Loogle!
Result
Found 302 declarations mentioning List and Fin. Of these, only the first 200 are shown.
- List.get π Init.Prelude
{Ξ± : Type u} (as : List Ξ±) : Fin as.length β Ξ± - List.findFinIdx? π Init.Data.List.Basic
{Ξ± : Type u} (p : Ξ± β Bool) (l : List Ξ±) : Option (Fin l.length) - List.finIdxOf? π Init.Data.List.Basic
{Ξ± : Type u} [BEq Ξ±] (a : Ξ±) (l : List Ξ±) : Option (Fin l.length) - List.findFinIdx?.go π Init.Data.List.Basic
{Ξ± : Type u} (p : Ξ± β Bool) (l l' : List Ξ±) (i : β) (h : l'.length + i = l.length) : Option (Fin l.length) - List.sizeOf_get π Init.Data.List.BasicAux
{Ξ± : Type u_1} [SizeOf Ξ±] (as : List Ξ±) (i : Fin as.length) : sizeOf (as.get i) < sizeOf as - List.get.eq_def π Init.Data.List.BasicAux
{Ξ± : Type u} (xβ : List Ξ±) (xβΒΉ : Fin xβ.length) : xβ.get xβΒΉ = match xβ, xβΒΉ with | a :: tail, β¨0, isLtβ© => a | head :: as, β¨i.succ, hβ© => as.get β¨i, β―β© - List.get_mem π Init.Data.List.Lemmas
{Ξ± : Type u_1} (l : List Ξ±) (n : Fin l.length) : l.get n β l - List.get_cons_succ' π Init.Data.List.Lemmas
{Ξ± : Type u_1} {a : Ξ±} {as : List Ξ±} {i : Fin as.length} : (a :: as).get i.succ = as.get i - List.get_of_mem π Init.Data.List.Lemmas
{Ξ± : Type u_1} {a : Ξ±} {l : List Ξ±} (h : a β l) : β n, l.get n = a - List.mem_iff_get π Init.Data.List.Lemmas
{Ξ± : Type u_1} {a : Ξ±} {l : List Ξ±} : a β l β β n, l.get n = a - List.get_eq_getElem π Init.Data.List.Lemmas
{Ξ± : Type u_1} {l : List Ξ±} {i : Fin l.length} : l.get i = l[βi] - List.get_of_eq π Init.Data.List.Lemmas
{Ξ± : Type u_1} {l l' : List Ξ±} (h : l = l') (i : Fin l.length) : l.get i = l'.get β¨βi, β―β© - List.get_cons_zero π Init.Data.List.Lemmas
{Ξ±β : Type u_1} {a : Ξ±β} {l : List Ξ±β} : (a :: l).get 0 = a - List.ofFn π Init.Data.List.OfFn
{Ξ± : Type u_1} {n : β} (f : Fin n β Ξ±) : List Ξ± - List.ofFnM π Init.Data.List.OfFn
{m : Type u_1 β Type u_2} {Ξ± : Type u_1} {n : β} [Monad m] (f : Fin n β m Ξ±) : m (List Ξ±) - List.ofFn_zero π Init.Data.List.OfFn
{Ξ± : Type u_1} {f : Fin 0 β Ξ±} : List.ofFn f = [] - List.ofFn_eq_nil_iff π Init.Data.List.OfFn
{n : β} {Ξ± : Type u_1} {f : Fin n β Ξ±} : List.ofFn f = [] β n = 0 - List.idRun_ofFnM π Init.Data.List.OfFn
{n : β} {Ξ± : Type u_1} {f : Fin n β Id Ξ±} : (List.ofFnM f).run = List.ofFn fun i => (f i).run - List.ofFn.eq_1 π Init.Data.List.OfFn
{Ξ± : Type u_1} {n : β} (f : Fin n β Ξ±) : List.ofFn f = Fin.foldr n (fun x1 x2 => f x1 :: x2) [] - List.mem_ofFn π Init.Data.List.OfFn
{Ξ± : Type u_1} {n : β} {f : Fin n β Ξ±} {a : Ξ±} : a β List.ofFn f β β i, f i = a - Fin.foldr_cons_eq_append π Init.Data.List.OfFn
{n : β} {Ξ± : Type u_1} {f : Fin n β Ξ±} {xs : List Ξ±} : Fin.foldr n (fun i xs => f i :: xs) xs = List.ofFn f ++ xs - List.ofFnM_zero π Init.Data.List.OfFn
{m : Type u_1 β Type u_2} {Ξ± : Type u_1} [Monad m] [LawfulMonad m] {f : Fin 0 β m Ξ±} : List.ofFnM f = pure [] - Fin.foldl_cons_eq_append π Init.Data.List.OfFn
{n : β} {Ξ± : Type u_1} {f : Fin n β Ξ±} {xs : List Ξ±} : Fin.foldl n (fun xs i => f i :: xs) xs = (List.ofFn f).reverse ++ xs - List.ofFnM_pure π Init.Data.List.OfFn
{m : Type u_1 β Type u_2} {Ξ± : Type u_1} [Monad m] [LawfulMonad m] {n : β} {f : Fin n β Ξ±} : (List.ofFnM fun i => pure (f i)) = pure (List.ofFn f) - List.ofFnM_pure_comp π Init.Data.List.OfFn
{m : Type u_1 β Type u_2} {Ξ± : Type u_1} [Monad m] [LawfulMonad m] {n : β} {f : Fin n β Ξ±} : List.ofFnM (pure β f) = pure (List.ofFn f) - List.getElem_ofFn π Init.Data.List.OfFn
{n : β} {Ξ± : Type u_1} {i : β} {f : Fin n β Ξ±} (h : i < (List.ofFn f).length) : (List.ofFn f)[i] = f β¨i, β―β© - List.getElem?_ofFn π Init.Data.List.OfFn
{n : β} {Ξ± : Type u_1} {i : β} {f : Fin n β Ξ±} : (List.ofFn f)[i]? = if h : i < n then some (f β¨i, hβ©) else none - List.ofFn_succ_last π Init.Data.List.OfFn
{Ξ± : Type u_1} {n : β} {f : Fin (n + 1) β Ξ±} : List.ofFn f = (List.ofFn fun i => f i.castSucc) ++ [f (Fin.last n)] - List.ofFn_add π Init.Data.List.OfFn
{Ξ± : Type u_1} {n m : β} {f : Fin (n + m) β Ξ±} : List.ofFn f = (List.ofFn fun i => f (Fin.castLE β― i)) ++ List.ofFn fun i => f (Fin.natAdd n i) - List.head_ofFn π Init.Data.List.OfFn
