Loogle!
Result
Found 234 declarations mentioning Localization. Of these, only the first 200 are shown.
- Localization π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] (S : Submonoid M) : Type u_1 - Localization.decidableEq π Mathlib.GroupTheory.MonoidLocalization.Basic
{Ξ± : Type u_1} [CommMonoid Ξ±] [IsCancelMul Ξ±] {s : Submonoid Ξ±} [DecidableEq Ξ±] : DecidableEq (Localization s) - Localization.monoidOf π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] (S : Submonoid M) : S.LocalizationMap (Localization S) - Localization.eq_1 π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] (S : Submonoid M) : Localization S = OreLocalization S M - Localization.mulEquivOfQuotient π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] (f : S.LocalizationMap N) : Localization S β* N - Localization.mk π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} (x : M) (y : β₯S) : Localization S - OreLocalization.equivMonoidLocalization π Mathlib.GroupTheory.MonoidLocalization.Basic
(R : Type u_1) [CommMonoid R] (S : Submonoid R) : Localization S β* OreLocalization S R - Localization.mk_left_injective π Mathlib.GroupTheory.MonoidLocalization.Basic
{Ξ± : Type u_1} [CommMonoid Ξ±] [IsCancelMul Ξ±] {s : Submonoid Ξ±} (b : β₯s) : Function.Injective fun a => Localization.mk a b - Localization.mk_eq_monoidOf_mk' π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} : Localization.mk = (Localization.monoidOf S).mk' - Localization.mk.eq_1 π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} (x : M) (y : β₯S) : Localization.mk x y = x /β y - Localization.mulEquivOfQuotient.eq_1 π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] (f : S.LocalizationMap N) : Localization.mulEquivOfQuotient f = (Localization.monoidOf S).mulEquivOfLocalizations f - Localization.mk_eq_monoidOf_mk'_apply π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} (x : M) (y : β₯S) : Localization.mk x y = (Localization.monoidOf S).mk' x y - Localization.mk_self_mk π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} (a : M) (haS : a β S) : Localization.mk a β¨a, haSβ© = 1 - Localization.mk_self π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} (a : β₯S) : Localization.mk (βa) a = 1 - Localization.mk_one π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} : Localization.mk 1 1 = 1 - Localization.ind π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {p : Localization S β Prop} (H : β (y : M Γ β₯S), p (Localization.mk y.1 y.2)) (x : Localization S) : p x - Localization.induction_on π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {p : Localization S β Prop} (x : Localization S) (H : β (y : M Γ β₯S), p (Localization.mk y.1 y.2)) : p x - Localization.mk_prod π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {ΞΉ : Type u_4} (t : Finset ΞΉ) (f : ΞΉ β M) (s : ΞΉ β β₯S) : β i β t, Localization.mk (f i) (s i) = Localization.mk (β i β t, f i) (β i β t, s i) - Localization.smul_mk π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {R : Type u_4} [SMul R M] [IsScalarTower R M M] (c : R) (a : M) (b : β₯S) : c β’ Localization.mk a b = Localization.mk (c β’ a) b - Localization.mulEquivOfQuotient_mk π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {f : S.LocalizationMap N} (x : M) (y : β₯S) : (Localization.mulEquivOfQuotient f) (Localization.mk x y) = f.mk' x y - Localization.mulEquivOfQuotient_mk' π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {f : S.LocalizationMap N} (x : M) (y : β₯S) : (Localization.mulEquivOfQuotient f) ((Localization.monoidOf S).mk' x y) = f.mk' x y - Localization.mk_one_eq_monoidOf_mk π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} (x : M) : Localization.mk x 1 = (Localization.monoidOf S).toMap x - Localization.recOnSubsingletonβ π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {r : Localization S β Localization S β Sort u} [h : β (a c : M) (b d : β₯S), Subsingleton (r (Localization.mk a b) (Localization.mk c d))] (x y : Localization S) (f : (a c : M) β (b d : β₯S) β r (Localization.mk a b) (Localization.mk c d)) : r x y - Localization.mulEquivOfQuotient_symm_mk π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {f : S.LocalizationMap N} (x : M) (y : β₯S) : (Localization.mulEquivOfQuotient f).symm (f.mk' x y) = Localization.mk x y - Localization.mk_eq_mk_iff' π Mathlib.GroupTheory.MonoidLocalization.Basic
{Ξ± : Type u_1} [CommMonoid Ξ±] [IsCancelMul Ξ±] {s : Submonoid Ξ±} {aβ bβ : Ξ±} {aβ bβ : β₯s} : Localization.mk aβ aβ = Localization.mk bβ bβ β βbβ * aβ = βaβ * bβ - Localization.mulEquivOfQuotient_symm_mk' π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {f : S.LocalizationMap N} (x : M) (y : β₯S) : (Localization.mulEquivOfQuotient f).symm (f.mk' x y) = (Localization.monoidOf S).mk' x y - Localization.monoidOf.eq_1 π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] (S : Submonoid M) : Localization.monoidOf S = { toFun := fun x => Localization.mk x 1, map_one' := β―, map_mul' := β―, map_units' := β―, surj' := β―, exists_of_eq := β― } - Localization.mulEquivOfQuotient_apply π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {f : S.LocalizationMap N} (x : Localization S) : (Localization.mulEquivOfQuotient f) x = ((Localization.monoidOf S).lift β―) x - Localization.mk_pow π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} (n : β) (a : M) (b : β₯S) : Localization.mk a b ^ n = Localization.mk (a ^ n) (b ^ n) - Localization.induction_onβ π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {p : Localization S β Localization S β Prop} (x y : Localization S) (H : β (x y : M Γ β₯S), p (Localization.mk x.1 x.2) (Localization.mk y.1 y.2)) : p x y - Localization.mulEquivOfQuotient_monoidOf π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {f : S.LocalizationMap N} (x : M) : (Localization.mulEquivOfQuotient f) ((Localization.monoidOf S).toMap x) = f.toMap x - Localization.mulEquivOfQuotient_symm_monoidOf π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {N : Type u_2} [CommMonoid N] {f : S.LocalizationMap N} (x : M) : (Localization.mulEquivOfQuotient f).symm (f.toMap x) = (Localization.monoidOf S).toMap x - Localization.mk_mul π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} (a c : M) (b d : β₯S) : Localization.mk a b * Localization.mk c d = Localization.mk (a * c) (b * d) - Localization.decidableEq.eq_1 π Mathlib.GroupTheory.MonoidLocalization.Basic
