Data.List.Basic
{Ξ± : Type u} : Membership Ξ± (List Ξ±) - List.replicate π Init.Data.List.Basic
{Ξ± : Type u} (n : β) (a : Ξ±) : List Ξ± - List.replicateTR π Init.Data.List.Basic
{Ξ± : Type u} (n : β) (a : Ξ±) : List Ξ± - List.reverse π Init.Data.List.Basic
{Ξ± : Type u} (as : List Ξ±) : List Ξ± - List.tail π Init.Data.List.Basic
{Ξ± : Type u} : List Ξ± β List Ξ± - List.range.loop π Init.Data.List.Basic
: β β List β β List β - List.IsInfix π Init.Data.List.Basic
{Ξ± : Type u} (lβ lβ : List Ξ±) : Prop - List.IsPrefix π Init.Data.List.Basic
{Ξ± : Type u} (lβ lβ : List Ξ±) : Prop - List.IsSuffix π Init.Data.List.Basic
{Ξ± : Type u} (lβ lβ : List Ξ±) : Prop - List.Perm π Init.Data.List.Basic
{Ξ± : Type u} : List Ξ± β List Ξ± β Prop - List.Sublist π Init.Data.List.Basic
{Ξ± : Type u_1} : List Ξ± β List Ξ± β Prop - List.Subset π Init.Data.List.Basic
{Ξ± : Type u} (lβ lβ : List Ξ±) : Prop - List.all π Init.Data.List.Basic
{Ξ± : Type u} : List Ξ± β (Ξ± β Bool) β Bool - List.any π Init.Data.List.Basic
{Ξ± : Type u} (l : List Ξ±) (p : Ξ± β Bool) : Bool - List.countP π Init.Data.List.Basic
{Ξ± : Type u} (p : Ξ± β Bool) (l : List Ξ±) : β - List.drop π Init.Data.List.Basic
{Ξ± : Type u} (n : β) (xs : List Ξ±) : List Ξ± - List.eraseIdx π Init.Data.List.Basic
{Ξ± : Type u} (l : List Ξ±) (i : β) : List Ξ± - List.findIdx π Init.Data.List.Basic
{Ξ± : Type u} (p : Ξ± β Bool) (l : List Ξ±) : β - List.instBEq π Init.Data.List.Basic
{Ξ± : Type u} [BEq Ξ±] : BEq (List Ξ±) - List.instLE π Init.Data.List.Basic
{Ξ± : Type u} [LT Ξ±] : LE (List Ξ±) - List.instLT π Init.Data.List.Basic
{Ξ± : Type u} [LT Ξ±] : LT (List Ξ±) - List.intersperse π Init.Data.List.Basic
{Ξ± : Type u} (sep : Ξ±) (l : List Ξ±) : List Ξ± - List.intersperseTR π Init.Data.List.Basic
{Ξ± : Type u} (sep : Ξ±) (l : List Ξ±) : List Ξ± - List.reduceOption π Init.Data.List.Basic
{Ξ± : Type u_1} : List (Option Ξ±) β List Ξ± - List.tail? π Init.Data.List.Basic
{Ξ± : Type u} : List Ξ± β Option (List Ξ±) - List.take π Init.Data.List.Basic
{Ξ± : Type u} (n : β) (xs : List Ξ±) : List Ξ± - List.Pairwise π Init.Data.List.Basic
{Ξ± : Type u} (R : Ξ± β Ξ± β Prop) : List Ξ± β Prop - List.appendTR π Init.Data.List.Basic
{Ξ± : Type u} (as bs : List Ξ±) : List Ξ± - List.contains π Init.Data.List.Basic
{Ξ± : Type u} [BEq Ξ±] (as : List Ξ±) (a : Ξ±) : Bool - List.count π Init.Data.List.Basic
{Ξ± : Type u} [BEq Ξ±] (a : Ξ±) : List Ξ± β β - List.dropWhile π Init.Data.List.Basic
{Ξ± : Type u} (p : Ξ± β Bool) : List Ξ± β List Ξ± - List.elem π Init.Data.List.Basic
{Ξ± : Type u} [BEq Ξ±] (a : Ξ±) (l : List Ξ±) : Bool - List.eraseDups π Init.Data.List.Basic
{Ξ± : Type u_1} [BEq Ξ±] (as : List Ξ±) : List Ξ± - List.eraseP π Init.Data.List.Basic
{Ξ± : Type u} (p : Ξ± β Bool) : List Ξ± β List Ξ± - List.eraseReps π Init.Data.List.Basic