{Ξ± : Type u_1} {n : β} {f : Fin n β Ξ±} (h : List.ofFn f β []) : (List.ofFn f).head h = f β¨0, β―β© - List.getLast_ofFn π Init.Data.List.OfFn
{Ξ± : Type u_1} {n : β} {f : Fin n β Ξ±} (h : List.ofFn f β []) : (List.ofFn f).getLast h = f β¨n - 1, β―β© - List.ofFn_succ π Init.Data.List.OfFn
{Ξ± : Type u_1} {n : β} {f : Fin (n + 1) β Ξ±} : List.ofFn f = f 0 :: List.ofFn fun i => f i.succ - List.ofFnM_succ_last π Init.Data.List.OfFn
{m : Type u_1 β Type u_2} {Ξ± : Type u_1} {n : β} [Monad m] [LawfulMonad m] {f : Fin (n + 1) β m Ξ±} : List.ofFnM f = do let as β List.ofFnM fun i => f i.castSucc let a β f (Fin.last n) pure (as ++ [a]) - List.ofFnM_add π Init.Data.List.OfFn
{k : β} {Ξ± : Type u_1} {n : β} {m : Type u_1 β Type u_2} [Monad m] [LawfulMonad m] {f : Fin (n + k) β m Ξ±} : List.ofFnM f = do let as β List.ofFnM fun i => f (Fin.castLE β― i) let bs β List.ofFnM fun i => f (Fin.natAdd n i) pure (as ++ bs) - List.finRange π Init.Data.List.FinRange
(n : β) : List (Fin n) - List.finRange.eq_1 π Init.Data.List.FinRange
(n : β) : List.finRange n = List.ofFn fun i => i - List.mem_finRange π Init.Data.List.FinRange
{n : β} (x : Fin n) : x β List.finRange n - List.finRange_reverse π Init.Data.List.FinRange
{n : β} : (List.finRange n).reverse = List.map Fin.rev (List.finRange n) - List.finRange_zero π Init.Data.List.FinRange
: List.finRange 0 = [] - List.getElem_finRange π Init.Data.List.FinRange
{n i : β} (h : i < (List.finRange n).length) : (List.finRange n)[i] = Fin.cast β― β¨i, hβ© - List.finRange_succ π Init.Data.List.FinRange
{n : β} : List.finRange (n + 1) = 0 :: List.map Fin.succ (List.finRange n) - List.ofFnM_succ π Init.Data.List.FinRange
{m : Type u_1 β Type u_2} {Ξ± : Type u_1} {n : β} [Monad m] [LawfulMonad m] {f : Fin (n + 1) β m Ξ±} : List.ofFnM f = do let a β f 0 let as β List.ofFnM fun i => f i.succ pure (a :: as) - List.finRange_succ_last π Init.Data.List.FinRange
{n : β} : List.finRange (n + 1) = List.map Fin.castSucc (List.finRange n) ++ [Fin.last n] - List.isSome_findFinIdx? π Init.Data.List.Find
{Ξ± : Type u_1} {l : List Ξ±} {p : Ξ± β Bool} : (List.findFinIdx? p l).isSome = l.any p - List.finIdxOf?.eq_1 π Init.Data.List.Find
{Ξ± : Type u} [BEq Ξ±] (a : Ξ±) : List.finIdxOf? a = List.findFinIdx? fun x => x == a - List.isSome_finIdxOf? π Init.Data.List.Find
{Ξ± : Type u_1} [BEq Ξ±] [PartialEquivBEq Ξ±] {l : List Ξ±} {a : Ξ±} : (List.finIdxOf? a l).isSome = l.contains a - List.isNone_finIdxOf? π Init.Data.List.Find
{Ξ± : Type u_1} [BEq Ξ±] [PartialEquivBEq Ξ±] {l : List Ξ±} {a : Ξ±} : (List.finIdxOf? a l).isNone = !l.contains a - List.findFinIdx?.eq_1 π Init.Data.List.Find
{Ξ± : Type u} (p : Ξ± β Bool) (l : List Ξ±) : List.findFinIdx? p l = List.findFinIdx?.go p l l 0 β― - List.findIdx?_eq_map_findFinIdx?_val π Init.Data.List.Find
{Ξ± : Type u_1} {xs : List Ξ±} {p : Ξ± β Bool} : List.findIdx? p xs = Option.map (fun x => βx) (List.findFinIdx? p xs) - List.idxOf?_eq_map_finIdxOf?_val π Init.Data.List.Find
{Ξ± : Type u_1} [BEq Ξ±] {xs : List Ξ±} {a : Ξ±} : List.idxOf? a xs = Option.map (fun x => βx) (List.finIdxOf? a xs) - List.finIdxOf?_eq_none_iff π Init.Data.List.Find
{Ξ± : Type u_1} [BEq Ξ±] [LawfulBEq Ξ±] {l : List Ξ±} {a : Ξ±} : List.finIdxOf? a l = none β a β l - List.findFinIdx?_eq_none_iff π Init.Data.List.Find
{Ξ± : Type u_1} {l : List Ξ±} {p : Ξ± β Bool} : List.findFinIdx? p l = none β β x β l, Β¬p x = true - List.isNone_findFinIdx? π Init.Data.List.Find
{Ξ± : Type u_1} {l : List Ξ±} {p : Ξ± β Bool} : (List.findFinIdx? p l).isNone = l.all fun x => decide Β¬p x = true - List.findIdx?_go_eq_map_findFinIdx?_go_val π Init.Data.List.Find
{Ξ± : Type u_1} {l xs : List Ξ±} {p : Ξ± β Bool} {i : β} {h : xs.length + i = l.length} : List.findIdx?.go p xs i = Option.map (fun x => βx) (List.findFinIdx?.go p l xs i h) - List.findFinIdx?_subtype π Init.Data.List.Find
