Loogle!
Result
Found 54 declarations mentioning Matrix and MulOpposite.
- Matrix.isCentralScalar š Mathlib.LinearAlgebra.Matrix.Defs
{m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} [SMul R α] [SMul Rįµįµįµ α] [IsCentralScalar R α] : IsCentralScalar R (Matrix m n α) - Matrix.map_op_smul' š Mathlib.LinearAlgebra.Matrix.Defs
{n : Type u_3} {α : Type v} {β : Type w} [Mul α] [Mul β] (f : α ā β) (r : α) (A : Matrix n n α) (hf : ā (aā aā : α), f (aā * aā) = f aā * f aā) : (MulOpposite.op r ⢠A).map f = MulOpposite.op (f r) ⢠A.map f - Matrix.vecMulVec_smul' š Mathlib.Data.Matrix.Mul
{m : Type u_2} {n : Type u_3} {α : Type v} [Semigroup α] (w : m ā α) (r : α) (v : n ā α) : Matrix.vecMulVec w (r ⢠v) = Matrix.vecMulVec (MulOpposite.op r ⢠w) v - Matrix.mulVec_single š Mathlib.Data.Matrix.Mul
{m : Type u_2} {n : Type u_3} {R : Type u_7} [Fintype n] [DecidableEq n] [NonUnitalNonAssocSemiring R] (M : Matrix m n R) (j : n) (x : R) : M.mulVec (Pi.single j x) = MulOpposite.op x ⢠M.col j - Matrix.mulVec_eq_sum š Mathlib.Data.Matrix.Mul
{m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] (v : n ā α) (M : Matrix m n α) : M.mulVec v = ā i, MulOpposite.op (v i) ⢠M.transpose i - Matrix.vecMul_natCast š Mathlib.Data.Matrix.Mul
{m : Type u_2} {α : Type v} [NonAssocSemiring α] [Fintype m] [DecidableEq m] (x : ā) (v : m ā α) : Matrix.vecMul v āx = MulOpposite.op āx ⢠v - Matrix.op_smul_eq_mul_diagonal š Mathlib.Data.Matrix.Mul
{m : Type u_2} {n : Type u_3} {α : Type v} [NonUnitalNonAssocSemiring α] [Fintype n] [DecidableEq n] (M : Matrix m n α) (a : α) : MulOpposite.op a ⢠M = M * Matrix.diagonal fun x => a - Matrix.op_smul_one_eq_diagonal š Mathlib.Data.Matrix.Mul
{m : Type u_2} {α : Type v} [NonAssocSemiring α] [DecidableEq m] (a : α) : MulOpposite.op a ⢠1 = Matrix.diagonal fun x => a - Matrix.vecMul_intCast š Mathlib.Data.Matrix.Mul
{m : Type u_2} {α : Type v} [NonAssocRing α] [Fintype m] [DecidableEq m] (x : ā¤) (v : m ā α) : Matrix.vecMul v āx = MulOpposite.op āx ⢠v - Matrix.vecMul_ofNat š Mathlib.Data.Matrix.Mul
{m : Type u_2} {α : Type v} [NonAssocSemiring α] [Fintype m] [DecidableEq m] (x : ā) [x.AtLeastTwo] (v : m ā α) : Matrix.vecMul v (OfNat.ofNat x) = MulOpposite.op (OfNat.ofNat x) ⢠v - Matrix.transposeRingEquiv š Mathlib.Data.Matrix.Basic
(m : Type u_2) (α : Type u_11) [AddCommMonoid α] [CommSemigroup α] [Fintype m] : Matrix m m α ā+* (Matrix m m α)įµįµįµ - AlgEquiv.mopMatrix š Mathlib.Data.Matrix.Basic
{m : Type u_2} {R : Type u_7} {α : Type u_11} [Fintype m] [DecidableEq m] [CommSemiring R] [Semiring α] [Algebra R α] : Matrix m m αįµįµįµ āā[R] (Matrix m m α)įµįµįµ - Matrix.transposeAlgEquiv š Mathlib.Data.Matrix.Basic
(m : Type u_2) (R : Type u_7) (α : Type u_11) [CommSemiring R] [CommSemiring α] [Fintype m] [DecidableEq m] [Algebra R α] : Matrix m m α āā[R] (Matrix m m α)įµįµįµ - RingEquiv.mopMatrix š Mathlib.Data.Matrix.Basic