{Ξ± : Type u_1} [CommMonoid Ξ±] [IsCancelMul Ξ±] {s : Submonoid Ξ±} [DecidableEq Ξ±] (a b : Localization s) : a.decidableEq b = a.recOnSubsingletonβ b fun x x_1 x_2 x_3 => decidable_of_iff' (βx_3 * x = βx_2 * x_1) β― - Localization.induction_onβ π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {p : Localization S β Localization S β Localization S β Prop} (x y z : Localization S) (H : β (x y z : M Γ β₯S), p (Localization.mk x.1 x.2) (Localization.mk y.1 y.2) (Localization.mk z.1 z.2)) : p x y z - Localization.mk_eq_mk_iff π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {a c : M} {b d : β₯S} : Localization.mk a b = Localization.mk c d β (Localization.r S) (a, b) (c, d) - Localization.liftOn π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {p : Sort u} (x : Localization S) (f : M β β₯S β p) (H : β {a c : M} {b d : β₯S}, (Localization.r S) (a, b) (c, d) β f a b = f c d) : p - Localization.liftOn.eq_1 π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {p : Sort u} (x : Localization S) (f : M β β₯S β p) (H : β {a c : M} {b d : β₯S}, (Localization.r S) (a, b) (c, d) β f a b = f c d) : x.liftOn f H = Localization.rec f β― x - Localization.liftOn_mk' π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {p : Sort u} (f : M β β₯S β p) (H : β {a c : M} {b d : β₯S}, (Localization.r S) (a, b) (c, d) β f a b = f c d) (a : M) (b : β₯S) : ((Localization.monoidOf S).mk' a b).liftOn f H = f a b - Localization.recOnSubsingletonβ.eq_1 π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {r : Localization S β Localization S β Sort u} [h : β (a c : M) (b d : β₯S), Subsingleton (r (Localization.mk a b) (Localization.mk c d))] (x y : Localization S) (f : (a c : M) β (b d : β₯S) β r (Localization.mk a b) (Localization.mk c d)) : x.recOnSubsingletonβ y f = Quotient.recOnSubsingletonβ' x y fun t => Prod.rec (motive := fun x => (aβ : M Γ β₯S) β r (Quotient.mk'' x) (Quotient.mk'' aβ)) (fun x x_1 t => Prod.rec (fun x_2 x_3 => f x x_2 x_1 x_3) t) t - Localization.rec π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {p : Localization S β Sort u} (f : (a : M) β (b : β₯S) β p (Localization.mk a b)) (H : β {a c : M} {b d : β₯S} (h : (Localization.r S) (a, b) (c, d)), β― βΈ f a b = f c d) (x : Localization S) : p x - Localization.rec.eq_1 π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {p : Localization S β Sort u} (f : (a : M) β (b : β₯S) β p (Localization.mk a b)) (H : β {a c : M} {b d : β₯S} (h : (Localization.r S) (a, b) (c, d)), β― βΈ f a b = f c d) (x : Localization S) : Localization.rec f H x = Quot.rec (fun y => β― βΈ f y.1 y.2) β― x - Localization.liftOnβ π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {p : Sort u} (x y : Localization S) (f : M β β₯S β M β β₯S β p) (H : β {a a' : M} {b b' : β₯S} {c c' : M} {d d' : β₯S}, (Localization.r S) (a, b) (a', b') β (Localization.r S) (c, d) (c', d') β f a b c d = f a' b' c' d') : p - Localization.ndrec_mk π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {p : Localization S β Sort u} (f : (a : M) β (b : β₯S) β p (Localization.mk a b)) (H : β {a c : M} {b d : β₯S} (h : (Localization.r S) (a, b) (c, d)), β― βΈ f a b = f c d) (a : M) (b : β₯S) : Localization.rec f H (Localization.mk a b) = f a b - Localization.liftOnβ.eq_1 π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {p : Sort u} (x y : Localization S) (f : M β β₯S β M β β₯S β p) (H : β {a a' : M} {b b' : β₯S} {c c' : M} {d d' : β₯S}, (Localization.r S) (a, b) (a', b') β (Localization.r S) (c, d) (c', d') β f a b c d = f a' b' c' d') : x.liftOnβ y f H = x.liftOn (fun a b => y.liftOn (f a b) β―) β― - Localization.liftOnβ_mk' π Mathlib.GroupTheory.MonoidLocalization.Basic
{M : Type u_1} [CommMonoid M] {S : Submonoid M} {p : Sort u_4} (f : M β β₯S β M β β₯S β p) (H : β {a a' : M} {b b' : β₯S} {c c' : M} {d d' : β₯S}, (Localization.r S) (a, b) (a', b') β (Localization.r S) (c, d) (c', d') β f a b c d = f a' b' c' d') (a c : M) (b d : β₯S) : ((Localization.monoidOf S).mk' a b).liftOnβ ((Localization.monoidOf S).mk' c d) f H = f a b c d - Localization.instCommMonoidWithZero π Mathlib.GroupTheory.MonoidLocalization.MonoidWithZero
{M : Type u_1} [CommMonoidWithZero M] {S : Submonoid M} : CommMonoidWithZero (Localization S) - Localization.mk_zero π Mathlib.GroupTheory.MonoidLocalization.MonoidWithZero
{M : Type u_1} [CommMonoidWithZero M] {S : Submonoid M} (x : β₯S) : Localization.mk 0 x = 0 - Localization.liftOn_zero π Mathlib.GroupTheory.MonoidLocalization.MonoidWithZero
{M : Type u_1} [CommMonoidWithZero M] {S : Submonoid M} {p : Type u_4} (f : M β β₯S β p) (H : β {a c : M} {b d : β₯S}, (Localization.r S) (a, b) (c, d) β f a b = f c d) : Localization.liftOn 0 f H = f 0 1 - Localization.instUniqueLocalization π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} [Subsingleton R] : Unique (Localization M) - Localization.isLocalization π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} : IsLocalization M (Localization M) - Localization.toLocalizationMap_eq_monoidOf π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} : IsLocalization.toLocalizationMap M (Localization M) = Localization.monoidOf M - Localization.instNoZeroDivisors π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} [NoZeroDivisors R] : NoZeroDivisors (Localization M) - Localization.mk_eq_mk' π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} : Localization.mk = IsLocalization.mk' (Localization M) - Localization.mk_eq_mk'_apply π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} (x : R) (y : β₯M) : Localization.mk x y = IsLocalization.mk' (Localization M) x y - Localization.mkAddMonoidHom π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} (b : β₯M) : R β+ Localization M - IsLocalization.isDomain_localization π Mathlib.RingTheory.Localization.Defs