{Ξ± : Type u_1} {p : Ξ± β Prop} {l : List { x // p x }} {f : { x // p x } β Bool} {g : Ξ± β Bool} (hf : β (x : Ξ±) (h : p x), f β¨x, hβ© = g x) : List.findFinIdx? f l = Option.map (fun i => Fin.cast β― i) (List.findFinIdx? g l.unattach) - List.findFinIdx?.go.congr_simp π Init.Data.List.Find
{Ξ± : Type u} (p pβ : Ξ± β Bool) (e_p : p = pβ) (l l' l'β : List Ξ±) (e_l' : l' = l'β) (i iβ : β) (e_i : i = iβ) (h : l'.length + i = l.length) : List.findFinIdx?.go p l l' i h = List.findFinIdx?.go pβ l l'β iβ β― - List.finIdxOf?_cons π Init.Data.List.Find
{Ξ± : Type u_1} {b : Ξ±} [BEq Ξ±] {a : Ξ±} {xs : List Ξ±} : List.finIdxOf? b (a :: xs) = if (a == b) = true then some β¨0, β―β© else Option.map (fun x => x.succ) (List.finIdxOf? b xs) - List.findFinIdx?_cons π Init.Data.List.Find
{Ξ± : Type u_1} {p : Ξ± β Bool} {x : Ξ±} {xs : List Ξ±} : List.findFinIdx? p (x :: xs) = if p x = true then some 0 else Option.map Fin.succ (List.findFinIdx? p xs) - List.finIdxOf?_eq_some_iff π Init.Data.List.Find
{Ξ± : Type u_1} [BEq Ξ±] [LawfulBEq Ξ±] {l : List Ξ±} {a : Ξ±} {i : Fin l.length} : List.finIdxOf? a l = some i β l[i] = a β§ β j < i, Β¬l[j] = a - List.findFinIdx?_eq_some_iff π Init.Data.List.Find
{Ξ± : Type u_1} {xs : List Ξ±} {p : Ξ± β Bool} {i : Fin xs.length} : List.findFinIdx? p xs = some i β p xs[i] = true β§ β (j : Fin xs.length) (hji : j < i), Β¬p xs[j] = true - List.findFinIdx?.go.eq_def π Init.Data.List.Find
{Ξ± : Type u} (p : Ξ± β Bool) (l xβ : List Ξ±) (xβΒΉ : β) (xβΒ² : xβ.length + xβΒΉ = l.length) : List.findFinIdx?.go p l xβ xβΒΉ xβΒ² = match xβ, xβΒΉ, xβΒ² with | [], x, x_1 => none | a :: l_1, i, h => if p a = true then some β¨i, β―β© else List.findFinIdx?.go p l l_1 (i + 1) β― - List.findFinIdx?_append π Init.Data.List.Find
{Ξ± : Type u_1} {xs ys : List Ξ±} {p : Ξ± β Bool} : List.findFinIdx? p (xs ++ ys) = (Option.map (Fin.castLE β―) (List.findFinIdx? p xs)).or (Option.map (Fin.cast β―) (Option.map (Fin.natAdd xs.length) (List.findFinIdx? p ys))) - List.findFinIdx?_eq_pmap_findIdx? π Init.Data.List.Find
{Ξ± : Type u_1} {xs : List Ξ±} {p : Ξ± β Bool} : List.findFinIdx? p xs = Option.pmap (fun i m => β¨i, β―β©) (List.findIdx? p xs) β― - List.findFinIdx?_toArray π Init.Data.List.ToArray
{Ξ± : Type u_1} (p : Ξ± β Bool) (l : List Ξ±) : Array.findFinIdx? p l.toArray = List.findFinIdx? p l - List.finIdxOf?_toArray π Init.Data.List.ToArray
{Ξ± : Type u_1} [BEq Ξ±] (a : Ξ±) (l : List Ξ±) : l.toArray.finIdxOf? a = List.finIdxOf? a l - Array.getElem_fin_eq_getElem_toList π Init.Data.Array.Lemmas
{Ξ± : Type u_1} {xs : Array Ξ±} {i : Fin xs.size} : xs[i] = xs.toList[i] - Array.toList_ofFn π Init.Data.Array.OfFn
{n : β} {Ξ± : Type u_1} {f : Fin n β Ξ±} : (Array.ofFn f).toList = List.ofFn f - Array.toList_ofFnM π Init.Data.Array.OfFn
{m : Type u_1 β Type u_2} {n : β} {Ξ± : Type u_1} [Monad m] [LawfulMonad m] {f : Fin n β m Ξ±} : Array.toList <$> Array.ofFnM f = List.ofFnM f - List.mapFinIdx_eq_ofFn π Init.Data.List.MapIdx
{Ξ± : Type u_1} {Ξ² : Type u_2} {as : List Ξ±} {f : (i : β) β Ξ± β i < as.length β Ξ²} : as.mapFinIdx f = List.ofFn fun i => f (βi) as[i] β― - List.map_getElem_sublist π Init.Data.List.Nat.Pairwise
{Ξ± : Type u_1} {l : List Ξ±} {is : List (Fin l.length)} (h : List.Pairwise (fun x1 x2 => x1 < x2) is) : (List.map (fun x => l[x]) is).Sublist l - List.sublist_eq_map_getElem π Init.Data.List.Nat.Pairwise
{Ξ± : Type u_1} {l l' : List Ξ±} (h : l'.Sublist l) : β is, l' = List.map (fun x => l[x]) is β§ List.Pairwise (fun x1 x2 => x1 < x2) is - Vector.toList_ofFn π Init.Data.Vector.Lemmas
{n : β} {Ξ± : Type u_1} {f : Fin n β Ξ±} : (Vector.ofFn f).toList = List.ofFn f - Vector.toList_ofFnM π Init.Data.Vector.OfFn
{m : Type u_1 β Type u_2} {n : β} {Ξ± : Type u_1} [Monad m] [LawfulMonad m] {f : Fin n β m Ξ±} : Vector.toList <$> Vector.ofFnM f = List.ofFnM f - Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.existsRatHint_of_ratHintsExhaustive π Std.Tactic.BVDecide.LRAT.Internal.Formula.RatAddSound
