Loogle!
Result
Found 35 declarations mentioning Matrix.SpecialLinearGroup.map.
- Matrix.SpecialLinearGroup.map π Mathlib.LinearAlgebra.Matrix.SpecialLinearGroup
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R β+* S) : Matrix.SpecialLinearGroup n R β* Matrix.SpecialLinearGroup n S - Matrix.SpecialLinearGroup.map_intCast_injective π Mathlib.LinearAlgebra.Matrix.SpecialLinearGroup
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] [CharZero R] : Function.Injective β(Matrix.SpecialLinearGroup.map (Int.castRingHom R)) - Matrix.SpecialLinearGroup.coe_matrix_coe π Mathlib.LinearAlgebra.Matrix.SpecialLinearGroup
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (g : Matrix.SpecialLinearGroup n β€) : β((Matrix.SpecialLinearGroup.map (Int.castRingHom R)) g) = (βg).map β(Int.castRingHom R) - Matrix.SpecialLinearGroup.map_intCast_inj π Mathlib.LinearAlgebra.Matrix.SpecialLinearGroup
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] [CharZero R] {x y : Matrix.SpecialLinearGroup n β€} : (Matrix.SpecialLinearGroup.map (Int.castRingHom R)) x = (Matrix.SpecialLinearGroup.map (Int.castRingHom R)) y β x = y - Matrix.SpecialLinearGroup.coe_int_neg π Mathlib.LinearAlgebra.Matrix.SpecialLinearGroup
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] [Fact (Even (Fintype.card n))] (g : Matrix.SpecialLinearGroup n β€) : (Matrix.SpecialLinearGroup.map (Int.castRingHom R)) (-g) = -(Matrix.SpecialLinearGroup.map (Int.castRingHom R)) g - Matrix.SpecialLinearGroup.map_apply_coe π Mathlib.LinearAlgebra.Matrix.SpecialLinearGroup
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R β+* S) (g : Matrix.SpecialLinearGroup n R) : β((Matrix.SpecialLinearGroup.map f) g) = f.mapMatrix βg - Matrix.SpecialLinearGroup.mapGL.eq_1 π Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.Defs
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (S : Type u_1) [CommRing S] [Algebra R S] : Matrix.SpecialLinearGroup.mapGL S = Matrix.SpecialLinearGroup.toGL.comp (Matrix.SpecialLinearGroup.map (algebraMap R S)) - Matrix.SpecialLinearGroup.mapGL_coe_matrix π Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.Defs
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] [Algebra R S] (g : Matrix.SpecialLinearGroup n R) : β((Matrix.SpecialLinearGroup.mapGL S) g) = β((Matrix.SpecialLinearGroup.map (algebraMap R S)) g) - ModularGroup.denom_S π Mathlib.Analysis.Complex.UpperHalfPlane.MoebiusAction
(z : UpperHalfPlane) : UpperHalfPlane.denom (Matrix.SpecialLinearGroup.toGL ((Matrix.SpecialLinearGroup.map (Int.castRingHom β)) ModularGroup.S)) βz = βz - ModularGroup.im_smul_eq_div_normSq π Mathlib.Analysis.Complex.UpperHalfPlane.MoebiusAction
(g : Matrix.SpecialLinearGroup (Fin 2) β€) (z : UpperHalfPlane) : (g β’ z).im = z.im / Complex.normSq (UpperHalfPlane.denom (Matrix.SpecialLinearGroup.toGL ((Matrix.SpecialLinearGroup.map (Int.castRingHom β)) g)) βz) - ModularGroup.sl_moeb π Mathlib.Analysis.Complex.UpperHalfPlane.MoebiusAction