{m : Type u_2} {α : Type u_11} [Fintype m] [NonAssocSemiring α] : Matrix m m αįµįµįµ ā+* (Matrix m m α)įµįµįµ - Matrix.transposeAlgEquiv_apply š Mathlib.Data.Matrix.Basic
(m : Type u_2) (R : Type u_7) (α : Type u_11) [CommSemiring R] [CommSemiring α] [Fintype m] [DecidableEq m] [Algebra R α] (M : Matrix m m α) : (Matrix.transposeAlgEquiv m R α) M = MulOpposite.op M.transpose - AlgEquiv.mopMatrix_apply š Mathlib.Data.Matrix.Basic
{m : Type u_2} {R : Type u_7} {α : Type u_11} [Fintype m] [DecidableEq m] [CommSemiring R] [Semiring α] [Algebra R α] (M : Matrix m m αįµįµįµ) : AlgEquiv.mopMatrix M = MulOpposite.op (M.transpose.map MulOpposite.unop) - Matrix.transposeRingEquiv_apply š Mathlib.Data.Matrix.Basic
(m : Type u_2) (α : Type u_11) [AddCommMonoid α] [CommSemigroup α] [Fintype m] (M : Matrix m m α) : (Matrix.transposeRingEquiv m α) M = MulOpposite.op M.transpose - Matrix.scalar_commute_iff š Mathlib.Data.Matrix.Basic
{n : Type u_3} {α : Type u_11} [Semiring α] [DecidableEq n] [Fintype n] {r : α} {M : Matrix n n α} : Commute ((Matrix.scalar n) r) M ā r ⢠M = MulOpposite.op r ⢠M - AlgEquiv.mopMatrix_symm_apply š Mathlib.Data.Matrix.Basic
{m : Type u_2} {R : Type u_7} {α : Type u_11} [Fintype m] [DecidableEq m] [CommSemiring R] [Semiring α] [Algebra R α] (M : (Matrix m m α)įµįµįµ) : AlgEquiv.mopMatrix.symm M = (MulOpposite.unop M).transpose.map MulOpposite.op - Matrix.transposeRingEquiv_symm_apply š Mathlib.Data.Matrix.Basic
(m : Type u_2) (α : Type u_11) [AddCommMonoid α] [CommSemigroup α] [Fintype m] (M : (Matrix m m α)įµįµįµ) : (Matrix.transposeRingEquiv m α).symm M = (MulOpposite.unop M).transpose - RingEquiv.mopMatrix_apply š Mathlib.Data.Matrix.Basic
{m : Type u_2} {α : Type u_11} [Fintype m] [NonAssocSemiring α] (M : Matrix m m αįµįµįµ) : RingEquiv.mopMatrix M = MulOpposite.op (M.transpose.map MulOpposite.unop) - Matrix.scalar_comm_iff š Mathlib.Data.Matrix.Basic
{m : Type u_2} {n : Type u_3} {α : Type u_11} [Semiring α] [DecidableEq n] [Fintype n] [DecidableEq m] [Fintype m] {r : α} {M : Matrix m n α} : (Matrix.scalar m) r * M = M * (Matrix.scalar n) r ā r ⢠M = MulOpposite.op r ⢠M - RingEquiv.mopMatrix_symm_apply š Mathlib.Data.Matrix.Basic
{m : Type u_2} {α : Type u_11} [Fintype m] [NonAssocSemiring α] (M : (Matrix m m α)įµįµįµ) : RingEquiv.mopMatrix.symm M = (MulOpposite.unop M).transpose.map MulOpposite.op - Matrix.transposeAlgEquiv_symm_apply š Mathlib.Data.Matrix.Basic
(m : Type u_2) (R : Type u_7) (α : Type u_11) [CommSemiring R] [CommSemiring α] [Fintype m] [DecidableEq m] [Algebra R α] (aā : (Matrix m m α)įµįµįµ) : (Matrix.transposeAlgEquiv m R α).symm aā = ((Matrix.transposeAddEquiv m m α).trans MulOpposite.opAddEquiv).invFun aā - Matrix.conjTransposeRingEquiv š Mathlib.LinearAlgebra.Matrix.ConjTranspose
(m : Type u_2) (α : Type v) [Semiring α] [StarRing α] [Fintype m] : Matrix m m α ā+* (Matrix m m α)įµįµįµ - Matrix.conjTranspose_smul_self š Mathlib.LinearAlgebra.Matrix.ConjTranspose