{n : β} (f : Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula n) (f_readyForRatAdd : f.ReadyForRatAdd) (pivot : Std.Sat.Literal (Std.Tactic.BVDecide.LRAT.Internal.PosFin n)) (ratHints : Array (β Γ Array β)) (ratHintsExhaustive_eq_true : f.ratHintsExhaustive pivot ratHints = true) (c' : Std.Tactic.BVDecide.LRAT.Internal.DefaultClause n) (c'_in_f : c' β f.toList) (negPivot_in_c' : pivot.negate β Std.Tactic.BVDecide.LRAT.Internal.Clause.toList c') : β i, f.clauses[ratHints[i].1]! = some c' - Batteries.Linter.UnnecessarySeqFocus.getPath π Batteries.Linter.UnnecessarySeqFocus
: Lean.Elab.Info β Lean.PersistentArray Lean.Elab.InfoTree β List ((n : β) Γ Fin n) β Option Lean.Elab.Info - List.map_coe_finRange_eq_range π Batteries.Data.List.Lemmas
{n : β} : List.map (fun x => βx) (List.finRange n) = List.range n - List.finRange_eq_nil_iff π Batteries.Data.List.Lemmas
{n : β} : List.finRange n = [] β n = 0 - List.map_get_finRange π Batteries.Data.List.Lemmas
{Ξ± : Type u_1} (l : List Ξ±) : List.map l.get (List.finRange l.length) = l - List.finRange_eq_pmap_range π Batteries.Data.List.Lemmas
{n : β} : List.finRange n = List.pmap Fin.mk (List.range n) β― - List.map_getElem_finRange π Batteries.Data.List.Lemmas
{Ξ± : Type u_1} (l : List Ξ±) : List.map (fun x => l[βx]) (List.finRange l.length) = l - List.pairwise_iff_get π Batteries.Data.List.Pairwise
{Ξ±β : Type u_1} {R : Ξ±β β Ξ±β β Prop} {l : List Ξ±β} : List.Pairwise R l β β (i j : Fin l.length), i < j β R (l.get i) (l.get j) - List.cons_get_drop_succ π Mathlib.Data.List.TakeDrop
{Ξ± : Type u} {l : List Ξ±} {n : Fin l.length} : l.get n :: List.drop (βn + 1) l = List.drop (βn) l - List.get_surjective_iff π Mathlib.Data.List.Basic
{Ξ± : Type u} {l : List Ξ±} : Function.Surjective l.get β β (x : Ξ±), x β l - List.forall_mem_iff_get π Mathlib.Data.List.Basic
{Ξ± : Type u} {l : List Ξ±} {p : Ξ± β Prop} : (β x β l, p x) β β (i : Fin l.length), p (l.get i) - List.exists_mem_iff_get π Mathlib.Data.List.Basic
{Ξ± : Type u} {l : List Ξ±} {p : Ξ± β Prop} : (β x β l, p x) β β i, p (l.get i) - List.get_reverse' π Mathlib.Data.List.Basic
{Ξ± : Type u} (l : List Ξ±) (n : Fin l.reverse.length) (hn' : l.length - 1 - βn < l.length) : l.reverse.get n = l.get β¨l.length - 1 - βn, hn'β© - List.getElem_fin_surjective_iff π Mathlib.Data.List.Basic
{Ξ± : Type u} {l : List Ξ±} : (Function.Surjective fun n => l[βn]) β β (x : Ξ±), x β l - List.get_attach π Mathlib.Data.List.Basic
{Ξ± : Type u} (l : List Ξ±) (i : Fin l.attach.length) : β(l.attach.get i) = l.get β¨βi, β―β© - List.get_eq_getElem? π Mathlib.Data.List.Basic
{Ξ± : Type u} (l : List Ξ±) (i : Fin l.length) : l.get i = l[i]?.get β― - Function.Injective.nodup π Mathlib.Data.List.Nodup
{Ξ± : Type u} {l : List Ξ±} (h : Function.Injective l.get) : l.Nodup - List.Nodup.injective_get π Mathlib.Data.List.Nodup
{Ξ± : Type u} {l : List Ξ±} (h : l.Nodup) : Function.Injective l.get - List.nodup_iff_injective_get π Mathlib.Data.List.Nodup
{Ξ± : Type u} {l : List Ξ±} : l.Nodup β Function.Injective l.get - List.get_idxOf π Mathlib.Data.List.Nodup
{Ξ± : Type u} [DecidableEq Ξ±] {l : List Ξ±} (H : l.Nodup) (i : Fin l.length) : List.idxOf (l.get i) l = βi - List.get_bijective_iff π Mathlib.Data.List.Nodup
{Ξ± : Type u} {l : List Ξ±} [BEq Ξ±] [LawfulBEq Ξ±] : Function.Bijective l.get β β (a : Ξ±), List.count a l = 1 - List.not_nodup_of_get_eq_of_ne π Mathlib.Data.List.Nodup
{Ξ± : Type u} (xs : List Ξ±) (n m : Fin xs.length) (h : xs.get n = xs.get m) (hne : n β m) : Β¬xs.Nodup - List.Nodup.get_inj_iff π Mathlib.Data.List.Nodup
{Ξ± : Type u} {l : List Ξ±} (h : l.Nodup) {i j : Fin l.length} : l.get i = l.get j β i = j - List.Nodup.erase_get π Mathlib.Data.List.Nodup
{Ξ± : Type u} [BEq Ξ±] [LawfulBEq Ξ±] {l : List Ξ±} (hl : l.Nodup) (i : Fin l.length) : l.erase (l.get i) = l.eraseIdx βi - List.nodup_iff_injective_getElem π Mathlib.Data.List.Nodup
{Ξ± : Type u} {l : List Ξ±} : l.Nodup β Function.Injective fun i => l[βi] - List.getElem_bijective_iff π Mathlib.Data.List.Nodup
{Ξ± : Type u} {l : List Ξ±} [BEq Ξ±] [LawfulBEq Ξ±] : (Function.Bijective fun n => l[n]) β β (a : Ξ±), List.count a l = 1 - Set.range_list_get π Mathlib.Data.Set.List
{Ξ± : Type u_1} (l : List Ξ±) : Set.range l.get = {x | x β l} - List.get_inits π Mathlib.Data.List.Infix
