Loogle!
Result
Found 14 declarations mentioning Matrix.GeneralLinearGroup.map.
- Matrix.GeneralLinearGroup.map ๐ Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.Defs
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R โ+* S) : GL n R โ* GL n S - Matrix.GeneralLinearGroup.map_id ๐ Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.Defs
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] : Matrix.GeneralLinearGroup.map (RingHom.id R) = MonoidHom.id (GL n R) - Matrix.GeneralLinearGroup.map.eq_1 ๐ Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.Defs
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R โ+* S) : Matrix.GeneralLinearGroup.map f = Units.map โf.mapMatrix - Matrix.GeneralLinearGroup.map_comp ๐ Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.Defs
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} {T : Type u_2} [CommRing S] [CommRing T] (f : T โ+* R) (g : R โ+* S) : Matrix.GeneralLinearGroup.map (g.comp f) = (Matrix.GeneralLinearGroup.map g).comp (Matrix.GeneralLinearGroup.map f) - Matrix.GeneralLinearGroup.map_one ๐ Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.Defs
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R โ+* S) : (Matrix.GeneralLinearGroup.map f) 1 = 1 - Matrix.GeneralLinearGroup.map_apply ๐ Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.Defs
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R โ+* S) (i j : n) (g : GL n R) : โ((Matrix.GeneralLinearGroup.map f) g) i j = f (โg i j) - Matrix.GeneralLinearGroup.val_map_apply ๐ Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.Defs
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R โ+* S) (u : (Matrix n n R)หฃ) : โ((Matrix.GeneralLinearGroup.map f) u) = (โu).map โf - Matrix.GeneralLinearGroup.map_inv ๐ Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.Defs
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R โ+* S) (g : GL n R) : (Matrix.GeneralLinearGroup.map f) gโปยน = ((Matrix.GeneralLinearGroup.map f) g)โปยน - Matrix.GeneralLinearGroup.map_inv_mul_map ๐ Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.Defs
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R โ+* S) (g : GL n R) : (Matrix.GeneralLinearGroup.map f) gโปยน * (Matrix.GeneralLinearGroup.map f) g = 1 - Matrix.GeneralLinearGroup.map_mul_map_inv ๐ Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.Defs
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R โ+* S) (g : GL n R) : (Matrix.GeneralLinearGroup.map f) g * (Matrix.GeneralLinearGroup.map f) gโปยน = 1 - Matrix.GeneralLinearGroup.map_mul ๐ Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.Defs
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R โ+* S) (g h : GL n R) : (Matrix.GeneralLinearGroup.map f) (g * h) = (Matrix.GeneralLinearGroup.map f) g * (Matrix.GeneralLinearGroup.map f) h - Matrix.GeneralLinearGroup.map_comp_apply ๐ Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.Defs
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} {T : Type u_2} [CommRing S] [CommRing T] (f : T โ+* R) (g : R โ+* S) (x : GL n T) : ((Matrix.GeneralLinearGroup.map g).comp (Matrix.GeneralLinearGroup.map f)) x = (Matrix.GeneralLinearGroup.map g) ((Matrix.GeneralLinearGroup.map f) x) - Matrix.GeneralLinearGroup.map_det ๐ Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.Defs
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R โ+* S) (g : GL n R) : Matrix.GeneralLinearGroup.det ((Matrix.GeneralLinearGroup.map f) g) = (Units.map โf) (Matrix.GeneralLinearGroup.det g) - Matrix.GeneralLinearGroup.map_swap ๐ Mathlib.LinearAlgebra.Matrix.Swap
{R : Type u_1} {n : Type u_2} [CommRing R] [DecidableEq n] [Fintype n] {S : Type u_3} [CommRing S] (f : R โ+* S) (i j : n) : (Matrix.GeneralLinearGroup.map f) (Matrix.GeneralLinearGroup.swap R i j) = Matrix.GeneralLinearGroup.swap S i j
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65