{m : Type u_2} {n : Type u_3} {α : Type v} [Mul α] [StarMul α] (c : α) (M : Matrix m n α) : (c ⢠M).conjTranspose = MulOpposite.op (star c) ⢠M.conjTranspose - Matrix.conjTranspose_smul_non_comm š Mathlib.LinearAlgebra.Matrix.ConjTranspose
{m : Type u_2} {n : Type u_3} {R : Type u_7} {α : Type v} [Star R] [Star α] [SMul R α] [SMul Rįµįµįµ α] (c : R) (M : Matrix m n α) (h : ā (r : R) (a : α), star (r ⢠a) = MulOpposite.op (star r) ⢠star a) : (c ⢠M).conjTranspose = MulOpposite.op (star c) ⢠M.conjTranspose - Matrix.conjTransposeRingEquiv_apply š Mathlib.LinearAlgebra.Matrix.ConjTranspose
(m : Type u_2) (α : Type v) [Semiring α] [StarRing α] [Fintype m] (M : Matrix m m α) : (Matrix.conjTransposeRingEquiv m α) M = MulOpposite.op M.conjTranspose - Matrix.conjTransposeRingEquiv_symm_apply š Mathlib.LinearAlgebra.Matrix.ConjTranspose
(m : Type u_2) (α : Type v) [Semiring α] [StarRing α] [Fintype m] (M : (Matrix m m α)įµįµįµ) : (Matrix.conjTransposeRingEquiv m α).symm M = (MulOpposite.unop M).conjTranspose - Matrix.vecMulVec_update š Mathlib.LinearAlgebra.Matrix.RowCol
{m : Type u_2} {n : Type u_3} {α : Type v} [DecidableEq n] [Mul α] (u : m ā α) (v : n ā α) (j : n) (a : α) : Matrix.vecMulVec u (Function.update v j a) = (Matrix.vecMulVec u v).updateCol j (MulOpposite.op a ⢠u) - Matrix.mul_single_eq_updateCol_zero š Mathlib.LinearAlgebra.Matrix.RowCol
{l : Type u_1} {m : Type u_2} {n : Type u_3} {α : Type v} [DecidableEq m] [DecidableEq n] [Fintype m] [NonUnitalNonAssocSemiring α] (A : Matrix l m α) (i : m) (j : n) (r : α) : A * Matrix.single i j r = Matrix.updateCol 0 j (MulOpposite.op r ⢠A.col i) - LinearMap.toMatrixRight' š Mathlib.LinearAlgebra.Matrix.ToLin
{R : Type u_1} [Semiring R] {m : Type u_3} {n : Type u_4} [Fintype m] [DecidableEq m] : ((m ā R) āā[R] n ā R) āā[Rįµįµįµ] Matrix m n R - Matrix.toLinearMapRight' š Mathlib.LinearAlgebra.Matrix.ToLin
{R : Type u_1} [Semiring R] {m : Type u_3} {n : Type u_4} [Fintype m] [DecidableEq m] : Matrix m n R āā[Rįµįµįµ] (m ā R) āā[R] n ā R - Matrix.toLinearEquivRight'OfInv_apply š Mathlib.LinearAlgebra.Matrix.ToLin
{R : Type u_1} [Semiring R] {m : Type u_3} {n : Type u_4} [Fintype m] [DecidableEq m] [Fintype n] [DecidableEq n] {M : Matrix m n R} {M' : Matrix n m R} (hMM' : M * M' = 1) (hM'M : M' * M = 1) (a : n ā R) (aā : m) : (Matrix.toLinearEquivRight'OfInv hMM' hM'M) a aā = (Matrix.toLinearMapRight' M') a aā - Matrix.toLinearEquivRight'OfInv_symm_apply š Mathlib.LinearAlgebra.Matrix.ToLin
{R : Type u_1} [Semiring R] {m : Type u_3} {n : Type u_4} [Fintype m] [DecidableEq m] [Fintype n] [DecidableEq n] {M : Matrix m n R} {M' : Matrix n m R} (hMM' : M * M' = 1) (hM'M : M' * M = 1) (a : m ā R) (aā : n) : (Matrix.toLinearEquivRight'OfInv hMM' hM'M).symm a aā = (Matrix.toLinearMapRight' M) a aā - Matrix.toLinearMapRight'_one š Mathlib.LinearAlgebra.Matrix.ToLin
{R : Type u_1} [Semiring R] {m : Type u_3} [Fintype m] [DecidableEq m] : Matrix.toLinearMapRight' 1 = LinearMap.id - Matrix.toLinearMapRight'_apply š Mathlib.LinearAlgebra.Matrix.ToLin