{Ξ± : Type u_1} (l : List Ξ±) (n : Fin l.inits.length) : l.inits.get n = List.take (βn) l - List.get_tails π Mathlib.Data.List.Infix
{Ξ± : Type u_1} (l : List Ξ±) (n : Fin l.tails.length) : l.tails.get n = List.drop (βn) l - List.equivSigmaTuple π Mathlib.Data.List.OfFn
{Ξ± : Type u} : List Ξ± β (n : β) Γ (Fin n β Ξ±) - List.ofFn_injective π Mathlib.Data.List.OfFn
{Ξ± : Type u} {n : β} : Function.Injective List.ofFn - List.ofFn_const π Mathlib.Data.List.OfFn
{Ξ± : Type u} (n : β) (c : Ξ±) : (List.ofFn fun x => c) = List.replicate n c - List.ofFnRec π Mathlib.Data.List.OfFn
{Ξ± : Type u} {C : List Ξ± β Sort u_1} (h : (n : β) β (f : Fin n β Ξ±) β C (List.ofFn f)) (l : List Ξ±) : C l - List.forall_iff_forall_tuple π Mathlib.Data.List.OfFn
{Ξ± : Type u} {P : List Ξ± β Prop} : (β (l : List Ξ±), P l) β β (n : β) (f : Fin n β Ξ±), P (List.ofFn f) - List.ofFn_inj π Mathlib.Data.List.OfFn
{Ξ± : Type u} {n : β} {f g : Fin n β Ξ±} : List.ofFn f = List.ofFn g β f = g - List.exists_iff_exists_tuple π Mathlib.Data.List.OfFn
{Ξ± : Type u} {P : List Ξ± β Prop} : (β l, P l) β β n f, P (List.ofFn f) - List.forall_mem_ofFn_iff π Mathlib.Data.List.OfFn
{Ξ± : Type u} {n : β} {f : Fin n β Ξ±} {P : Ξ± β Prop} : (β i β List.ofFn f, P i) β β (j : Fin n), P (f j) - List.ofFn_comp' π Mathlib.Data.List.OfFn
{Ξ± : Type u} {Ξ² : Type u_1} {n : β} (f : Fin n β Ξ±) (g : Ξ± β Ξ²) : (List.ofFn fun i => g (f i)) = List.map g (List.ofFn f) - List.ofFn_succ' π Mathlib.Data.List.OfFn
{Ξ± : Type u} {n : β} (f : Fin n.succ β Ξ±) : List.ofFn f = (List.ofFn fun i => f i.castSucc).concat (f (Fin.last n)) - List.map_ofFn π Mathlib.Data.List.OfFn
{Ξ± : Type u} {Ξ² : Type u_1} {n : β} (f : Fin n β Ξ±) (g : Ξ± β Ξ²) : List.map g (List.ofFn f) = List.ofFn (g β f) - List.mem_ofFn' π Mathlib.Data.List.OfFn
{Ξ± : Type u} {n : β} (f : Fin n β Ξ±) (a : Ξ±) : a β List.ofFn f β a β Set.range f - List.ofFn_congr π Mathlib.Data.List.OfFn
{Ξ± : Type u} {m n : β} (h : m = n) (f : Fin m β Ξ±) : List.ofFn f = List.ofFn fun i => f (Fin.cast β― i) - List.ofFnRec_ofFn π Mathlib.Data.List.OfFn
{Ξ± : Type u} {C : List Ξ± β Sort u_1} (h : (n : β) β (f : Fin n β Ξ±) β C (List.ofFn f)) {n : β} (f : Fin n β Ξ±) : List.ofFnRec h (List.ofFn f) = h n f - List.ofFn_fin_repeat π Mathlib.Data.List.OfFn
{Ξ± : Type u} {m : β} (a : Fin m β Ξ±) (n : β) : List.ofFn (Fin.repeat n a) = (List.replicate n (List.ofFn a)).flatten - List.ofFn_inj' π Mathlib.Data.List.OfFn
{Ξ± : Type u} {m n : β} {f : Fin m β Ξ±} {g : Fin n β Ξ±} : List.ofFn f = List.ofFn g β β¨m, fβ© = β¨n, gβ© - List.ofFn_fin_append π Mathlib.Data.List.OfFn
{Ξ± : Type u} {m n : β} (a : Fin m β Ξ±) (b : Fin n β Ξ±) : List.ofFn (Fin.append a b) = List.ofFn a ++ List.ofFn b - List.ofFn_cons π Mathlib.Data.List.OfFn
{Ξ± : Type u} {n : β} (a : Ξ±) (f : Fin n β Ξ±) : List.ofFn (Fin.cons a f) = a :: List.ofFn f - List.equivSigmaTuple_apply_fst π Mathlib.Data.List.OfFn
{Ξ± : Type u} (l : List Ξ±) : (List.equivSigmaTuple l).fst = l.length - List.getLast_ofFn_succ π Mathlib.Data.List.OfFn
{Ξ± : Type u} {n : β} (f : Fin n.succ β Ξ±) : (List.ofFn f).getLast β― = f (Fin.last n) - List.equivSigmaTuple_apply_snd π Mathlib.Data.List.OfFn
{Ξ± : Type u} (l : List Ξ±) (aβ : Fin l.length) : (List.equivSigmaTuple l).snd aβ = l.get aβ - List.ofFn_getElem π Mathlib.Data.List.OfFn
{Ξ± : Type u} (l : List Ξ±) : (List.ofFn fun i => l[βi]) = l - List.equivSigmaTuple_symm_apply π Mathlib.Data.List.OfFn
{Ξ± : Type u} (f : (n : β) Γ (Fin n β Ξ±)) : List.equivSigmaTuple.symm f = List.ofFn f.snd - List.ofFn_getElem_eq_map π Mathlib.Data.List.OfFn
{Ξ± : Type u} {Ξ² : Type u_1} (l : List Ξ±) (f : Ξ± β Ξ²) : (List.ofFn fun i => f l[βi]) = List.map f l - List.ofFn_mul π Mathlib.Data.List.OfFn
{Ξ± : Type u} {m n : β} (f : Fin (m * n) β Ξ±) : List.ofFn f = (List.ofFn fun i => List.ofFn fun j => f β¨βi * n + βj, β―β©).flatten - List.ofFn_mul' π Mathlib.Data.List.OfFn
{Ξ± : Type u} {m n : β} (f : Fin (m * n) β Ξ±) : List.ofFn f = (List.ofFn fun i => List.ofFn fun j => f β¨m * βi + βj, β―β©).flatten - List.ofFn_id π Mathlib.Data.List.FinRange