(g : Matrix.SpecialLinearGroup (Fin 2) β€) (z : UpperHalfPlane) : g β’ z = Matrix.SpecialLinearGroup.toGL ((Matrix.SpecialLinearGroup.map (Int.castRingHom β)) g) β’ z - ModularGroup.denom_apply π Mathlib.Analysis.Complex.UpperHalfPlane.MoebiusAction
(g : Matrix.SpecialLinearGroup (Fin 2) β€) (z : UpperHalfPlane) : UpperHalfPlane.denom (Matrix.SpecialLinearGroup.toGL ((Matrix.SpecialLinearGroup.map (Int.castRingHom β)) g)) βz = β(βg 1 0) * βz + β(βg 1 1) - ModularGroup.coe.eq_1 π Mathlib.Analysis.Complex.UpperHalfPlane.MoebiusAction
(g : Matrix.SpecialLinearGroup (Fin 2) β€) : βg = Matrix.SpecialLinearGroup.toGLPos ((Matrix.SpecialLinearGroup.map (Int.castRingHom β)) g) - ModularGroup.exists_one_half_le_im_smul_and_norm_denom_le π Mathlib.NumberTheory.Modular
(Ο : UpperHalfPlane) : β Ξ³, 1 / 2 β€ (Ξ³ β’ Ο).im β§ βUpperHalfPlane.denom (Matrix.SpecialLinearGroup.toGL ((Matrix.SpecialLinearGroup.map (Int.castRingHom β)) Ξ³)) βΟβ β€ 1 - ModularGroup.tendsto_lcRow0 π Mathlib.NumberTheory.Modular
{cd : Fin 2 β β€} (hcd : IsCoprime (cd 0) (cd 1)) : Filter.Tendsto (fun g => (ModularGroup.lcRow0 cd) β((Matrix.SpecialLinearGroup.map (Int.castRingHom β)) βg)) Filter.cofinite (Filter.cocompact β) - ModularGroup.smul_eq_lcRow0_add π Mathlib.NumberTheory.Modular
{g : Matrix.SpecialLinearGroup (Fin 2) β€} (z : UpperHalfPlane) {p : Fin 2 β β€} (hp : IsCoprime (p 0) (p 1)) (hg : βg 1 = p) : β(g β’ z) = β((ModularGroup.lcRow0 p) β((Matrix.SpecialLinearGroup.map (Int.castRingHom β)) g)) / (β(p 0) ^ 2 + β(p 1) ^ 2) + (β(p 1) * βz - β(p 0)) / ((β(p 0) ^ 2 + β(p 1) ^ 2) * (β(p 0) * βz + β(p 1))) - SL_reduction_mod_hom_val π Mathlib.NumberTheory.ModularForms.CongruenceSubgroups
(N : β) (Ξ³ : Matrix.SpecialLinearGroup (Fin 2) β€) (i j : Fin 2) : β((Matrix.SpecialLinearGroup.map (Int.castRingHom (ZMod N))) Ξ³) i j = β(βΞ³ i j) - CongruenceSubgroup.Gamma_mem' π Mathlib.NumberTheory.ModularForms.CongruenceSubgroups
{N : β} {Ξ³ : Matrix.SpecialLinearGroup (Fin 2) β€} : Ξ³ β CongruenceSubgroup.Gamma N β (Matrix.SpecialLinearGroup.map (Int.castRingHom (ZMod N))) Ξ³ = 1 - CongruenceSubgroup.exists_Gamma_le_conj π Mathlib.NumberTheory.ModularForms.CongruenceSubgroups
(g : GL (Fin 2) β) (M : β) [NeZero M] : β N, N β 0 β§ β x β CongruenceSubgroup.Gamma N, g * Matrix.SpecialLinearGroup.toGL ((Matrix.SpecialLinearGroup.map (Int.castRingHom β)) x) * gβ»ΒΉ β (fun x => Matrix.SpecialLinearGroup.toGL ((Matrix.SpecialLinearGroup.map (Int.castRingHom β)) x)) '' β(CongruenceSubgroup.Gamma M) - CongruenceSubgroup.mem_conjGL π Mathlib.NumberTheory.ModularForms.CongruenceSubgroups
{Ξ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) β€)} {g : GL (Fin 2) β} {x : Matrix.SpecialLinearGroup (Fin 2) β€} : x β CongruenceSubgroup.conjGL Ξ g β β y β Ξ, Matrix.SpecialLinearGroup.toGL ((Matrix.SpecialLinearGroup.map (Int.castRingHom β)) y) = g * Matrix.SpecialLinearGroup.toGL ((Matrix.SpecialLinearGroup.map (Int.castRingHom β)) x) * gβ»ΒΉ - CongruenceSubgroup.mem_conjGL' π Mathlib.NumberTheory.ModularForms.CongruenceSubgroups