{Ξ± : Type u_1} [BEq Ξ±] (as : List Ξ±) : List Ξ± - List.filter π Init.Data.List.Basic
{Ξ± : Type u} (p : Ξ± β Bool) (l : List Ξ±) : List Ξ± - List.filterTR π Init.Data.List.Basic
{Ξ± : Type u} (p : Ξ± β Bool) (as : List Ξ±) : List Ξ± - List.find? π Init.Data.List.Basic
{Ξ± : Type u} (p : Ξ± β Bool) : List Ξ± β Option Ξ± - List.findIdx? π Init.Data.List.Basic
{Ξ± : Type u} (p : Ξ± β Bool) (l : List Ξ±) : Option β - List.findRev? π Init.Data.List.Basic
{Ξ± : Type u} (p : Ξ± β Bool) : List Ξ± β Option Ξ± - List.idxOf π Init.Data.List.Basic
{Ξ± : Type u} [BEq Ξ±] (a : Ξ±) : List Ξ± β β - List.insertIdx π Init.Data.List.Basic
{Ξ± : Type u} (xs : List Ξ±) (i : β) (a : Ξ±) : List Ξ± - List.leftpad π Init.Data.List.Basic
{Ξ± : Type u} (n : β) (a : Ξ±) (l : List Ξ±) : List Ξ± - List.leftpadTR π Init.Data.List.Basic
{Ξ± : Type u} (n : β) (a : Ξ±) (l : List Ξ±) : List Ξ± - List.length_eq_lengthTR π Init.Data.List.Basic
: @List.length = @List.lengthTR - List.max? π Init.Data.List.Basic
{Ξ± : Type u} [Max Ξ±] : List Ξ± β Option Ξ± - List.min? π Init.Data.List.Basic
{Ξ± : Type u} [Min Ξ±] : List Ξ± β Option Ξ± - List.modifyHead π Init.Data.List.Basic
{Ξ± : Type u} (f : Ξ± β Ξ±) : List Ξ± β List Ξ± - List.reverseAux π Init.Data.List.Basic
{Ξ± : Type u} : List Ξ± β List Ξ± β List Ξ± - List.rightpad π Init.Data.List.Basic
{Ξ± : Type u} (n : β) (a : Ξ±) (l : List Ξ±) : List Ξ± - List.tailD π Init.Data.List.Basic
{Ξ± : Type u} (l fallback : List Ξ±) : List Ξ± - List.takeWhile π Init.Data.List.Basic
{Ξ± : Type u} (p : Ξ± β Bool) (xs : List Ξ±) : List Ξ± - List.countP.go π Init.Data.List.Basic
{Ξ± : Type u} (p : Ξ± β Bool) : List Ξ± β β β β - List.findIdx.go π Init.Data.List.Basic
{Ξ± : Type u} (p : Ξ± β Bool) : List Ξ± β β β β - List.range'TR.go π Init.Data.List.Basic
(step : β) : β β β β List β β List β - List.replicateTR.loop π Init.Data.List.Basic
{Ξ± : Type u} (a : Ξ±) : β β List Ξ± β List Ξ± - List.beq π Init.Data.List.Basic
{Ξ± : Type u} [BEq Ξ±] : List Ξ± β List Ξ± β Bool - List.erase π Init.Data.List.Basic
{Ξ± : Type u_1} [BEq Ξ±] : List Ξ± β Ξ± β List Ξ± - List.eraseDupsBy π Init.Data.List.Basic
{Ξ± : Type u_1} (r : Ξ± β Ξ± β Bool) (as : List Ξ±) : List Ξ± - List.eraseRepsBy π Init.Data.List.Basic
{Ξ± : Type u_1} (r : Ξ± β Ξ± β Bool) : List Ξ± β List Ξ± - List.idxOf? π Init.Data.List.Basic
{Ξ± : Type u} [BEq Ξ±] (a : Ξ±) : List Ξ± β Option β - List.insert π Init.Data.List.Basic
{Ξ± : Type u} [BEq Ξ±] (a : Ξ±) (l : List Ξ±) : List Ξ± - List.intercalate π Init.Data.List.Basic
{Ξ± : Type u} (sep : List Ξ±) (xs : List (List Ξ±)) : List Ξ± - List.isPerm π Init.Data.List.Basic
{Ξ± : Type u} [BEq Ξ±] : List Ξ± β List Ξ± β Bool - List.isPrefixOf π Init.Data.List.Basic