(n : β) : List.ofFn id = List.finRange n - List.map_coe_finRange π Mathlib.Data.List.FinRange
{n : β} : List.map (fun x => βx) (List.finRange n) = List.range n - List.finRange_eq_nil π Mathlib.Data.List.FinRange
{n : β} : List.finRange n = [] β n = 0 - List.ofFn_eq_map π Mathlib.Data.List.FinRange
{Ξ± : Type u} {n : β} {f : Fin n β Ξ±} : List.ofFn f = List.map f (List.finRange n) - List.finRange_map_get π Mathlib.Data.List.FinRange
{Ξ± : Type u_1} (l : List Ξ±) : List.map l.get (List.finRange l.length) = l - List.finRange_map_getElem π Mathlib.Data.List.FinRange
{Ξ± : Type u_1} (l : List Ξ±) : List.map (fun x => l[βx]) (List.finRange l.length) = l - List.ofFn_eq_pmap π Mathlib.Data.List.FinRange
{Ξ± : Type u} {n : β} {f : Fin n β Ξ±} : List.ofFn f = List.pmap (fun i hi => f β¨i, hiβ©) (List.range n) β― - List.finRange_succ_eq_map π Mathlib.Data.List.FinRange
(n : β) : List.finRange n.succ = 0 :: List.map Fin.succ (List.finRange n) - Fin.univ_image_get π Mathlib.Data.Fintype.Basic
{Ξ± : Type u_1} [DecidableEq Ξ±] (l : List Ξ±) : Finset.image l.get Finset.univ = l.toFinset - Fin.univ_image_get' π Mathlib.Data.Fintype.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} [DecidableEq Ξ²] (l : List Ξ±) (f : Ξ± β Ξ²) : Finset.image (fun x => f (l.get x)) Finset.univ = (List.map f l).toFinset - Fin.univ_image_getElem' π Mathlib.Data.Fintype.Basic
{Ξ± : Type u_1} {Ξ² : Type u_2} [DecidableEq Ξ²] (l : List Ξ±) (f : Ξ± β Ξ²) : Finset.image (fun i => f l[βi]) Finset.univ = (List.map f l).toFinset - Antitone.sortedGE π Mathlib.Data.List.Sort
{Ξ± : Type u_1} {l : List Ξ±} [Preorder Ξ±] : Antitone l.get β l.SortedGE - Monotone.sortedLE π Mathlib.Data.List.Sort
{Ξ± : Type u_1} {l : List Ξ±} [Preorder Ξ±] : Monotone l.get β l.SortedLE - StrictAnti.sortedGT π Mathlib.Data.List.Sort
{Ξ± : Type u_1} {l : List Ξ±} [Preorder Ξ±] : StrictAnti l.get β l.SortedGT - StrictMono.sortedLT π Mathlib.Data.List.Sort
{Ξ± : Type u_1} {l : List Ξ±} [Preorder Ξ±] : StrictMono l.get β l.SortedLT - List.SortedGE.antitone_get π Mathlib.Data.List.Sort
{Ξ± : Type u_1} {l : List Ξ±} [Preorder Ξ±] : l.SortedGE β Antitone l.get - List.SortedGT.strictAnti_get π Mathlib.Data.List.Sort
{Ξ± : Type u_1} {l : List Ξ±} [Preorder Ξ±] : l.SortedGT β StrictAnti l.get - List.SortedLE.monotone_get π Mathlib.Data.List.Sort
{Ξ± : Type u_1} {l : List Ξ±} [Preorder Ξ±] : l.SortedLE β Monotone l.get - List.SortedLT.strictMono_get π Mathlib.Data.List.Sort
{Ξ± : Type u_1} {l : List Ξ±} [Preorder Ξ±] : l.SortedLT β StrictMono l.get - List.sortedGE_iff_antitone_get π Mathlib.Data.List.Sort
{Ξ± : Type u_1} {l : List Ξ±} [Preorder Ξ±] : l.SortedGE β Antitone l.get - List.sortedGT_iff_strictAnti_get π Mathlib.Data.List.Sort
{Ξ± : Type u_1} {l : List Ξ±} [Preorder Ξ±] : l.SortedGT β StrictAnti l.get - List.sortedLE_iff_monotone_get π Mathlib.Data.List.Sort
{Ξ± : Type u_1} {l : List Ξ±} [Preorder Ξ±] : l.SortedLE β Monotone l.get - List.sortedLT_iff_strictMono_get π Mathlib.Data.List.Sort
{Ξ± : Type u_1} {l : List Ξ±} [Preorder Ξ±] : l.SortedLT β StrictMono l.get - List.Nodup.getEquivOfForallMemList π Mathlib.Data.List.NodupEquivFin
{Ξ± : Type u_1} [DecidableEq Ξ±] (l : List Ξ±) (nd : l.Nodup) (h : β (x : Ξ±), x β l) : Fin l.length β Ξ± - List.Nodup.getEquiv π Mathlib.Data.List.NodupEquivFin
{Ξ± : Type u_1} [DecidableEq Ξ±] (l : List Ξ±) (H : l.Nodup) : Fin l.length β { x // x β l } - List.getEquivOfForallCountEqOne π Mathlib.Data.List.NodupEquivFin
{Ξ± : Type u_1} [DecidableEq Ξ±] (l : List Ξ±) (h : β (x : Ξ±), List.count x l = 1) : Fin l.length β Ξ± - List.Sorted.get_mono π Mathlib.Data.List.NodupEquivFin
{Ξ± : Type u_1} {l : List Ξ±} [Preorder Ξ±] : l.SortedLE β Monotone l.get - List.Sorted.get_strictMono π Mathlib.Data.List.NodupEquivFin
{Ξ± : Type u_1} {l : List Ξ±} [Preorder Ξ±] : l.SortedLT β StrictMono l.get - List.Nodup.getBijectionOfForallMemList π Mathlib.Data.List.NodupEquivFin
{Ξ± : Type u_1} (l : List Ξ±) (nd : l.Nodup) (h : β (x : Ξ±), x β l) : { f // Function.Bijective f } - List.Sorted.getIso π Mathlib.Data.List.NodupEquivFin