{A : Type u_6} [CommRing A] [IsDomain A] {M : Submonoid A} (hM : M β€ nonZeroDivisors A) : IsDomain (Localization M) - Localization.neg_mk π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommRing R] {M : Submonoid R} (a : R) (b : β₯M) : -Localization.mk a b = Localization.mk (-a) b - Localization.mk_multiset_sum π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} (l : Multiset R) (b : β₯M) : Localization.mk l.sum b = (Multiset.map (fun a => Localization.mk a b) l).sum - Localization.mk_sum π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {ΞΉ : Type u_4} (f : ΞΉ β R) (s : Finset ΞΉ) (b : β₯M) : Localization.mk (β i β s, f i) b = β i β s, Localization.mk (f i) b - Localization.add_mk_self π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} (a : R) (b : β₯M) (c : R) : Localization.mk a b + Localization.mk c b = Localization.mk (a + c) b - Localization.mk_list_sum π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} (l : List R) (b : β₯M) : Localization.mk l.sum b = (List.map (fun a => Localization.mk a b) l).sum - Localization.mk_one_eq_algebraMap π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} (x : R) : Localization.mk x 1 = (algebraMap R (Localization M)) x - Localization.monoidOf_eq_algebraMap π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} (x : R) : (Localization.monoidOf M).toMap x = (algebraMap R (Localization M)) x - Localization.mk_algebraMap π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {A : Type u_4} [CommSemiring A] [Algebra A R] (m : A) : Localization.mk ((algebraMap A R) m) 1 = (algebraMap A (Localization M)) m - Localization.mkAddMonoidHom_apply π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} (b : β₯M) (a : R) : (Localization.mkAddMonoidHom b) a = Localization.mk a b - Localization.add_mk π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommSemiring R] {M : Submonoid R} (a : R) (b : β₯M) (c : R) (d : β₯M) : Localization.mk a b + Localization.mk c d = Localization.mk (βb * c + βd * a) (b * d) - Localization.sub_mk π Mathlib.RingTheory.Localization.Defs
{R : Type u_1} [CommRing R] {M : Submonoid R} (a c : R) (b d : β₯M) : Localization.mk a b - Localization.mk c d = Localization.mk (βd * a - βb * c) (b * d) - Localization.algEquiv π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] : Localization M ββ[R] S - Localization.mk_intCast π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommRing R] {M : Submonoid R} (m : β€) : Localization.mk (βm) 1 = βm - Localization.mk_natCast π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommSemiring R] {M : Submonoid R} (m : β) : Localization.mk (βm) 1 = βm - Localization.algEquiv_mk π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] [IsLocalization M S] (x : R) (y : β₯M) : (Localization.algEquiv M S) (Localization.mk x y) = IsLocalization.mk' S x y - Localization.algEquiv_mk' π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] [IsLocalization M S] (x : R) (y : β₯M) : (Localization.algEquiv M S) (IsLocalization.mk' (Localization M) x y) = IsLocalization.mk' S x y - Localization.algEquiv_symm_mk π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] [IsLocalization M S] (x : R) (y : β₯M) : (Localization.algEquiv M S).symm (IsLocalization.mk' S x y) = Localization.mk x y - Localization.algEquiv_symm_mk' π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] [IsLocalization M S] (x : R) (y : β₯M) : (Localization.algEquiv M S).symm (IsLocalization.mk' S x y) = IsLocalization.mk' (Localization M) x y - Localization.algEquiv_apply π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (a : Localization M) : (Localization.algEquiv M S) a = (IsLocalization.map S (RingHom.id R) β―) a - Localization.algEquiv_symm_apply π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (S : Type u_2) [CommSemiring S] [Algebra R S] [IsLocalization M S] (a : S) : (Localization.algEquiv M S).symm a = (IsLocalization.map (Localization M) (RingHom.id R) β―) a - Localization.coe_algEquiv π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] [IsLocalization M S] : β(Localization.algEquiv M S) = IsLocalization.map S (RingHom.id R) β― - Localization.coe_algEquiv_symm π Mathlib.RingTheory.Localization.Basic
{R : Type u_1} [CommSemiring R] {M : Submonoid R} {S : Type u_2} [CommSemiring S] [Algebra R S] [IsLocalization M S] : β(Localization.algEquiv M S).symm = IsLocalization.map (Localization M) (RingHom.id R) β― - Localization.mapPiEvalRingHom π Mathlib.RingTheory.Localization.Basic
{ΞΉ : Type u_1} {R : ΞΉ β Type u_2} [(i : ΞΉ) β CommSemiring (R i)] {i : ΞΉ} (S : Submonoid (R i)) : Localization (Submonoid.comap (Pi.evalRingHom R i) S) β+* Localization S - Localization.mapPiEvalRingHom_bijective π Mathlib.RingTheory.Localization.Basic
{ΞΉ : Type u_1} {R : ΞΉ β Type u_2} [(i : ΞΉ) β CommSemiring (R i)] {i : ΞΉ} (S : Submonoid (R i)) : Function.Bijective β(Localization.mapPiEvalRingHom S) - FractionRing.mk_eq_div π Mathlib.RingTheory.Localization.FractionRing
(A : Type u_4) [CommRing A] [IsDomain A] {r : A} {s : β₯(nonZeroDivisors A)} : Localization.mk r s = (algebraMap A (FractionRing A)) r / (algebraMap A (FractionRing A)) βs - Algebra.instEssFiniteTypeLocalization π Mathlib.RingTheory.EssentialFiniteness
(R : Type u_1) (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] [Algebra.EssFiniteType R S] (M : Submonoid S) : Algebra.EssFiniteType R (Localization M) - Localization.Away.eq_1 π Mathlib.GroupTheory.MonoidLocalization.Away
{M : Type u_1} [CommMonoid M] (x : M) : Localization.Away x = Localization (Submonoid.powers x) - Localization.Away.mk_eq_monoidOf_mk' π Mathlib.GroupTheory.MonoidLocalization.Away
{M : Type u_1} [CommMonoid M] (x : M) : Localization.mk = Submonoid.LocalizationMap.mk' (Localization.Away.monoidOf x) - Localization.epi π Mathlib.Algebra.Category.Ring.Instances
{R : Type u_1} [CommRing R] (M : Submonoid R) : CategoryTheory.Epi (CommRingCat.ofHom (algebraMap R (Localization M))) - Localization.epi' π Mathlib.Algebra.Category.Ring.Instances
{R : CommRingCat} (M : Submonoid βR) : CategoryTheory.Epi (CommRingCat.ofHom (algebraMap (βR) (Localization M))) - LocalizedModule.smul_eq_iff_of_mem π Mathlib.Algebra.Module.LocalizedModule.Basic
{R : Type u} [CommSemiring R] {S : Submonoid R} {M : Type v} [AddCommMonoid M] [Module R M] (r : R) (hr : r β S) (x y : LocalizedModule S M) : r β’ x = y β x = Localization.mk 1 β¨r, hrβ© β’ y - LocalizedModule.algebraMap_mk π Mathlib.Algebra.Module.LocalizedModule.Basic
{R : Type u} [CommSemiring R] {S : Submonoid R} {A : Type u_2} [Semiring A] [Algebra R A] (a : R) (s : β₯S) : (algebraMap (Localization S) (LocalizedModule S A)) (Localization.mk a s) = LocalizedModule.mk ((algebraMap R A) a) s - LocalizedModule.mk_smul_mk π Mathlib.Algebra.Module.LocalizedModule.Basic
{R : Type u} [CommSemiring R] {S : Submonoid R} {M : Type v} [AddCommMonoid M] [Module R M] (r : R) (m : M) (s t : β₯S) : Localization.mk r s β’ LocalizedModule.mk m t = LocalizedModule.mk (r β’ m) (s * t) - LocalizedModule.map π Mathlib.RingTheory.Localization.Module
