Loogle!
Result
Found 11 declarations mentioning Matrix and Module.Finite.
- Module.Finite.matrix ๐ Mathlib.LinearAlgebra.FreeModule.Finite.Basic
{R : Type u_1} {ฮนโ : Type u_2} {ฮนโ : Type u_3} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] [Module.Free R M] [Module.Finite R M] [Finite ฮนโ] [Finite ฮนโ] : Module.Finite R (Matrix ฮนโ ฮนโ M) - LinearMap.charpoly.eq_1 ๐ Mathlib.LinearAlgebra.Charpoly.Basic
{R : Type u} {M : Type v} [CommRing R] [AddCommGroup M] [Module R M] [Module.Free R M] [Module.Finite R M] (f : M โโ[R] M) : f.charpoly = ((LinearMap.toMatrix (Module.Free.chooseBasis R M) (Module.Free.chooseBasis R M)) f).charpoly - LinearMap.charpoly_def ๐ Mathlib.LinearAlgebra.Charpoly.Basic
{R : Type u} {M : Type v} [CommRing R] [AddCommGroup M] [Module R M] [Module.Free R M] [Module.Finite R M] (f : M โโ[R] M) : f.charpoly = ((LinearMap.toMatrix (Module.Free.chooseBasis R M) (Module.Free.chooseBasis R M)) f).charpoly - Matrix.charpoly_toLin ๐ Mathlib.LinearAlgebra.Charpoly.ToMatrix
{R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] [Module.Free R M] [Module.Finite R M] {n : Type u_5} [Fintype n] [DecidableEq n] (A : Matrix n n R) (b : Module.Basis n R M) : ((Matrix.toLin b b) A).charpoly = A.charpoly - LinearMap.charpoly_toMatrix ๐ Mathlib.LinearAlgebra.Charpoly.ToMatrix
{R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] [Module.Free R M] [Module.Finite R M] (f : M โโ[R] M) {ฮน : Type w} [DecidableEq ฮน] [Fintype ฮน] (b : Module.Basis ฮน R M) : ((LinearMap.toMatrix b b) f).charpoly = f.charpoly - Algebra.traceMatrix_eq_embeddingsMatrixReindex_mul_trans ๐ Mathlib.RingTheory.Trace.Basic
(K : Type u_4) {L : Type u_5} [Field K] [Field L] [Algebra K L] {ฮบ : Type w} (E : Type z) [Field E] [Algebra K E] [Module.Finite K L] [Algebra.IsSeparable K L] [IsAlgClosed E] (b : ฮบ โ L) [Fintype ฮบ] (e : ฮบ โ (L โโ[K] E)) : (Algebra.traceMatrix K b).map โ(algebraMap K E) = Algebra.embeddingsMatrixReindex K E b e * (Algebra.embeddingsMatrixReindex K E b e).transpose - Algebra.traceMatrix_eq_embeddingsMatrix_mul_trans ๐ Mathlib.RingTheory.Trace.Basic
(K : Type u_4) {L : Type u_5} [Field K] [Field L] [Algebra K L] {ฮบ : Type w} (E : Type z) [Field E] [Algebra K E] [Module.Finite K L] [Algebra.IsSeparable K L] [IsAlgClosed E] (b : ฮบ โ L) : (Algebra.traceMatrix K b).map โ(algebraMap K E) = Algebra.embeddingsMatrix K E b * (Algebra.embeddingsMatrix K E b).transpose - IsSimpleRing.exists_algEquiv_matrix_divisionRing_finite ๐ Mathlib.RingTheory.SimpleModule.WedderburnArtin
(Rโ : Type u_1) (R : Type u) [CommSemiring Rโ] [Ring R] [Algebra Rโ R] [IsSimpleRing R] [IsArtinianRing R] [Module.Finite Rโ R] : โ n, โ (_ : NeZero n), โ D x x_1, โ (_ : Module.Finite Rโ D), Nonempty (R โโ[Rโ] Matrix (Fin n) (Fin n) D) - IsSemisimpleRing.exists_algEquiv_pi_matrix_divisionRing_finite ๐ Mathlib.RingTheory.SimpleModule.WedderburnArtin
(Rโ : Type u_1) (R : Type u) [CommSemiring Rโ] [Ring R] [Algebra Rโ R] [IsSemisimpleRing R] [Module.Finite Rโ R] : โ n D d x x_1, โ (_ : โ (i : Fin n), Module.Finite Rโ (D i)), (โ (i : Fin n), NeZero (d i)) โง Nonempty (R โโ[Rโ] (i : Fin n) โ Matrix (Fin (d i)) (Fin (d i)) (D i)) - IsSemisimpleModule.exists_end_ringEquiv ๐ Mathlib.RingTheory.SimpleModule.WedderburnArtin
(R : Type u) [Ring R] (M : Type u_2) [AddCommGroup M] [Module R M] [IsSemisimpleModule R M] [Module.Finite R M] : โ n S d, (โ (i : Fin n), IsSimpleModule R โฅ(S i)) โง (โ (i : Fin n), NeZero (d i)) โง Nonempty (Module.End R M โ+* ((i : Fin n) โ Matrix (Fin (d i)) (Fin (d i)) (Module.End R โฅ(S i)))) - IsSemisimpleModule.exists_end_algEquiv ๐ Mathlib.RingTheory.SimpleModule.WedderburnArtin
(Rโ : Type u_1) (R : Type u) [CommSemiring Rโ] [Ring R] [Algebra Rโ R] (M : Type u_2) [AddCommGroup M] [Module Rโ M] [Module R M] [IsScalarTower Rโ R M] [IsSemisimpleModule R M] [Module.Finite R M] : โ n S d, (โ (i : Fin n), IsSimpleModule R โฅ(S i)) โง (โ (i : Fin n), NeZero (d i)) โง Nonempty (Module.End R M โโ[Rโ] (i : Fin n) โ Matrix (Fin (d i)) (Fin (d i)) (Module.End R โฅ(S i)))
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ee8c038
serving mathlib revision c557aff