{Ξ± : Type u_1} [Preorder Ξ±] [DecidableEq Ξ±] (l : List Ξ±) (H : l.SortedLT) : Fin l.length βo { x // x β l } - List.SortedLT.getIso π Mathlib.Data.List.NodupEquivFin
{Ξ± : Type u_1} [Preorder Ξ±] [DecidableEq Ξ±] (l : List Ξ±) (H : l.SortedLT) : Fin l.length βo { x // x β l } - List.Nodup.getBijectionOfForallMemList_coe π Mathlib.Data.List.NodupEquivFin
{Ξ± : Type u_1} (l : List Ξ±) (nd : l.Nodup) (h : β (x : Ξ±), x β l) (i : Fin l.length) : β(List.Nodup.getBijectionOfForallMemList l nd h) i = l.get i - List.duplicate_iff_exists_distinct_get π Mathlib.Data.List.NodupEquivFin
{Ξ± : Type u_1} {l : List Ξ±} {x : Ξ±} : List.Duplicate x l β β n m, β (_ : n < m), x = l.get n β§ x = l.get m - List.Nodup.getEquivOfForallMemList_apply π Mathlib.Data.List.NodupEquivFin
{Ξ± : Type u_1} [DecidableEq Ξ±] (l : List Ξ±) (nd : l.Nodup) (h : β (x : Ξ±), x β l) (i : Fin l.length) : (List.Nodup.getEquivOfForallMemList l nd h) i = l.get i - List.Nodup.getEquivOfForallMemList_symm_apply_val π Mathlib.Data.List.NodupEquivFin
{Ξ± : Type u_1} [DecidableEq Ξ±] (l : List Ξ±) (nd : l.Nodup) (h : β (x : Ξ±), x β l) (a : Ξ±) : β((List.Nodup.getEquivOfForallMemList l nd h).symm a) = List.idxOf a l - List.getEquivOfForallCountEqOne_symm_apply_val π Mathlib.Data.List.NodupEquivFin
{Ξ± : Type u_1} [DecidableEq Ξ±] (l : List Ξ±) (h : β (x : Ξ±), List.count x l = 1) (a : Ξ±) : β((l.getEquivOfForallCountEqOne h).symm a) = List.idxOf a l - List.getEquivOfForallCountEqOne_apply π Mathlib.Data.List.NodupEquivFin
{Ξ± : Type u_1} [DecidableEq Ξ±] (l : List Ξ±) (h : β (x : Ξ±), List.count x l = 1) (i : Fin l.length) : (l.getEquivOfForallCountEqOne h) i = l[βi] - List.Nodup.getEquiv_apply_coe π Mathlib.Data.List.NodupEquivFin
{Ξ± : Type u_1} [DecidableEq Ξ±] (l : List Ξ±) (H : l.Nodup) (i : Fin l.length) : β((List.Nodup.getEquiv l H) i) = l.get i - List.sublist_iff_exists_fin_orderEmbedding_get_eq π Mathlib.Data.List.NodupEquivFin
{Ξ± : Type u_1} {l l' : List Ξ±} : l.Sublist l' β β f, β (ix : Fin l.length), l.get ix = l'.get (f ix) - List.Nodup.getEquiv_symm_apply_val π Mathlib.Data.List.NodupEquivFin
{Ξ± : Type u_1} [DecidableEq Ξ±] (l : List Ξ±) (H : l.Nodup) (x : { x // x β l }) : β((List.Nodup.getEquiv l H).symm x) = List.idxOf (βx) l - List.Sorted.coe_getIso_apply π Mathlib.Data.List.NodupEquivFin
{Ξ± : Type u_1} [Preorder Ξ±] {l : List Ξ±} [DecidableEq Ξ±] (H : l.SortedLT) {i : Fin l.length} : β((List.SortedLT.getIso l H) i) = l.get i - List.SortedLT.coe_getIso_apply π Mathlib.Data.List.NodupEquivFin
{Ξ± : Type u_1} [Preorder Ξ±] {l : List Ξ±} [DecidableEq Ξ±] (H : l.SortedLT) {i : Fin l.length} : β((List.SortedLT.getIso l H) i) = l.get i - List.Sorted.coe_getIso_symm_apply π Mathlib.Data.List.NodupEquivFin
{Ξ± : Type u_1} [Preorder Ξ±] {l : List Ξ±} [DecidableEq Ξ±] (H : l.SortedLT) {x : { x // x β l }} : β((List.SortedLT.getIso l H).symm x) = List.idxOf (βx) l - List.SortedLT.coe_getIso_symm_apply π Mathlib.Data.List.NodupEquivFin
{Ξ± : Type u_1} [Preorder Ξ±] {l : List Ξ±} [DecidableEq Ξ±] (H : l.SortedLT) {x : { x // x β l }} : β((List.SortedLT.getIso l H).symm x) = List.idxOf (βx) l - List.Pairwise.rel_get_of_lt π Mathlib.Data.List.Pairwise
{Ξ± : Type u_1} {R : Ξ± β Ξ± β Prop} {l : List Ξ±} (h : List.Pairwise R l) {a b : Fin l.length} (hab : a < b) : R (l.get a) (l.get b) - List.Sorted.rel_get_of_lt π Mathlib.Data.List.Pairwise
{Ξ± : Type u_1} {R : Ξ± β Ξ± β Prop} {l : List Ξ±} (h : List.Pairwise R l) {a b : Fin l.length} (hab : a < b) : R (l.get a) (l.get b) - List.Pairwise.rel_get_of_le π Mathlib.Data.List.Pairwise
{Ξ± : Type u_1} {R : Ξ± β Ξ± β Prop} [IsRefl Ξ± R] {l : List Ξ±} (h : List.Pairwise R l) {a b : Fin l.length} (hab : a β€ b) : R (l.get a) (l.get b) - List.Sorted.rel_get_of_le π Mathlib.Data.List.Pairwise
{Ξ± : Type u_1} {R : Ξ± β Ξ± β Prop} [IsRefl Ξ± R] {l : List Ξ±} (h : List.Pairwise R l) {a b : Fin l.length} (hab : a β€ b) : R (l.get a) (l.get b) - List.chain_iff_get π Mathlib.Data.List.Chain