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} [AddCommMonoid M] [Module R M] {N : Type u_3} [AddCommMonoid N] [Module R N] : (M ββ[R] N) ββ[R] LocalizedModule S M ββ[Localization S] LocalizedModule S N - LocalizedModule.map_id π Mathlib.RingTheory.Localization.Module
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} [AddCommMonoid M] [Module R M] : (LocalizedModule.map S) LinearMap.id = LinearMap.id - LocalizedModule.map_injective π Mathlib.RingTheory.Localization.Module
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} [AddCommMonoid M] [Module R M] {N : Type u_3} [AddCommMonoid N] [Module R N] (l : M ββ[R] N) (hl : Function.Injective βl) : Function.Injective β((LocalizedModule.map S) l) - LocalizedModule.map_surjective π Mathlib.RingTheory.Localization.Module
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} [AddCommMonoid M] [Module R M] {N : Type u_3} [AddCommMonoid N] [Module R N] (l : M ββ[R] N) (hl : Function.Surjective βl) : Function.Surjective β((LocalizedModule.map S) l) - LocalizedModule.map_mk π Mathlib.RingTheory.Localization.Module
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} [AddCommMonoid M] [Module R M] {N : Type u_3} [AddCommMonoid N] [Module R N] (f : M ββ[R] N) (x : M) (y : β₯S) : ((LocalizedModule.map S) f) (LocalizedModule.mk x y) = LocalizedModule.mk (f x) y - LocalizedModule.restrictScalars_map_eq π Mathlib.RingTheory.Localization.Module
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} [AddCommMonoid M] [Module R M] {N : Type u_5} [AddCommMonoid N] [Module R N] {M' : Type u_3} {N' : Type u_4} [AddCommMonoid M'] [AddCommMonoid N'] [Module R M'] [Module R N'] (gβ : M ββ[R] M') (gβ : N ββ[R] N') [IsLocalizedModule S gβ] [IsLocalizedModule S gβ] (l : M ββ[R] N) : βR ((LocalizedModule.map S) l) = β(IsLocalizedModule.iso S gβ).symm ββ (IsLocalizedModule.map S gβ gβ) l ββ β(IsLocalizedModule.iso S gβ) - LocalizedModule.equivTensorProduct π Mathlib.RingTheory.Localization.BaseChange
{R : Type u_1} [CommSemiring R] (S : Submonoid R) (M : Type u_3) [AddCommMonoid M] [Module R M] : LocalizedModule S M ββ[Localization S] TensorProduct R (Localization S) M - LocalizedModule.equivTensorProduct.eq_1 π Mathlib.RingTheory.Localization.BaseChange
{R : Type u_1} [CommSemiring R] (S : Submonoid R) (M : Type u_3) [AddCommMonoid M] [Module R M] : LocalizedModule.equivTensorProduct S M = β―.equiv.symm - LocalizedModule.equivTensorProduct_apply_mk π Mathlib.RingTheory.Localization.BaseChange
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_3} [AddCommMonoid M] [Module R M] (x : M) (s : β₯S) : (LocalizedModule.equivTensorProduct S M) (LocalizedModule.mk x s) = Localization.mk 1 s ββ[R] x - LocalizedModule.equivTensorProduct_symm_apply_tmul_one π Mathlib.RingTheory.Localization.BaseChange
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_3} [AddCommMonoid M] [Module R M] (x : M) : (LocalizedModule.equivTensorProduct S M).symm (1 ββ[R] x) = LocalizedModule.mk x 1 - LocalizedModule.equivTensorProduct_symm_apply_tmul π Mathlib.RingTheory.Localization.BaseChange
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_3} [AddCommMonoid M] [Module R M] (x : M) (r : R) (s : β₯S) : (LocalizedModule.equivTensorProduct S M).symm (Localization.mk r s ββ[R] x) = r β’ LocalizedModule.mk x s - Module.Flat.localizedModule π Mathlib.RingTheory.Flat.Stability
{R : Type u} {M : Type u_1} [CommSemiring R] [AddCommMonoid M] [Module R M] [Module.Flat R M] (S : Submonoid R) : Module.Flat (Localization S) (LocalizedModule S M) - Submodule.localized π Mathlib.Algebra.Module.LocalizedModule.Submodule
{R : Type u_1} {M : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] (p : Submonoid R) (M' : Submodule R M) : Submodule (Localization p) (LocalizedModule p M) - Submodule.toLocalized π Mathlib.Algebra.Module.LocalizedModule.Submodule
{R : Type u_1} {M : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] (p : Submonoid R) (M' : Submodule R M) : β₯M' ββ[R] β₯(Submodule.localized p M') - Submodule.localizedEquiv π Mathlib.Algebra.Module.LocalizedModule.Submodule
{R : Type u_1} {M : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] (p : Submonoid R) (M' : Submodule R M) : β₯(Submodule.localized p M') ββ[Localization p] LocalizedModule p β₯M' - instIsLocalizedModuleQuotientSubmoduleLocalizedModuleLocalizationLocalizedToLocalizedQuotient π Mathlib.Algebra.Module.LocalizedModule.Submodule
{R : Type u_5} {M : Type u_7} [CommRing R] [AddCommGroup M] [Module R M] (p : Submonoid R) (M' : Submodule R M) : IsLocalizedModule p (Submodule.toLocalizedQuotient p M') - Submodule.toLocalizedQuotient π Mathlib.Algebra.Module.LocalizedModule.Submodule
{R : Type u_5} {M : Type u_7} [CommRing R] [AddCommGroup M] [Module R M] (p : Submonoid R) (M' : Submodule R M) : M β§Έ M' ββ[R] LocalizedModule p M β§Έ Submodule.localized p M' - localizedQuotientEquiv π Mathlib.Algebra.Module.LocalizedModule.Submodule
{R : Type u_5} {M : Type u_7} [CommRing R] [AddCommGroup M] [Module R M] (p : Submonoid R) (M' : Submodule R M) : (LocalizedModule p M β§Έ Submodule.localized p M') ββ[Localization p] LocalizedModule p (M β§Έ M') - Localization.AtPrime.isLocalRing π Mathlib.RingTheory.Localization.AtPrime
{R : Type u_1} [CommSemiring R] (P : Ideal R) [hp : P.IsPrime] : IsLocalRing (Localization P.primeCompl) - Localization.AtPrime.map_eq_maximalIdeal π Mathlib.RingTheory.Localization.AtPrime
{R : Type u_1} [CommSemiring R] {I : Ideal R} [hI : I.IsPrime] : Ideal.map (algebraMap R (Localization.AtPrime I)) I = IsLocalRing.maximalIdeal (Localization I.primeCompl) - Localization.AtPrime.comap_maximalIdeal π Mathlib.RingTheory.Localization.AtPrime
{R : Type u_1} [CommSemiring R] {I : Ideal R} [hI : I.IsPrime] : Ideal.comap (algebraMap R (Localization.AtPrime I)) (IsLocalRing.maximalIdeal (Localization I.primeCompl)) = I - bijective_of_localized_maximal π Mathlib.RingTheory.LocalProperties.Exactness
{R : Type u_1} {M : Type u_2} {N : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (f : M ββ[R] N) (h : β (J : Ideal R) [inst : J.IsMaximal], Function.Bijective β((LocalizedModule.map J.primeCompl) f)) : Function.Bijective βf - injective_of_localized_maximal π Mathlib.RingTheory.LocalProperties.Exactness