{Ξ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) β€)} {g : GL (Fin 2) β} {x : Matrix.SpecialLinearGroup (Fin 2) β€} : x β CongruenceSubgroup.conjGL Ξ g β β y β Ξ, gβ»ΒΉ * Matrix.SpecialLinearGroup.toGL ((Matrix.SpecialLinearGroup.map (Int.castRingHom β)) y) * g = Matrix.SpecialLinearGroup.toGL ((Matrix.SpecialLinearGroup.map (Int.castRingHom β)) x) - CongruenceSubgroup.mem_conjGLPos π Mathlib.NumberTheory.ModularForms.CongruenceSubgroups
{Ξ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) β€)} {g : GL (Fin 2) β} {x : Matrix.SpecialLinearGroup (Fin 2) β€} : x β CongruenceSubgroup.conjGL Ξ g β β y β Ξ, Matrix.SpecialLinearGroup.toGL ((Matrix.SpecialLinearGroup.map (Int.castRingHom β)) y) = g * Matrix.SpecialLinearGroup.toGL ((Matrix.SpecialLinearGroup.map (Int.castRingHom β)) x) * gβ»ΒΉ - CongruenceSubgroup.mem_conjGLPos' π Mathlib.NumberTheory.ModularForms.CongruenceSubgroups
{Ξ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) β€)} {g : GL (Fin 2) β} {x : Matrix.SpecialLinearGroup (Fin 2) β€} : x β CongruenceSubgroup.conjGL Ξ g β β y β Ξ, gβ»ΒΉ * Matrix.SpecialLinearGroup.toGL ((Matrix.SpecialLinearGroup.map (Int.castRingHom β)) y) * g = Matrix.SpecialLinearGroup.toGL ((Matrix.SpecialLinearGroup.map (Int.castRingHom β)) x) - CongruenceSubgroup.conjGLPos_coe π Mathlib.NumberTheory.ModularForms.CongruenceSubgroups
(Ξ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) β€)) (g : Matrix.SpecialLinearGroup (Fin 2) β€) : CongruenceSubgroup.conjGL Ξ (Matrix.SpecialLinearGroup.toGL ((Matrix.SpecialLinearGroup.map (Int.castRingHom β)) g)) = ConjAct.toConjAct gβ»ΒΉ β’ Ξ - CongruenceSubgroup.conjGL_coe π Mathlib.NumberTheory.ModularForms.CongruenceSubgroups
(Ξ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) β€)) (g : Matrix.SpecialLinearGroup (Fin 2) β€) : CongruenceSubgroup.conjGL Ξ (Matrix.SpecialLinearGroup.toGL ((Matrix.SpecialLinearGroup.map (Int.castRingHom β)) g)) = ConjAct.toConjAct gβ»ΒΉ β’ Ξ - CongruenceSubgroup.conjGL.eq_1 π Mathlib.NumberTheory.ModularForms.CongruenceSubgroups
(Ξ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) β€)) (g : GL (Fin 2) β) : CongruenceSubgroup.conjGL Ξ g = Subgroup.comap (Matrix.SpecialLinearGroup.toGL.comp (Matrix.SpecialLinearGroup.map (Int.castRingHom β))) (ConjAct.toConjAct gβ»ΒΉ β’ Subgroup.map (Matrix.SpecialLinearGroup.toGL.comp (Matrix.SpecialLinearGroup.map (Int.castRingHom β))) Ξ) - ModularForm.is_invariant_one' π Mathlib.NumberTheory.ModularForms.SlashActions
(A : Matrix.SpecialLinearGroup (Fin 2) β€) : SlashAction.map β 0 (Matrix.SpecialLinearGroup.toGL ((Matrix.SpecialLinearGroup.map (Int.castRingHom β)) A)) 1 = 1 - ModularForm.SL_slash_apply π Mathlib.NumberTheory.ModularForms.SlashActions