{R : Type u_1} [Semiring R] {m : Type u_3} {n : Type u_4} [Fintype m] [DecidableEq m] (M : Matrix m n R) (v : m ā R) : (Matrix.toLinearMapRight' M) v = Matrix.vecMul v M - Matrix.toLinearMapRight'_mul š Mathlib.LinearAlgebra.Matrix.ToLin
{R : Type u_1} [Semiring R] {l : Type u_2} {m : Type u_3} {n : Type u_4} [Fintype m] [DecidableEq m] [Fintype l] [DecidableEq l] (M : Matrix l m R) (N : Matrix m n R) : Matrix.toLinearMapRight' (M * N) = Matrix.toLinearMapRight' N āā Matrix.toLinearMapRight' M - Matrix.toLinearMapRight'_mul_apply š Mathlib.LinearAlgebra.Matrix.ToLin
{R : Type u_1} [Semiring R] {l : Type u_2} {m : Type u_3} {n : Type u_4} [Fintype m] [DecidableEq m] [Fintype l] [DecidableEq l] (M : Matrix l m R) (N : Matrix m n R) (x : l ā R) : (Matrix.toLinearMapRight' (M * N)) x = (Matrix.toLinearMapRight' N) ((Matrix.toLinearMapRight' M) x) - AlgHom.mulLeftRightMatrix_inv š Mathlib.Algebra.Azumaya.Matrix
(R : Type u_1) (n : Type u_2) [CommSemiring R] [Fintype n] [DecidableEq n] : Module.End R (Matrix n n R) āā[R] TensorProduct R (Matrix n n R) (Matrix n n R)įµįµįµ - AlgHom.mulLeftRightMatrix.comp_inv š Mathlib.Algebra.Azumaya.Matrix
(R : Type u_1) (n : Type u_2) [CommSemiring R] [Fintype n] [DecidableEq n] : (AlgHom.mulLeftRight R (Matrix n n R)).toLinearMap āā AlgHom.mulLeftRightMatrix_inv R n = LinearMap.id - AlgHom.mulLeftRightMatrix.inv_comp š Mathlib.Algebra.Azumaya.Matrix
(R : Type u_1) (n : Type u_2) [CommSemiring R] [Fintype n] [DecidableEq n] : AlgHom.mulLeftRightMatrix_inv R n āā (AlgHom.mulLeftRight R (Matrix n n R)).toLinearMap = LinearMap.id - Matrix.trace_mul_single š Mathlib.LinearAlgebra.Matrix.Trace
{m : Type u_9} {n : Type u_10} {R : Type u_11} [DecidableEq m] [DecidableEq n] [Fintype n] [NonUnitalNonAssocSemiring R] [Fintype m] (x : Matrix m n R) (i : n) (j : m) (a : R) : (x * Matrix.single i j a).trace = MulOpposite.op a ⢠x j i - Matrix.kronecker_diagonal š Mathlib.LinearAlgebra.Matrix.Kronecker
{α : Type u_3} {l : Type u_9} {m : Type u_10} {n : Type u_11} [MulZeroClass α] [DecidableEq n] (A : Matrix l m α) (b : n ā α) : Matrix.kroneckerMap (fun x1 x2 => x1 * x2) A (Matrix.diagonal b) = Matrix.blockDiagonal fun i => MulOpposite.op (b i) ⢠A - Matrix.kronecker_ofNat š Mathlib.LinearAlgebra.Matrix.Kronecker
{α : Type u_3} {l : Type u_9} {m : Type u_10} {n : Type u_11} [NonAssocSemiring α] [DecidableEq n] (A : Matrix l m α) (b : ā) [b.AtLeastTwo] : Matrix.kroneckerMap (fun x1 x2 => x1 * x2) A (OfNat.ofNat b) = Matrix.blockDiagonal fun x => MulOpposite.op (OfNat.ofNat b) ⢠A - Matrix.instModuleMulOppositeForall š Mathlib.Data.Matrix.Action
{n : Type u_1} {R : Type u_2} [Fintype n] [DecidableEq n] [Semiring R] : Module (Matrix n n R)įµįµįµ (n ā R) - Matrix.op_smul_eq_vecMul š Mathlib.Data.Matrix.Action