{R : Type u_1} {M : Type u_2} {N : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (f : M ββ[R] N) (h : β (J : Ideal R) [inst : J.IsMaximal], Function.Injective β((LocalizedModule.map J.primeCompl) f)) : Function.Injective βf - surjective_of_localized_maximal π Mathlib.RingTheory.LocalProperties.Exactness
{R : Type u_1} {M : Type u_2} {N : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (f : M ββ[R] N) (h : β (J : Ideal R) [inst : J.IsMaximal], Function.Surjective β((LocalizedModule.map J.primeCompl) f)) : Function.Surjective βf - bijective_of_localized_span π Mathlib.RingTheory.LocalProperties.Exactness
{R : Type u_1} {M : Type u_2} {N : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (s : Set R) (spn : Ideal.span s = β€) (f : M ββ[R] N) (h : β (r : βs), Function.Bijective β((LocalizedModule.map (Submonoid.powers βr)) f)) : Function.Bijective βf - injective_of_localized_span π Mathlib.RingTheory.LocalProperties.Exactness
{R : Type u_1} {M : Type u_2} {N : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (s : Set R) (spn : Ideal.span s = β€) (f : M ββ[R] N) (h : β (r : βs), Function.Injective β((LocalizedModule.map (Submonoid.powers βr)) f)) : Function.Injective βf - surjective_of_localized_span π Mathlib.RingTheory.LocalProperties.Exactness
{R : Type u_1} {M : Type u_2} {N : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (s : Set R) (spn : Ideal.span s = β€) (f : M ββ[R] N) (h : β (r : βs), Function.Surjective β((LocalizedModule.map (Submonoid.powers βr)) f)) : Function.Surjective βf - exact_of_localized_maximal π Mathlib.RingTheory.LocalProperties.Exactness
{R : Type u_1} {M : Type u_2} {N : Type u_3} {L : Type u_4} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid L] [Module R L] (f : M ββ[R] N) (g : N ββ[R] L) (h : β (J : Ideal R) [inst : J.IsMaximal], Function.Exact β((LocalizedModule.map J.primeCompl) f) β((LocalizedModule.map J.primeCompl) g)) : Function.Exact βf βg - exact_of_localized_span π Mathlib.RingTheory.LocalProperties.Exactness
{R : Type u_1} {M : Type u_2} {N : Type u_3} {L : Type u_4} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid L] [Module R L] (s : Set R) (spn : Ideal.span s = β€) (f : M ββ[R] N) (g : N ββ[R] L) (h : β (r : βs), Function.Exact β((LocalizedModule.map (Submonoid.powers βr)) f) β((LocalizedModule.map (Submonoid.powers βr)) g)) : Function.Exact βf βg - Localization.flat π Mathlib.RingTheory.Flat.Localization
{R : Type u_1} [CommSemiring R] (p : Submonoid R) : Module.Flat R (Localization p) - IsLocalization.instIsNoetherianRingLocalization π Mathlib.RingTheory.Localization.Submodule
{R : Type u_3} [CommRing R] [IsNoetherianRing R] (S : Submonoid R) : IsNoetherianRing (Localization S) - isIntegral_localization' π Mathlib.RingTheory.Localization.Integral
{R : Type u_5} {S : Type u_6} [CommRing R] [CommRing S] {f : R β+* S} (hf : f.IsIntegral) (M : Submonoid R) : (IsLocalization.map (Localization (Submonoid.map (βf) M)) f β―).IsIntegral - IsLocalization.instAlgebraAtPrimeLocalizationNonZeroDivisorsOfIsDomain π Mathlib.RingTheory.Localization.LocalizationLocalization
{R : Type u_1} [CommSemiring R] (x : Ideal R) [H : x.IsPrime] [IsDomain R] : Algebra (Localization.AtPrime x) (Localization (nonZeroDivisors R)) - IsLocalization.instAlgebraAtPrimeLocalization π Mathlib.RingTheory.Localization.LocalizationLocalization
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (p : Ideal (Localization M)) [p.IsPrime] : Algebra R (Localization.AtPrime p) - IsLocalization.isLocalization_atPrime_localization_atPrime π Mathlib.RingTheory.Localization.LocalizationLocalization
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (p : Ideal (Localization M)) [p.IsPrime] : IsLocalization.AtPrime (Localization.AtPrime p) (Ideal.comap (algebraMap R (Localization M)) p) - IsLocalization.instIsScalarTowerLocalizationAtPrime π Mathlib.RingTheory.Localization.LocalizationLocalization
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (p : Ideal (Localization M)) [p.IsPrime] : IsScalarTower R (Localization M) (Localization.AtPrime p) - IsLocalization.localizationLocalizationAtPrimeIsoLocalization π Mathlib.RingTheory.Localization.LocalizationLocalization
{R : Type u_1} [CommSemiring R] (M : Submonoid R) (p : Ideal (Localization M)) [p.IsPrime] : Localization.AtPrime (Ideal.comap (algebraMap R (Localization M)) p) ββ[R] Localization.AtPrime p - Localization.subalgebra.eq_1 π Mathlib.RingTheory.Localization.AsSubring
{A : Type u_1} (K : Type u_2) [CommRing A] (S : Submonoid A) [CommRing K] [Algebra A K] [IsFractionRing A K] (hS : S β€ nonZeroDivisors A) : Localization.subalgebra K S hS = (Localization.mapToFractionRing K S (Localization S) hS).range.copy {x | β a s, β (hs : s β S), x = IsLocalization.mk' K a β¨s, β―β©} β― - Localization.subalgebra.ofField.eq_1 π Mathlib.RingTheory.Localization.AsSubring
{A : Type u_1} (K : Type u_2) [CommRing A] (S : Submonoid A) (hS : S β€ nonZeroDivisors A) [Field K] [Algebra A K] [IsFractionRing A K] : Localization.subalgebra.ofField K S hS = (Localization.mapToFractionRing K S (Localization S) hS).range.copy {x | β a s, β (_ : s β S), x = (algebraMap A K) a * ((algebraMap A K) s)β»ΒΉ} β― - PrimeSpectrum.toPiLocalization π Mathlib.RingTheory.Spectrum.Maximal.Localization
(R : Type u_1) [CommSemiring R] : R β+* PrimeSpectrum.PiLocalization R - PrimeSpectrum.piLocalizationToMaximal π Mathlib.RingTheory.Spectrum.Maximal.Localization
(R : Type u_1) [CommSemiring R] : PrimeSpectrum.PiLocalization R β+* MaximalSpectrum.PiLocalization R - PrimeSpectrum.mapPiLocalization π Mathlib.RingTheory.Spectrum.Maximal.Localization
{R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] (f : R β+* S) : PrimeSpectrum.PiLocalization R β+* PrimeSpectrum.PiLocalization S - PrimeSpectrum.toPiLocalization_injective π Mathlib.RingTheory.Spectrum.Maximal.Localization
(R : Type u_1) [CommSemiring R] : Function.Injective β(PrimeSpectrum.toPiLocalization R) - PrimeSpectrum.finite_of_toPiLocalization_surjective π Mathlib.RingTheory.Spectrum.Maximal.Localization
{R : Type u_1} [CommSemiring R] (surj : Function.Surjective β(PrimeSpectrum.toPiLocalization R)) : Finite (PrimeSpectrum R) - PrimeSpectrum.isMaximal_of_toPiLocalization_surjective π Mathlib.RingTheory.Spectrum.Maximal.Localization
{R : Type u_1} [CommSemiring R] (surj : Function.Surjective β(PrimeSpectrum.toPiLocalization R)) (I : PrimeSpectrum R) : I.asIdeal.IsMaximal - PrimeSpectrum.piLocalizationToMaximal_comp_toPiLocalization π Mathlib.RingTheory.Spectrum.Maximal.Localization
