Loogle!
Result
Found 17 declarations mentioning LocalizedModule.map.
- LocalizedModule.map š Mathlib.RingTheory.Localization.Module
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} [AddCommMonoid M] [Module R M] {N : Type u_3} [AddCommMonoid N] [Module R N] : (M āā[R] N) āā[R] LocalizedModule S M āā[Localization S] LocalizedModule S N - LocalizedModule.map_id š Mathlib.RingTheory.Localization.Module
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} [AddCommMonoid M] [Module R M] : (LocalizedModule.map S) LinearMap.id = LinearMap.id - LocalizedModule.map_injective š Mathlib.RingTheory.Localization.Module
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} [AddCommMonoid M] [Module R M] {N : Type u_3} [AddCommMonoid N] [Module R N] (l : M āā[R] N) (hl : Function.Injective āl) : Function.Injective ā((LocalizedModule.map S) l) - LocalizedModule.map_surjective š Mathlib.RingTheory.Localization.Module
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} [AddCommMonoid M] [Module R M] {N : Type u_3} [AddCommMonoid N] [Module R N] (l : M āā[R] N) (hl : Function.Surjective āl) : Function.Surjective ā((LocalizedModule.map S) l) - LocalizedModule.map_mk š Mathlib.RingTheory.Localization.Module
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} [AddCommMonoid M] [Module R M] {N : Type u_3} [AddCommMonoid N] [Module R N] (f : M āā[R] N) (x : M) (y : ā„S) : ((LocalizedModule.map S) f) (LocalizedModule.mk x y) = LocalizedModule.mk (f x) y - LocalizedModule.restrictScalars_map_eq š Mathlib.RingTheory.Localization.Module
{R : Type u_1} [CommSemiring R] (S : Submonoid R) {M : Type u_2} [AddCommMonoid M] [Module R M] {N : Type u_5} [AddCommMonoid N] [Module R N] {M' : Type u_3} {N' : Type u_4} [AddCommMonoid M'] [AddCommMonoid N'] [Module R M'] [Module R N'] (gā : M āā[R] M') (gā : N āā[R] N') [IsLocalizedModule S gā] [IsLocalizedModule S gā] (l : M āā[R] N) : āR ((LocalizedModule.map S) l) = ā(IsLocalizedModule.iso S gā).symm āā (IsLocalizedModule.map S gā gā) l āā ā(IsLocalizedModule.iso S gā) - bijective_of_localized_maximal š Mathlib.RingTheory.LocalProperties.Exactness
{R : Type u_1} {M : Type u_2} {N : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (f : M āā[R] N) (h : ā (J : Ideal R) [inst : J.IsMaximal], Function.Bijective ā((LocalizedModule.map J.primeCompl) f)) : Function.Bijective āf - injective_of_localized_maximal š Mathlib.RingTheory.LocalProperties.Exactness
{R : Type u_1} {M : Type u_2} {N : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (f : M āā[R] N) (h : ā (J : Ideal R) [inst : J.IsMaximal], Function.Injective ā((LocalizedModule.map J.primeCompl) f)) : Function.Injective āf - surjective_of_localized_maximal š Mathlib.RingTheory.LocalProperties.Exactness
{R : Type u_1} {M : Type u_2} {N : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (f : M āā[R] N) (h : ā (J : Ideal R) [inst : J.IsMaximal], Function.Surjective ā((LocalizedModule.map J.primeCompl) f)) : Function.Surjective āf - bijective_of_localized_span š Mathlib.RingTheory.LocalProperties.Exactness
{R : Type u_1} {M : Type u_2} {N : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (s : Set R) (spn : Ideal.span s = ā¤) (f : M āā[R] N) (h : ā (r : ās), Function.Bijective ā((LocalizedModule.map (Submonoid.powers ār)) f)) : Function.Bijective āf - injective_of_localized_span š Mathlib.RingTheory.LocalProperties.Exactness
{R : Type u_1} {M : Type u_2} {N : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (s : Set R) (spn : Ideal.span s = ā¤) (f : M āā[R] N) (h : ā (r : ās), Function.Injective ā((LocalizedModule.map (Submonoid.powers ār)) f)) : Function.Injective āf - surjective_of_localized_span š Mathlib.RingTheory.LocalProperties.Exactness
{R : Type u_1} {M : Type u_2} {N : Type u_3} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (s : Set R) (spn : Ideal.span s = ā¤) (f : M āā[R] N) (h : ā (r : ās), Function.Surjective ā((LocalizedModule.map (Submonoid.powers ār)) f)) : Function.Surjective āf - exact_of_localized_maximal š Mathlib.RingTheory.LocalProperties.Exactness
{R : Type u_1} {M : Type u_2} {N : Type u_3} {L : Type u_4} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid L] [Module R L] (f : M āā[R] N) (g : N āā[R] L) (h : ā (J : Ideal R) [inst : J.IsMaximal], Function.Exact ā((LocalizedModule.map J.primeCompl) f) ā((LocalizedModule.map J.primeCompl) g)) : Function.Exact āf āg - exact_of_localized_span š Mathlib.RingTheory.LocalProperties.Exactness
{R : Type u_1} {M : Type u_2} {N : Type u_3} {L : Type u_4} [CommSemiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [AddCommMonoid L] [Module R L] (s : Set R) (spn : Ideal.span s = ā¤) (f : M āā[R] N) (g : N āā[R] L) (h : ā (r : ās), Function.Exact ā((LocalizedModule.map (Submonoid.powers ār)) f) ā((LocalizedModule.map (Submonoid.powers ār)) g)) : Function.Exact āf āg - instIsLocalizedModuleLinearMapIdLocalizationLocalizedModuleMapOfFinitePresentation š Mathlib.Algebra.Module.FinitePresentation
{R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (S : Submonoid R) [Module.FinitePresentation R M] : IsLocalizedModule S (LocalizedModule.map S) - exists_bijective_map_powers š Mathlib.Algebra.Module.FinitePresentation
{R : Type u_3} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (S : Submonoid R) {M' : Type u_1} [AddCommGroup M'] [Module R M'] (f : M āā[R] M') [IsLocalizedModule S f] {N' : Type u_2} [AddCommGroup N'] [Module R N'] (g : N āā[R] N') [IsLocalizedModule S g] [Module.Finite R M] [Module.FinitePresentation R N] (l : M āā[R] N) (hf : Function.Bijective ā((IsLocalizedModule.map S f g) l)) : ā r ā S, ā (t : R), r ⣠t ā Function.Bijective ā((LocalizedModule.map (Submonoid.powers t)) l) - LinearMap.split_surjective_of_localization_maximal š Mathlib.RingTheory.LocalProperties.Projective
{R : Type u_1} {N : Type u_2} {M : Type uM} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (f : M āā[R] N) [Module.FinitePresentation R N] (H : ā (I : Ideal R) (x : I.IsMaximal), ā g, (LocalizedModule.map I.primeCompl) f āā g = LinearMap.id) : ā g, f āā g = LinearMap.id
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
šReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
š"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
š_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
šReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
š(?a -> ?b) -> List ?a -> List ?b
šList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
š|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allā
andā
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
š|- _ < _ ā tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
š Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ ā _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65