Loogle!
Result
Found 15 declarations mentioning LocallyConstant.map.
- LocallyConstant.map ๐ Mathlib.Topology.LocallyConstant.Basic
{X : Type u_1} {Y : Type u_2} {Z : Type u_3} [TopologicalSpace X] (f : Y โ Z) (g : LocallyConstant X Y) : LocallyConstant X Z - LocallyConstant.map_id ๐ Mathlib.Topology.LocallyConstant.Basic
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] : LocallyConstant.map id = id - LocallyConstant.map_apply ๐ Mathlib.Topology.LocallyConstant.Basic
{X : Type u_1} {Y : Type u_2} {Z : Type u_3} [TopologicalSpace X] (f : Y โ Z) (g : LocallyConstant X Y) : โ(LocallyConstant.map f g) = f โ โg - LocallyConstant.map_comp ๐ Mathlib.Topology.LocallyConstant.Basic
{X : Type u_1} [TopologicalSpace X] {Yโ : Type u_5} {Yโ : Type u_6} {Yโ : Type u_7} (g : Yโ โ Yโ) (f : Yโ โ Yโ) : LocallyConstant.map g โ LocallyConstant.map f = LocallyConstant.map (g โ f) - LocallyConstant.congrRight_apply ๐ Mathlib.Topology.LocallyConstant.Basic
{X : Type u_1} {Y : Type u_2} {Z : Type u_3} [TopologicalSpace X] (e : Y โ Z) (g : LocallyConstant X Y) : (LocallyConstant.congrRight e) g = LocallyConstant.map (โe) g - LocallyConstant.congrRight_symm_apply ๐ Mathlib.Topology.LocallyConstant.Basic
{X : Type u_1} {Y : Type u_2} {Z : Type u_3} [TopologicalSpace X] (e : Y โ Z) (g : LocallyConstant X Z) : (LocallyConstant.congrRight e).symm g = LocallyConstant.map (โe.symm) g - Profinite.exists_locallyConstant_finite_aux ๐ Mathlib.Topology.Category.Profinite.CofilteredLimit
{J : Type v} [CategoryTheory.SmallCategory J] [CategoryTheory.IsCofiltered J] {F : CategoryTheory.Functor J Profinite} (C : CategoryTheory.Limits.Cone F) {ฮฑ : Type u_1} [Finite ฮฑ] (hC : CategoryTheory.Limits.IsLimit C) (f : LocallyConstant (โC.pt.toTop) ฮฑ) : โ j g, LocallyConstant.map (fun a b => if a = b then 0 else 1) f = LocallyConstant.comap (TopCat.Hom.hom (C.ฯ.app j)) g - CompHausLike.LocallyConstant.functorToPresheaves_map_app ๐ Mathlib.Condensed.Discrete.LocallyConstant
{P : TopCat โ Prop} {Xโ Yโ : Type (max u w)} (f : Xโ โถ Yโ) (xโ : (CompHausLike P)แตแต) (t : { obj := fun x => match x with | Opposite.op S => LocallyConstant (โS.toTop) Xโ, map := fun {X Y} f g => LocallyConstant.comap (TopCat.Hom.hom f.unop) g, map_id := โฏ, map_comp := โฏ }.obj xโ) : (CompHausLike.LocallyConstant.functorToPresheaves.map f).app xโ t = LocallyConstant.map f t - LocallyConstant.instPow.eq_1 ๐ Mathlib.Topology.LocallyConstant.Algebra
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {ฮฑ : Type u_3} [Pow Y ฮฑ] : LocallyConstant.instPow = { pow := fun f n => LocallyConstant.map (fun x => x ^ n) f } - LocallyConstant.smul.eq_1 ๐ Mathlib.Topology.LocallyConstant.Algebra
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {ฮฑ : Type u_3} [SMul ฮฑ Y] : LocallyConstant.smul = { smul := fun n f => LocallyConstant.map (fun x => n โข x) f } - LocallyConstant.vadd.eq_1 ๐ Mathlib.Topology.LocallyConstant.Algebra
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {ฮฑ : Type u_3} [VAdd ฮฑ Y] : LocallyConstant.vadd = { vadd := fun n f => LocallyConstant.map (fun x => n +แตฅ x) f } - LocallyConstant.mapAddMonoidHom_apply ๐ Mathlib.Topology.LocallyConstant.Algebra
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {Z : Type u_6} [AddZeroClass Y] [AddZeroClass Z] (f : Y โ+ Z) (g : LocallyConstant X Y) : (LocallyConstant.mapAddMonoidHom f) g = LocallyConstant.map (โf) g - LocallyConstant.mapMonoidHom_apply ๐ Mathlib.Topology.LocallyConstant.Algebra
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {Z : Type u_6} [MulOneClass Y] [MulOneClass Z] (f : Y โ* Z) (g : LocallyConstant X Y) : (LocallyConstant.mapMonoidHom f) g = LocallyConstant.map (โf) g - LocallyConstant.mapAddMonoidHom.eq_1 ๐ Mathlib.Topology.LocallyConstant.Algebra
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {Z : Type u_6} [AddZeroClass Y] [AddZeroClass Z] (f : Y โ+ Z) : LocallyConstant.mapAddMonoidHom f = { toFun := LocallyConstant.map โf, map_zero' := โฏ, map_add' := โฏ } - LocallyConstant.mapMonoidHom.eq_1 ๐ Mathlib.Topology.LocallyConstant.Algebra
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] {Z : Type u_6} [MulOneClass Y] [MulOneClass Z] (f : Y โ* Z) : LocallyConstant.mapMonoidHom f = { toFun := LocallyConstant.map โf, map_one' := โฏ, map_mul' := โฏ }
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65