{R : Type u_1} [CommSemiring R] : (PrimeSpectrum.piLocalizationToMaximal R).comp (PrimeSpectrum.toPiLocalization R) = MaximalSpectrum.toPiLocalization R - PrimeSpectrum.mapPiLocalization_id π Mathlib.RingTheory.Spectrum.Maximal.Localization
{R : Type u_1} [CommSemiring R] : PrimeSpectrum.mapPiLocalization (RingHom.id R) = RingHom.id (PrimeSpectrum.PiLocalization R) - PrimeSpectrum.piLocalizationToMaximal_surjective π Mathlib.RingTheory.Spectrum.Maximal.Localization
(R : Type u_1) [CommSemiring R] : Function.Surjective β(PrimeSpectrum.piLocalizationToMaximal R) - PrimeSpectrum.piLocalizationToMaximalEquiv π Mathlib.RingTheory.Spectrum.Maximal.Localization
{R : Type u_1} [CommSemiring R] (h : β (I : Ideal R), I.IsPrime β I.IsMaximal) : PrimeSpectrum.PiLocalization R β+* MaximalSpectrum.PiLocalization R - PrimeSpectrum.piLocalizationToMaximal_bijective π Mathlib.RingTheory.Spectrum.Maximal.Localization
{R : Type u_1} [CommSemiring R] (h : β (I : Ideal R), I.IsPrime β I.IsMaximal) : Function.Bijective β(PrimeSpectrum.piLocalizationToMaximal R) - PrimeSpectrum.mapPiLocalization_naturality π Mathlib.RingTheory.Spectrum.Maximal.Localization
{R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] (f : R β+* S) : (PrimeSpectrum.mapPiLocalization f).comp (PrimeSpectrum.toPiLocalization R) = (PrimeSpectrum.toPiLocalization S).comp f - PrimeSpectrum.mapPiLocalization_bijective π Mathlib.RingTheory.Spectrum.Maximal.Localization
{R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] (f : R β+* S) (hf : Function.Bijective βf) : Function.Bijective β(PrimeSpectrum.mapPiLocalization f) - PrimeSpectrum.finite_of_toPiLocalization_pi_surjective π Mathlib.RingTheory.Spectrum.Maximal.Localization
{ΞΉ : Type u_5} {R : ΞΉ β Type u_4} [(i : ΞΉ) β CommSemiring (R i)] [β (i : ΞΉ), Nontrivial (R i)] (h : Function.Surjective β(PrimeSpectrum.toPiLocalization ((i : ΞΉ) β R i))) : Finite ΞΉ - PrimeSpectrum.toPiLocalization_not_surjective_of_infinite π Mathlib.RingTheory.Spectrum.Maximal.Localization
{ΞΉ : Type u_5} (R : ΞΉ β Type u_4) [(i : ΞΉ) β CommSemiring (R i)] [β (i : ΞΉ), Nontrivial (R i)] [Infinite ΞΉ] : Β¬Function.Surjective β(PrimeSpectrum.toPiLocalization ((i : ΞΉ) β R i)) - PrimeSpectrum.mapPiLocalization_comp π Mathlib.RingTheory.Spectrum.Maximal.Localization
{R : Type u_1} {S : Type u_2} (P : Type u_3) [CommSemiring R] [CommSemiring S] [CommSemiring P] (f : R β+* S) (g : S β+* P) : PrimeSpectrum.mapPiLocalization (g.comp f) = (PrimeSpectrum.mapPiLocalization g).comp (PrimeSpectrum.mapPiLocalization f) - PrimeSpectrum.discreteTopology_of_toLocalization_surjective π Mathlib.RingTheory.Spectrum.Prime.Topology
{R : Type u} [CommSemiring R] (surj : Function.Surjective β(PrimeSpectrum.toPiLocalization R)) : DiscreteTopology (PrimeSpectrum R) - PrimeSpectrum.toPiLocalization_surjective_of_discreteTopology π Mathlib.RingTheory.Spectrum.Prime.Topology
(R : Type u) [CommSemiring R] [DiscreteTopology (PrimeSpectrum R)] : Function.Surjective β(PrimeSpectrum.toPiLocalization R) - PrimeSpectrum.discreteTopology_iff_toPiLocalization_bijective π Mathlib.RingTheory.Spectrum.Prime.Topology
{R : Type u_1} [CommSemiring R] : DiscreteTopology (PrimeSpectrum R) β Function.Bijective β(PrimeSpectrum.toPiLocalization R) - PrimeSpectrum.discreteTopology_iff_toPiLocalization_surjective π Mathlib.RingTheory.Spectrum.Prime.Topology
{R : Type u_1} [CommSemiring R] : DiscreteTopology (PrimeSpectrum R) β Function.Surjective β(PrimeSpectrum.toPiLocalization R) - instFinitePresentationLocalizationLocalizedModule π Mathlib.Algebra.Module.FinitePresentation
{R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (S : Submonoid R) [Module.FinitePresentation R M] : Module.FinitePresentation (Localization S) (LocalizedModule S M) - instIsLocalizedModuleLinearMapIdLocalizationLocalizedModuleMapOfFinitePresentation π Mathlib.Algebra.Module.FinitePresentation
{R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (S : Submonoid R) [Module.FinitePresentation R M] : IsLocalizedModule S (LocalizedModule.map S) - Module.FinitePresentation.exists_lift_equiv_of_isLocalizedModule π Mathlib.Algebra.Module.FinitePresentation
{R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (S : Submonoid R) {M' : Type u_1} [AddCommGroup M'] [Module R M'] (f : M ββ[R] M') [IsLocalizedModule S f] {N' : Type u_2} [AddCommGroup N'] [Module R N'] (g : N ββ[R] N') [IsLocalizedModule S g] [Module.FinitePresentation R M] [Module.FinitePresentation R N] (l : M' ββ[R] N') : β r, β (hr : r β S), β l', LocalizedModule.lift (Submonoid.powers r) g β― ββ βR βl' = βl ββ LocalizedModule.lift (Submonoid.powers r) f β― - exists_bijective_map_powers π Mathlib.Algebra.Module.FinitePresentation
{R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (S : Submonoid R) {M' : Type u_1} [AddCommGroup M'] [Module R M'] (f : M ββ[R] M') [IsLocalizedModule S f] {N' : Type u_2} [AddCommGroup N'] [Module R N'] (g : N ββ[R] N') [IsLocalizedModule S g] [Module.Finite R M] [Module.FinitePresentation R N] (l : M ββ[R] N) (hf : Function.Bijective β((IsLocalizedModule.map S f g) l)) : β r β S, β (t : R), r β£ t β Function.Bijective β((LocalizedModule.map (Submonoid.powers t)) l) - AlgebraicGeometry.StructureSheaf.localizationToStalk_of π Mathlib.AlgebraicGeometry.StructureSheaf
(R : Type u) [CommRing R] (x : β(AlgebraicGeometry.PrimeSpectrum.Top R)) (f : R) : (CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.StructureSheaf.localizationToStalk R x)) ((algebraMap R (Localization x.asIdeal.primeCompl)) f) = (CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.StructureSheaf.toStalk R x)) f - AlgebraicGeometry.Spec_map_localization_isIso π Mathlib.AlgebraicGeometry.Spec
(R : CommRingCat) (M : Submonoid βR) (x : PrimeSpectrum (Localization M)) : CategoryTheory.IsIso (AlgebraicGeometry.PresheafedSpace.Hom.stalkMap (AlgebraicGeometry.Spec.toPresheafedSpace.map (CommRingCat.ofHom (algebraMap (βR) (Localization M))).op) x) - TopCat.Presheaf.SubmonoidPresheaf.toLocalizationPresheaf_app π Mathlib.Topology.Sheaves.CommRingCat
{X : TopCat} {F : TopCat.Presheaf CommRingCat X} (G : F.SubmonoidPresheaf) (U : (TopologicalSpace.Opens βX)α΅α΅) : G.toLocalizationPresheaf.app U = CommRingCat.ofHom (algebraMap (β(F.obj U)) (Localization (G.obj U))) - instIsReducedLocalization π Mathlib.RingTheory.LocalProperties.Reduced