{Ξ± : Type u} {R : Ξ± β Ξ± β Prop} {a : Ξ±} {l : List Ξ±} : List.IsChain R (a :: l) β β (i : Fin l.length), R ((a :: l).get i.castSucc) ((a :: l).get i.succ) - List.isChain_cons_iff_get π Mathlib.Data.List.Chain
{Ξ± : Type u} {R : Ξ± β Ξ± β Prop} {a : Ξ±} {l : List Ξ±} : List.IsChain R (a :: l) β β (i : Fin l.length), R ((a :: l).get i.castSucc) ((a :: l).get i.succ) - List.chain'_iff_get π Mathlib.Data.List.Chain
{Ξ± : Type u} {R : Ξ± β Ξ± β Prop} {l : List Ξ±} : List.IsChain R l β β (i : Fin l.length.pred), R (l.get (Fin.cast β― i.castSucc)) (l.get (Fin.cast β― i.succ)) - List.isChain_iff_get π Mathlib.Data.List.Chain
{Ξ± : Type u} {R : Ξ± β Ξ± β Prop} {l : List Ξ±} : List.IsChain R l β β (i : Fin l.length.pred), R (l.get (Fin.cast β― i.castSucc)) (l.get (Fin.cast β― i.succ)) - List.get_cyclicPermutations π Mathlib.Data.List.Rotate
{Ξ± : Type u} (l : List Ξ±) (n : Fin l.cyclicPermutations.length) : l.cyclicPermutations.get n = l.rotate βn - List.get_rotate π Mathlib.Data.List.Rotate
{Ξ± : Type u} (l : List Ξ±) (n : β) (k : Fin (l.rotate n).length) : (l.rotate n).get k = l.get β¨(βk + n) % l.length, β―β© - List.get_rotate_one π Mathlib.Data.List.Rotate
{Ξ± : Type u} (l : List Ξ±) (k : Fin (l.rotate 1).length) : (l.rotate 1).get k = l.get β¨(βk + 1) % l.length, β―β© - List.get_eq_get_rotate π Mathlib.Data.List.Rotate
{Ξ± : Type u} (l : List Ξ±) (n : β) (k : Fin l.length) : l.get k = (l.rotate n).get β¨(l.length - n % l.length + βk) % l.length, β―β© - List.Vector.toList_ofFn π Mathlib.Data.Vector.Basic
{Ξ± : Type u_1} {n : β} (f : Fin n β Ξ±) : (List.Vector.ofFn f).toList = List.ofFn f - List.Vector.toList_set π Mathlib.Data.Vector.Basic
{Ξ± : Type u_1} {n : β} (v : List.Vector Ξ± n) (i : Fin n) (a : Ξ±) : (v.set i a).toList = v.toList.set (βi) a - List.Vector.set.eq_1 π Mathlib.Data.Vector.Basic
{Ξ± : Type u_1} {n : β} (v : List.Vector Ξ± n) (i : Fin n) (a : Ξ±) : v.set i a = β¨(βv).set (βi) a, β―β© - List.Vector.eraseIdx_val π Mathlib.Data.Vector.Basic
{Ξ± : Type u_1} {n : β} {i : Fin n} {v : List.Vector Ξ± n} : β(List.Vector.eraseIdx i v) = (βv).eraseIdx βi - List.Vector.insertIdx_val π Mathlib.Data.Vector.Basic
{Ξ± : Type u_1} {n : β} {a : Ξ±} {i : Fin (n + 1)} {v : List.Vector Ξ± n} : β(List.Vector.insertIdx a i v) = (βv).insertIdx (βi) a - Fin.prod_univ_getElem π Mathlib.Algebra.BigOperators.Fin
{M : Type u_2} [CommMonoid M] (l : List M) : β i, l[βi] = l.prod - Fin.prod_univ_fun_getElem π Mathlib.Algebra.BigOperators.Fin
{ΞΉ : Type u_1} {M : Type u_2} [CommMonoid M] (l : List ΞΉ) (f : ΞΉ β M) : β i, f l[βi] = (List.map f l).prod - List.alternatingProd_eq_finset_prod π Mathlib.Algebra.BigOperators.Fin
{G : Type u_3} [DivisionCommMonoid G] (L : List G) : L.alternatingProd = β i, L[i] ^ (-1) ^ βi - Fin.sum_univ_getElem π Mathlib.Algebra.BigOperators.Fin
{M : Type u_2} [AddCommMonoid M] (l : List M) : β i, l[βi] = l.sum - Fin.sum_univ_fun_getElem π Mathlib.Algebra.BigOperators.Fin
{ΞΉ : Type u_1} {M : Type u_2} [AddCommMonoid M] (l : List ΞΉ) (f : ΞΉ β M) : β i, f l[βi] = (List.map f l).sum - List.alternatingSum_eq_finset_sum π Mathlib.Algebra.BigOperators.Fin
{G : Type u_3} [SubtractionCommMonoid G] (L : List G) : L.alternatingSum = β i, (-1) ^ βi β’ L[i] - Fin.sort_univ π Mathlib.Data.Finset.Sort
(n : β) : (Finset.univ.sort fun x y => x β€ y) = List.finRange n - Finset.listMap_orderEmbOfFin_finRange π Mathlib.Data.Finset.Sort
{Ξ± : Type u_1} [LinearOrder Ξ±] (s : Finset Ξ±) {k : β} (h : s.card = k) : List.map (β(s.orderEmbOfFin h)) (List.finRange k) = s.sort fun a b => a β€ b - Finset.orderEmbOfFin_apply π Mathlib.Data.Finset.Sort
{Ξ± : Type u_1} [LinearOrder Ξ±] (s : Finset Ξ±) {k : β} (h : s.card = k) (i : Fin k) : (s.orderEmbOfFin h) i = (s.sort fun a b => a β€ b)[i] - List.Nat.antidiagonalTuple π Mathlib.Data.Fin.Tuple.NatAntidiagonal
(k aβ : β) : List (Fin k β β) - List.Nat.antidiagonalTuple.eq_2 π Mathlib.Data.Fin.Tuple.NatAntidiagonal
(n : β) : List.Nat.antidiagonalTuple 0 n.succ = []
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 0ac13cd serving mathlib revision 26fffff