{k : β€} (f : UpperHalfPlane β β) (Ξ³ : Matrix.SpecialLinearGroup (Fin 2) β€) (Ο : UpperHalfPlane) : SlashAction.map β k Ξ³ f Ο = f (Ξ³ β’ Ο) * UpperHalfPlane.denom (Matrix.SpecialLinearGroup.toGL ((Matrix.SpecialLinearGroup.map (Int.castRingHom β)) Ξ³)) βΟ ^ (-k) - ModularForm.SL_slash_def π Mathlib.NumberTheory.ModularForms.SlashActions
{k : β€} (f : UpperHalfPlane β β) (Ξ³ : Matrix.SpecialLinearGroup (Fin 2) β€) : SlashAction.map β k Ξ³ f = fun Ο => f (Ξ³ β’ Ο) * UpperHalfPlane.denom (Matrix.SpecialLinearGroup.toGL ((Matrix.SpecialLinearGroup.map (Int.castRingHom β)) Ξ³)) βΟ ^ (-k) - ModularForm.SL_slash π Mathlib.NumberTheory.ModularForms.SlashActions
{k : β€} (f : UpperHalfPlane β β) (Ξ³ : Matrix.SpecialLinearGroup (Fin 2) β€) : SlashAction.map β k Ξ³ f = SlashAction.map β k (Matrix.SpecialLinearGroup.toGL ((Matrix.SpecialLinearGroup.map (Int.castRingHom β)) Ξ³)) f - SlashInvariantForm.slash_action_eqn'' π Mathlib.NumberTheory.ModularForms.SlashInvariantForms
{F : Type u_2} [FunLike F UpperHalfPlane β] {k : β€} {Ξ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) β€)} [SlashInvariantFormClass F Ξ k] (f : F) {Ξ³ : Matrix.SpecialLinearGroup (Fin 2) β€} (hΞ³ : Ξ³ β Ξ) (z : UpperHalfPlane) : f (Ξ³ β’ z) = UpperHalfPlane.denom (Matrix.SpecialLinearGroup.toGL ((Matrix.SpecialLinearGroup.map (Int.castRingHom β)) Ξ³)) βz ^ k * f z - EisensteinSeries.gammaSetEquiv π Mathlib.NumberTheory.ModularForms.EisensteinSeries.Defs
{N : β} (a : Fin 2 β ZMod N) (Ξ³ : Matrix.SpecialLinearGroup (Fin 2) β€) : β(EisensteinSeries.gammaSet N a) β β(EisensteinSeries.gammaSet N (Matrix.vecMul a β((Matrix.SpecialLinearGroup.map (Int.castRingHom (ZMod N))) Ξ³))) - EisensteinSeries.eisensteinSeries_slash_apply π Mathlib.NumberTheory.ModularForms.EisensteinSeries.Defs
{N : β} (a : Fin 2 β ZMod N) (k : β€) (Ξ³ : Matrix.SpecialLinearGroup (Fin 2) β€) : SlashAction.map β k Ξ³ (eisensteinSeries a k) = eisensteinSeries (Matrix.vecMul a β((Matrix.SpecialLinearGroup.map (Int.castRingHom (ZMod N))) Ξ³)) k - EisensteinSeries.vecMul_SL2_mem_gammaSet π Mathlib.NumberTheory.ModularForms.EisensteinSeries.Defs
{N : β} {a : Fin 2 β ZMod N} {v : Fin 2 β β€} (hv : v β EisensteinSeries.gammaSet N a) (Ξ³ : Matrix.SpecialLinearGroup (Fin 2) β€) : Matrix.vecMul v βΞ³ β EisensteinSeries.gammaSet N (Matrix.vecMul a β((Matrix.SpecialLinearGroup.map (Int.castRingHom (ZMod N))) Ξ³)) - EisensteinSeries.eisSummand_SL2_apply π Mathlib.NumberTheory.ModularForms.EisensteinSeries.Defs
(k : β€) (i : Fin 2 β β€) (A : Matrix.SpecialLinearGroup (Fin 2) β€) (z : UpperHalfPlane) : EisensteinSeries.eisSummand k i (A β’ z) = UpperHalfPlane.denom (Matrix.SpecialLinearGroup.toGL ((Matrix.SpecialLinearGroup.map (Int.castRingHom β)) A)) βz ^ k * EisensteinSeries.eisSummand k (Matrix.vecMul i βA) z
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 2c2d6a2
serving mathlib revision 9805e0b