{R : Type u_1} [CommRing R] (M : Submonoid R) [IsReduced R] : IsReduced (Localization M) - Module.Finite.instLocalizationLocalizedModule π Mathlib.RingTheory.Localization.Finiteness
{R : Type u} [CommSemiring R] (S : Submonoid R) {M : Type w} [AddCommMonoid M] [Module R M] [Module.Finite R M] : Module.Finite (Localization S) (LocalizedModule S M) - Algebra.FormallyUnramified.instLocalization π Mathlib.RingTheory.Unramified.Basic
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] [Algebra.FormallyUnramified R S] (M : Submonoid S) : Algebra.FormallyUnramified R (Localization M) - Algebra.tensorH1CotangentOfIsLocalization.eq_1 π Mathlib.RingTheory.Etale.Kaehler
(R : Type u) {S : Type u} (T : Type u) [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (M : Submonoid S) [IsLocalization M T] : Algebra.tensorH1CotangentOfIsLocalization R T M = (Algebra.Extension.tensorH1Cotangent { toRingHom := algebraMap (Algebra.Generators.self R S).toExtension.Ring (Localization (Submonoid.comap (algebraMap (Algebra.Generators.self R S).toExtension.Ring S) M)), toRingHom_algebraMap := β―, algebraMap_toRingHom := β― } β― β― β―).trans (Algebra.Extension.ofSurjective (IsLocalization.liftAlgHom β―) β―).equivH1CotangentOfFormallySmooth - Submodule.localized.eq_1 π Mathlib.RingTheory.Support
{R : Type u_1} {M : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] (p : Submonoid R) (M' : Submodule R M) : Submodule.localized p M' = Submodule.localized' (Localization p) p (LocalizedModule.mkLinearMap p M) M' - HomogeneousLocalization.val π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {π : ΞΉ β Submodule R A} {x : Submonoid A} (y : HomogeneousLocalization π x) : Localization x - HomogeneousLocalization.NumDenSameDeg.embedding π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (π : ΞΉ β Submodule R A) (x : Submonoid A) (p : HomogeneousLocalization.NumDenSameDeg π x) : Localization x - HomogeneousLocalization.val_injective π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {π : ΞΉ β Submodule R A} (x : Submonoid A) : Function.Injective HomogeneousLocalization.val - HomogeneousLocalization.ext_iff_val π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {π : ΞΉ β Submodule R A} {x : Submonoid A} (f g : HomogeneousLocalization π x) : f = g β f.val = g.val - HomogeneousLocalization.val_injective_iff π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {π : ΞΉ β Submodule R A} {x : Submonoid A} {aβ aβ : HomogeneousLocalization π x} : aβ = aβ β aβ.val = aβ.val - HomogeneousLocalization.homogeneousLocalizationAlgebra π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {π : ΞΉ β Submodule R A} {x : Submonoid A} [AddCommMonoid ΞΉ] [DecidableEq ΞΉ] [GradedAlgebra π] : Algebra (HomogeneousLocalization π x) (Localization x) - HomogeneousLocalization.val_intCast π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {π : ΞΉ β Submodule R A} {x : Submonoid A} [AddCommMonoid ΞΉ] [DecidableEq ΞΉ] [GradedAlgebra π] (n : β€) : (βn).val = βn - HomogeneousLocalization.eq_num_div_den π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {π : ΞΉ β Submodule R A} {x : Submonoid A} (f : HomogeneousLocalization π x) : f.val = Localization.mk f.num β¨f.den, β―β© - HomogeneousLocalization.val_one π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {π : ΞΉ β Submodule R A} {x : Submonoid A} [AddCommMonoid ΞΉ] [DecidableEq ΞΉ] [GradedAlgebra π] : HomogeneousLocalization.val 1 = 1 - HomogeneousLocalization.val_natCast π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {π : ΞΉ β Submodule R A} {x : Submonoid A} [AddCommMonoid ΞΉ] [DecidableEq ΞΉ] [GradedAlgebra π] (n : β) : (βn).val = βn - HomogeneousLocalization.val_neg π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {π : ΞΉ β Submodule R A} {x : Submonoid A} (y : HomogeneousLocalization π x) : (-y).val = -y.val - HomogeneousLocalization.val_zero π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {π : ΞΉ β Submodule R A} {x : Submonoid A} [AddCommMonoid ΞΉ] [DecidableEq ΞΉ] [GradedAlgebra π] : HomogeneousLocalization.val 0 = 0 - HomogeneousLocalization.one_eq π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {π : ΞΉ β Submodule R A} (x : Submonoid A) [AddCommMonoid ΞΉ] [DecidableEq ΞΉ] [GradedAlgebra π] : 1 = Quotient.mk'' 1 - HomogeneousLocalization.zero_eq π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {π : ΞΉ β Submodule R A} (x : Submonoid A) [AddCommMonoid ΞΉ] [DecidableEq ΞΉ] [GradedAlgebra π] : 0 = Quotient.mk'' 0 - HomogeneousLocalization.val_pow π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {π : ΞΉ β Submodule R A} {x : Submonoid A} [AddCommMonoid ΞΉ] [DecidableEq ΞΉ] [GradedAlgebra π] (y : HomogeneousLocalization π x) (n : β) : (y ^ n).val = y.val ^ n - HomogeneousLocalization.val_mul π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {π : ΞΉ β Submodule R A} {x : Submonoid A} [AddCommMonoid ΞΉ] [DecidableEq ΞΉ] [GradedAlgebra π] (y1 y2 : HomogeneousLocalization π x) : (y1 * y2).val = y1.val * y2.val - HomogeneousLocalization.isUnit_iff_isUnit_val π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (π : ΞΉ β Submodule R A) [AddCommMonoid ΞΉ] [DecidableEq ΞΉ] [GradedAlgebra π] (π : Ideal A) [π.IsPrime] (f : HomogeneousLocalization.AtPrime π π) : IsUnit (HomogeneousLocalization.val f) β IsUnit f - HomogeneousLocalization.val_smul π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {π : ΞΉ β Submodule R A} (x : Submonoid A) {Ξ± : Type u_4} [SMul Ξ± R] [SMul Ξ± A] [IsScalarTower Ξ± R A] [IsScalarTower Ξ± A A] (n : Ξ±) (y : HomogeneousLocalization π x) : (n β’ y).val = n β’ y.val - HomogeneousLocalization.val_add π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {π : ΞΉ β Submodule R A} {x : Submonoid A} [AddCommMonoid ΞΉ] [DecidableEq ΞΉ] [GradedAlgebra π] (y1 y2 : HomogeneousLocalization π x) : (y1 + y2).val = y1.val + y2.val - HomogeneousLocalization.val_sub π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {π : ΞΉ β Submodule R A} {x : Submonoid A} [AddCommMonoid ΞΉ] [DecidableEq ΞΉ] [GradedAlgebra π] (y1 y2 : HomogeneousLocalization π x) : (y1 - y2).val = y1.val - y2.val - HomogeneousLocalization.val_zsmul π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {π : ΞΉ β Submodule R A} (x : Submonoid A) (n : β€) (y : HomogeneousLocalization π x) : (n β’ y).val = n β’ y.val - HomogeneousLocalization.val_nsmul π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {π : ΞΉ β Submodule R A} (x : Submonoid A) (n : β) (y : HomogeneousLocalization π x) : (n β’ y).val = n β’ y.val - HomogeneousLocalization.den_smul_val π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {π : ΞΉ β Submodule R A} {x : Submonoid A} (f : HomogeneousLocalization π x) : f.den β’ f.val = (algebraMap A (Localization x)) f.num - HomogeneousLocalization.algebraMap_apply π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {π : ΞΉ β Submodule R A} {x : Submonoid A} [AddCommMonoid ΞΉ] [DecidableEq ΞΉ] [GradedAlgebra π] (y : HomogeneousLocalization π x) : (algebraMap (HomogeneousLocalization π x) (Localization x)) y = y.val - HomogeneousLocalization.NumDenSameDeg.embedding.eq_1 π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (π : ΞΉ β Submodule R A) (x : Submonoid A) (p : HomogeneousLocalization.NumDenSameDeg π x) : HomogeneousLocalization.NumDenSameDeg.embedding π x p = Localization.mk βp.num β¨βp.den, β―β© - HomogeneousLocalization.val_mk π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {π : ΞΉ β Submodule R A} {x : Submonoid A} (i : HomogeneousLocalization.NumDenSameDeg π x) : (HomogeneousLocalization.mk i).val = Localization.mk βi.num β¨βi.den, β―β© - HomogeneousLocalization.Away.val_mk π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (π : ΞΉ β Submodule R A) [AddCommMonoid ΞΉ] [DecidableEq ΞΉ] [GradedAlgebra π] {f : A} {d : ΞΉ} (n : β) (hf : f β π d) (x : A) (hx : x β π (n β’ d)) : HomogeneousLocalization.val (HomogeneousLocalization.Away.mk π hf n x hx) = Localization.mk x β¨f ^ n, β―β© - HomogeneousLocalization.val_awayMap_eq_aux π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (π : ΞΉ β Submodule R A) [AddCommMonoid ΞΉ] [DecidableEq ΞΉ] [GradedAlgebra π] {e : ΞΉ} {f g : A} (hg : g β π e) {x : A} (hx : x = f * g) (a : HomogeneousLocalization.Away π f) : HomogeneousLocalization.val ((HomogeneousLocalization.awayMap π hg hx) a) = (HomogeneousLocalization.awayMapAuxβ π β―) a - HomogeneousLocalization.Away.eventually_smul_mem π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] {π : ΞΉ β Submodule R A} {f : A} [AddCommMonoid ΞΉ] [DecidableEq ΞΉ] [GradedAlgebra π] {m : ΞΉ} (hf : f β π m) (z : HomogeneousLocalization.Away π f) : βαΆ (n : β) in Filter.atTop, f ^ n β’ HomogeneousLocalization.val z β β(algebraMap A (Localization (Submonoid.powers f))) '' β(π (n β’ m)) - HomogeneousLocalization.val_awayMap_mk π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (π : ΞΉ β Submodule R A) [AddCommMonoid ΞΉ] [DecidableEq ΞΉ] [GradedAlgebra π] {e : ΞΉ} {f g : A} (hg : g β π e) {x : A} (hx : x = f * g) (n : ΞΉ) (a : β₯(π n)) (i : β) (hi : f ^ i β π n) : HomogeneousLocalization.val ((HomogeneousLocalization.awayMap π hg hx) (HomogeneousLocalization.mk { deg := n, num := a, den := β¨f ^ i, hiβ©, den_mem := β― })) = Localization.mk (βa * g ^ i) β¨x ^ i, β―β© - HomogeneousLocalization.val_awayMap π Mathlib.RingTheory.GradedAlgebra.HomogeneousLocalization
{ΞΉ : Type u_1} {R : Type u_2} {A : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (π : ΞΉ β Submodule R A) [AddCommMonoid ΞΉ] [DecidableEq ΞΉ] [GradedAlgebra π] {e : ΞΉ} {f g : A} (hg : g β π e) {x : A} (hx : x = f * g) (a : HomogeneousLocalization.Away π f) : HomogeneousLocalization.val ((HomogeneousLocalization.awayMap π hg hx) a) = (Localization.awayLift (algebraMap A (Localization (Submonoid.powers x))) f β―) (HomogeneousLocalization.val a) - AlgebraicGeometry.homogeneousLocalizationToStalk.eq_1 π Mathlib.AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf
{R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (π : β β Submodule R A) [GradedAlgebra π] (x : β(ProjectiveSpectrum.top π)) (y : HomogeneousLocalization.AtPrime π x.asHomogeneousIdeal.toIdeal) : AlgebraicGeometry.homogeneousLocalizationToStalk π x y = Quotient.liftOn' y (fun f => (CategoryTheory.ConcreteCategory.hom ((AlgebraicGeometry.ProjectiveSpectrum.Proj.structureSheaf π).presheaf.germ (ProjectiveSpectrum.basicOpen π βf.den) x β―)) (AlgebraicGeometry.sectionInBasicOpen π x f)) β― - AlgebraicGeometry.ProjIsoSpecTopComponent.FromSpec.mem_carrier_iff' π Mathlib.AlgebraicGeometry.ProjectiveSpectrum.Scheme
{R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] {π : β β Submodule R A} [GradedAlgebra π] {f : A} {m : β} (f_deg : f β π m) (q : ββ(AlgebraicGeometry.Spec.locallyRingedSpaceObj (CommRingCat.of (HomogeneousLocalization.Away π f))).toPresheafedSpace) (a : A) : a β AlgebraicGeometry.ProjIsoSpecTopComponent.FromSpec.carrier f_deg q β β (i : β), Localization.mk ((GradedAlgebra.proj π i) a ^ m) β¨f ^ i, β―β© β β(algebraMap (HomogeneousLocalization.Away π f) (Localization.Away f)) '' {s | s β q.asIdeal} - AlgebraicGeometry.ProjectiveSpectrum.Proj.awayToSection_apply π Mathlib.AlgebraicGeometry.ProjectiveSpectrum.Scheme
{R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (π : β β Submodule R A) [GradedAlgebra π] (f : A) (x : β(CommRingCat.of (HomogeneousLocalization.Away π f))) (p : β₯(Opposite.unop (Opposite.op (ProjectiveSpectrum.basicOpen π f)))) : HomogeneousLocalization.val (β((AlgebraicGeometry.ProjectiveSpectrum.Proj.awayToSection π f).hom' x) p) = (IsLocalization.map (Localization (βp).asHomogeneousIdeal.toIdeal.primeCompl) (RingHom.id A) β―) (HomogeneousLocalization.val x) - Localization.cardinalMk_le π Mathlib.GroupTheory.MonoidLocalization.Cardinality
{M : Type u} [CommMonoid M] (S : Submonoid M) : Cardinal.mk (Localization S) β€ Cardinal.mk M - Localization.cardinalMk π Mathlib.RingTheory.Localization.Cardinality
{R : Type u} [CommRing R] {S : Submonoid R} (hS : S β€ nonZeroDivisors R) : Cardinal.mk (Localization S) = Cardinal.mk R - Algebra.GrothendieckGroup.eq_1 π Mathlib.GroupTheory.MonoidLocalization.GrothendieckGroup
(M : Type u_1) [CommMonoid M] : Algebra.GrothendieckGroup M = Localization β€ - Algebra.GrothendieckGroup.of.eq_1 π Mathlib.GroupTheory.MonoidLocalization.GrothendieckGroup
{M : Type u_1} [CommMonoid M] : Algebra.GrothendieckGroup.of = (Localization.monoidOf β€).toMonoidHom - Algebra.GrothendieckGroup.inv_mk π Mathlib.GroupTheory.MonoidLocalization.GrothendieckGroup
{M : Type u_1} [CommMonoid M] (m : M) (s : β₯β€) : (Localization.mk m s)β»ΒΉ = Localization.mk βs β¨m, β―β©
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision f167e8d