{Ξ± : Type u} [BEq Ξ±] : List Ξ± β List Ξ± β Bool - List.isSublist π Init.Data.List.Basic
{Ξ± : Type u} [BEq Ξ±] : List Ξ± β List Ξ± β Bool - List.isSuffixOf π Init.Data.List.Basic
{Ξ± : Type u} [BEq Ξ±] (lβ lβ : List Ξ±) : Bool - List.le π Init.Data.List.Basic
{Ξ± : Type u} [LT Ξ±] (as bs : List Ξ±) : Prop - List.lt π Init.Data.List.Basic
{Ξ± : Type u} [LT Ξ±] : List Ξ± β List Ξ± β Prop - List.mapTR π Init.Data.List.Basic
{Ξ± : Type u} {Ξ² : Type v} (f : Ξ± β Ξ²) (as : List Ξ±) : List Ξ² - List.modify π Init.Data.List.Basic
{Ξ± : Type u} (l : List Ξ±) (i : β) (f : Ξ± β Ξ±) : List Ξ± - List.replicate_eq_replicateTR π Init.Data.List.Basic
: @List.replicate = @List.replicateTR - List.sum π Init.Data.List.Basic
{Ξ± : Type u_1} [Add Ξ±] [Zero Ξ±] : List Ξ± β Ξ± - List.findIdx?.go π Init.Data.List.Basic
{Ξ± : Type u} (p : Ξ± β Bool) : List Ξ± β β β Option β - List.Lex π Init.Data.List.Basic
{Ξ± : Type u} (r : Ξ± β Ξ± β Prop) (as bs : List Ξ±) : Prop - List.filterMap π Init.Data.List.Basic
{Ξ± : Type u} {Ξ² : Type v} (f : Ξ± β Option Ξ²) : List Ξ± β List Ξ² - List.findSome? π Init.Data.List.Basic
{Ξ± : Type u} {Ξ² : Type v} (f : Ξ± β Option Ξ²) : List Ξ± β Option Ξ² - List.findSomeRev? π Init.Data.List.Basic
{Ξ± : Type u} {Ξ² : Type v} (f : Ξ± β Option Ξ²) : List Ξ± β Option Ξ² - List.foldr π Init.Data.List.Basic
{Ξ± : Type u} {Ξ² : Type v} (f : Ξ± β Ξ² β Ξ²) (init : Ξ²) (l : List Ξ±) : Ξ² - List.intersperse_eq_intersperseTR π Init.Data.List.Basic
: @List.intersperse = @List.intersperseTR - List.isEqv π Init.Data.List.Basic
{Ξ± : Type u} (as bs : List Ξ±) (eqv : Ξ± β Ξ± β Bool) : Bool - List.nodupDecidable π Init.Data.List.Basic
{Ξ± : Type u} [DecidableEq Ξ±] (l : List Ξ±) : Decidable l.Nodup - List.removeAll π Init.Data.List.Basic
{Ξ± : Type u} [BEq Ξ±] (xs ys : List Ξ±) : List Ξ± - List.replace π Init.Data.List.Basic
{Ξ± : Type u} [BEq Ξ±] (l : List Ξ±) (a b : Ξ±) : List Ξ± - List.splitAt π Init.Data.List.Basic
{Ξ± : Type u} (n : β) (l : List Ξ±) : List Ξ± Γ List Ξ± - List.splitBy π Init.Data.List.Basic
{Ξ± : Type u} (R : Ξ± β Ξ± β Bool) : List Ξ± β List (List Ξ±) - List.filterTR.loop π Init.Data.List.Basic
{Ξ± : Type u} (p : Ξ± β Bool) : List Ξ± β List Ξ± β List Ξ± - List.append_eq_appendTR π Init.Data.List.Basic
: @List.append = @List.appendTR - List.dropLast_nil π Init.Data.List.Basic
{Ξ± : Type u} : [].dropLast = [] - List.filter_eq_filterTR π Init.Data.List.Basic
: @List.filter = @List.filterTR - List.findFinIdx? π Init.Data.List.Basic
{Ξ± : Type u} (p : Ξ± β Bool) (l : List Ξ±) : Option (Fin l.length) - List.getLast π Init.Data.List.Basic
{Ξ± : Type u} (as : List Ξ±) : as β [] β Ξ± - List.head π Init.Data.List.Basic
{Ξ± : Type u} (as : List Ξ±) : as β [] β Ξ± - List.isPrefixOf? π Init.Data.List.Basic
{Ξ± : Type u} [BEq Ξ±] (lβ lβ : List Ξ±) : Option (List Ξ±) - List.isSuffixOf? π Init.Data.List.Basic