{n : Type u_1} {R : Type u_2} [Fintype n] [DecidableEq n] [Semiring R] (A : (Matrix n n R)įµįµįµ) (v : n ā R) : A ⢠v = Matrix.vecMul v (MulOpposite.unop A) - Matrix.instSMulCommClassMulOppositeForallOfIsScalarTower š Mathlib.Data.Matrix.Action
{n : Type u_1} {R : Type u_2} {S : Type u_3} [Fintype n] [DecidableEq n] [Semiring R] [DistribSMul S R] [IsScalarTower S R R] : SMulCommClass (Matrix n n R)įµįµįµ S (n ā R) - Matrix.instSMulCommClassMulOppositeForallOfIsScalarTower_1 š Mathlib.Data.Matrix.Action
{n : Type u_1} {R : Type u_2} {S : Type u_3} [Fintype n] [DecidableEq n] [Semiring R] [DistribSMul S R] [IsScalarTower S R R] : SMulCommClass S (Matrix n n R)įµįµįµ (n ā R) - Matrix.instIsScalarTowerMulOppositeForallOfSMulCommClass š Mathlib.Data.Matrix.Action
{n : Type u_1} {R : Type u_2} {S : Type u_3} [Fintype n] [DecidableEq n] [Semiring R] [DistribSMul S R] [SMulCommClass S R R] : IsScalarTower S (Matrix n n R)įµįµįµ (n ā R) - IsSimpleRing.exists_ringEquiv_matrix_end_mulOpposite š Mathlib.RingTheory.SimpleModule.WedderburnArtin
(R : Type u) [Ring R] [IsSimpleRing R] [IsArtinianRing R] : ā n, ā (_ : NeZero n), ā I, ā (_ : IsSimpleModule R ā„I), Nonempty (R ā+* Matrix (Fin n) (Fin n) (Module.End R ā„I)įµįµįµ) - IsSemisimpleRing.exists_ringEquiv_pi_matrix_end_mulOpposite š Mathlib.RingTheory.SimpleModule.WedderburnArtin
(R : Type u) [Ring R] [IsSemisimpleRing R] : ā n D d, (ā (i : Fin n), IsSimpleModule R ā„(D i)) ā§ (ā (i : Fin n), NeZero (d i)) ā§ Nonempty (R ā+* ((i : Fin n) ā Matrix (Fin (d i)) (Fin (d i)) (Module.End R ā„(D i))įµįµįµ)) - IsSimpleRing.exists_algEquiv_matrix_end_mulOpposite š Mathlib.RingTheory.SimpleModule.WedderburnArtin
(Rā : Type u_1) (R : Type u) [CommSemiring Rā] [Ring R] [Algebra Rā R] [IsSimpleRing R] [IsArtinianRing R] : ā n, ā (_ : NeZero n), ā I, ā (_ : IsSimpleModule R ā„I), Nonempty (R āā[Rā] Matrix (Fin n) (Fin n) (Module.End R ā„I)įµįµįµ) - IsSemisimpleRing.exists_algEquiv_pi_matrix_end_mulOpposite š Mathlib.RingTheory.SimpleModule.WedderburnArtin
(Rā : Type u_1) (R : Type u) [CommSemiring Rā] [Ring R] [Algebra Rā R] [IsSemisimpleRing R] : ā n S d, (ā (i : Fin n), IsSimpleModule R ā„(S i)) ā§ (ā (i : Fin n), NeZero (d i)) ā§ Nonempty (R āā[Rā] (i : Fin n) ā Matrix (Fin (d i)) (Fin (d i)) (Module.End R ā„(S i))įµįµįµ)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
šReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
š"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
š_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
šReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
š(?a -> ?b) -> List ?a -> List ?b
šList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
š|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allāandā) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
š|- _ < _ ā tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
š Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ ā _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 187ba29 serving mathlib revision 33700d7