Loogle!
Result
Found 12 declarations mentioning Matrix and LinearIndependent.
- Matrix.vecMul_injective_iff 📋 Mathlib.LinearAlgebra.Matrix.ToLin
{m : Type u_3} {n : Type u_4} [Fintype m] {R : Type u_5} [Ring R] {M : Matrix m n R} : (Function.Injective fun v => Matrix.vecMul v M) ↔ LinearIndependent R M.row - Matrix.linearIndependent_rows_of_isUnit 📋 Mathlib.LinearAlgebra.Matrix.ToLin
{m : Type u_3} [Fintype m] {R : Type u_5} [Ring R] {A : Matrix m m R} [DecidableEq m] (ha : IsUnit A) : LinearIndependent R A.row - Matrix.mulVec_injective_iff 📋 Mathlib.LinearAlgebra.Matrix.ToLin
{m : Type u_4} {n : Type u_5} [Fintype n] {R : Type u_6} [CommRing R] {M : Matrix m n R} : Function.Injective M.mulVec ↔ LinearIndependent R M.col - Matrix.linearIndependent_cols_of_isUnit 📋 Mathlib.LinearAlgebra.Matrix.ToLin
{m : Type u_4} {R : Type u_6} [CommRing R] [Fintype m] {A : Matrix m m R} [DecidableEq m] (ha : IsUnit A) : LinearIndependent R A.col - Matrix.linearIndependent_cols_of_det_ne_zero 📋 Mathlib.LinearAlgebra.Matrix.Determinant.Basic
{m : Type u_1} [DecidableEq m] [Fintype m] {R : Type v} [CommRing R] [IsDomain R] {A : Matrix m m R} (hA : A.det ≠ 0) : LinearIndependent R A.col - Matrix.linearIndependent_rows_of_det_ne_zero 📋 Mathlib.LinearAlgebra.Matrix.Determinant.Basic
{m : Type u_1} [DecidableEq m] [Fintype m] {R : Type v} [CommRing R] [IsDomain R] {A : Matrix m m R} (hA : A.det ≠ 0) : LinearIndependent R A.row - Matrix.linearIndependent_cols_iff_isUnit 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{m : Type u} [DecidableEq m] {K : Type u_3} [Field K] [Fintype m] {A : Matrix m m K} : LinearIndependent K A.col ↔ IsUnit A - Matrix.linearIndependent_rows_iff_isUnit 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{m : Type u} [DecidableEq m] {K : Type u_3} [Field K] [Fintype m] {A : Matrix m m K} : LinearIndependent K A.row ↔ IsUnit A - Matrix.linearIndependent_cols_of_invertible 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{m : Type u} [DecidableEq m] {K : Type u_3} [Field K] [Fintype m] (A : Matrix m m K) [Invertible A] : LinearIndependent K A.col - Matrix.linearIndependent_rows_of_invertible 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{m : Type u} [DecidableEq m] {K : Type u_3} [Field K] [Fintype m] (A : Matrix m m K) [Invertible A] : LinearIndependent K A.row - LinearIndependent.rank_matrix 📋 Mathlib.Data.Matrix.Rank
{m : Type um} {n : Type un} {R : Type uR} [Fintype n] [Field R] [Fintype m] {M : Matrix m n R} (h : LinearIndependent R M.row) : M.rank = Fintype.card m - SimpleGraph.linearIndependent_lapMatrix_ker_basis_aux 📋 Mathlib.Combinatorics.SimpleGraph.LapMatrix
{V : Type u_1} [Fintype V] (G : SimpleGraph V) [DecidableRel G.Adj] [DecidableEq V] [DecidableEq G.ConnectedComponent] : LinearIndependent ℝ G.lapMatrix_ker_basis_aux
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision f167e8d