{Ξ± : Type u} [BEq Ξ±] (lβ lβ : List Ξ±) : Option (List Ξ±) - List.leftpad_eq_leftpadTR π Init.Data.List.Basic
: @List.leftpad = @List.leftpadTR - List.modifyTailIdx π Init.Data.List.Basic
{Ξ± : Type u} (l : List Ξ±) (i : β) (f : List Ξ± β List Ξ±) : List Ξ± - List.partition π Init.Data.List.Basic
{Ξ± : Type u} (p : Ξ± β Bool) (as : List Ξ±) : List Ξ± Γ List Ξ± - List.reverse_nil π Init.Data.List.Basic
{Ξ± : Type u} : [].reverse = [] - List.span π Init.Data.List.Basic
{Ξ± : Type u} (p : Ξ± β Bool) (as : List Ξ±) : List Ξ± Γ List Ξ± - List.tail_nil π Init.Data.List.Basic
{Ξ± : Type u} : [].tail = [] - List.zip π Init.Data.List.Basic
{Ξ± : Type u} {Ξ² : Type v} : List Ξ± β List Ξ² β List (Ξ± Γ Ξ²) - List.dropLast.eq_1 π Init.Data.List.Basic
{Ξ± : Type u_1} : [].dropLast = [] - List.eraseDupsBy.loop π Init.Data.List.Basic
{Ξ± : Type u_1} (r : Ξ± β Ξ± β Bool) : List Ξ± β List Ξ± β List Ξ± - List.mapTR.loop π Init.Data.List.Basic
{Ξ± : Type u} {Ξ² : Type v} (f : Ξ± β Ξ²) : List Ξ± β List Ξ² β List Ξ² - List.modifyTailIdx.go π Init.Data.List.Basic
{Ξ± : Type u} (f : List Ξ± β List Ξ±) : β β List Ξ± β List Ξ± - List.empty_eq π Init.Data.List.Basic
{Ξ± : Type u} : β = [] - List.finIdxOf? π Init.Data.List.Basic
{Ξ± : Type u} [BEq Ξ±] (a : Ξ±) (l : List Ξ±) : Option (Fin l.length) - List.flatten_nil π Init.Data.List.Basic
{Ξ± : Type u} : [].flatten = [] - List.lookup π Init.Data.List.Basic
{Ξ± : Type u} {Ξ² : Type v} [BEq Ξ±] : Ξ± β List (Ξ± Γ Ξ²) β Option Ξ² - List.map_eq_mapTR π Init.Data.List.Basic
: @List.map = @List.mapTR - List.range' π Init.Data.List.Basic
(start len : β) (step : β := 1) : List β - List.range'TR π Init.Data.List.Basic
(s n : β) (step : β := 1) : List β - List.range_zero π Init.Data.List.Basic
: List.range 0 = [] - List.unzip π Init.Data.List.Basic
{Ξ± : Type u} {Ξ² : Type v} (l : List (Ξ± Γ Ξ²)) : List Ξ± Γ List Ξ² - List.unzipTR π Init.Data.List.Basic
{Ξ± : Type u} {Ξ² : Type v} (l : List (Ξ± Γ Ξ²)) : List Ξ± Γ List Ξ² - List.Mem.head π Init.Data.List.Basic
{Ξ± : Type u} {a : Ξ±} (as : List Ξ±) : List.Mem a (a :: as) - List.eraseRepsBy.loop π Init.Data.List.Basic
{Ξ± : Type u_1} (r : Ξ± β Ξ± β Bool) : Ξ± β List Ξ± β List Ξ± β List Ξ± - List.drop_nil π Init.Data.List.Basic
{Ξ± : Type u} {i : β} : List.drop i [] = [] - List.eraseIdx_nil π Init.Data.List.Basic
{Ξ± : Type u} {i : β} : [].eraseIdx i = [] - List.instLawfulBEq π Init.Data.List.Basic
{Ξ± : Type u} [BEq Ξ±] [LawfulBEq Ξ±] : LawfulBEq (List Ξ±) - List.instReflBEq π Init.Data.List.Basic
{Ξ± : Type u} [BEq Ξ±] [ReflBEq Ξ±] : ReflBEq (List Ξ±) - List.intersperse_nil π Init.Data.List.Basic
{Ξ± : Type u} {sep : Ξ±} : List.intersperse sep [] = []
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision 4aa3a51