Loogle!
Result
Found 12 declarations mentioning Matrix.SpecialLinearGroup.map.
- Matrix.SpecialLinearGroup.map 📋 Mathlib.LinearAlgebra.Matrix.SpecialLinearGroup
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R →+* S) : Matrix.SpecialLinearGroup n R →* Matrix.SpecialLinearGroup n S - Matrix.SpecialLinearGroup.coe_matrix_coe 📋 Mathlib.LinearAlgebra.Matrix.SpecialLinearGroup
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (g : Matrix.SpecialLinearGroup n ℤ) : ↑((Matrix.SpecialLinearGroup.map (Int.castRingHom R)) g) = (↑g).map ⇑(Int.castRingHom R) - Matrix.SpecialLinearGroup.coe_int_neg 📋 Mathlib.LinearAlgebra.Matrix.SpecialLinearGroup
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] [Fact (Even (Fintype.card n))] (g : Matrix.SpecialLinearGroup n ℤ) : (Matrix.SpecialLinearGroup.map (Int.castRingHom R)) (-g) = -(Matrix.SpecialLinearGroup.map (Int.castRingHom R)) g - Matrix.SpecialLinearGroup.map_apply_coe 📋 Mathlib.LinearAlgebra.Matrix.SpecialLinearGroup
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {S : Type u_1} [CommRing S] (f : R →+* S) (g : Matrix.SpecialLinearGroup n R) : ↑((Matrix.SpecialLinearGroup.map f) g) = f.mapMatrix ↑g - ModularGroup.coe.eq_1 📋 Mathlib.Analysis.Complex.UpperHalfPlane.MoebiusAction
(g : Matrix.SpecialLinearGroup (Fin 2) ℤ) : ↑g = Matrix.SpecialLinearGroup.toGLPos ((Matrix.SpecialLinearGroup.map (Int.castRingHom ℝ)) g) - ModularGroup.tendsto_lcRow0 📋 Mathlib.NumberTheory.Modular
{cd : Fin 2 → ℤ} (hcd : IsCoprime (cd 0) (cd 1)) : Filter.Tendsto (fun g => (ModularGroup.lcRow0 cd) ↑((Matrix.SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g)) Filter.cofinite (Filter.cocompact ℝ) - ModularGroup.smul_eq_lcRow0_add 📋 Mathlib.NumberTheory.Modular
{g : Matrix.SpecialLinearGroup (Fin 2) ℤ} (z : UpperHalfPlane) {p : Fin 2 → ℤ} (hp : IsCoprime (p 0) (p 1)) (hg : ↑g 1 = p) : ↑(g • z) = ↑((ModularGroup.lcRow0 p) ↑((Matrix.SpecialLinearGroup.map (Int.castRingHom ℝ)) g)) / (↑(p 0) ^ 2 + ↑(p 1) ^ 2) + (↑(p 1) * ↑z - ↑(p 0)) / ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * (↑(p 0) * ↑z + ↑(p 1))) - SL_reduction_mod_hom_val 📋 Mathlib.NumberTheory.ModularForms.CongruenceSubgroups
(N : ℕ) (γ : Matrix.SpecialLinearGroup (Fin 2) ℤ) (i j : Fin 2) : ↑((Matrix.SpecialLinearGroup.map (Int.castRingHom (ZMod N))) γ) i j = ↑(↑γ i j) - CongruenceSubgroup.Gamma_mem' 📋 Mathlib.NumberTheory.ModularForms.CongruenceSubgroups
{N : ℕ} {γ : Matrix.SpecialLinearGroup (Fin 2) ℤ} : γ ∈ CongruenceSubgroup.Gamma N ↔ (Matrix.SpecialLinearGroup.map (Int.castRingHom (ZMod N))) γ = 1 - EisensteinSeries.gammaSetEquiv 📋 Mathlib.NumberTheory.ModularForms.EisensteinSeries.Defs
{N : ℕ} (a : Fin 2 → ZMod N) (γ : Matrix.SpecialLinearGroup (Fin 2) ℤ) : ↑(EisensteinSeries.gammaSet N a) ≃ ↑(EisensteinSeries.gammaSet N (Matrix.vecMul a ↑((Matrix.SpecialLinearGroup.map (Int.castRingHom (ZMod N))) γ))) - EisensteinSeries.eisensteinSeries_slash_apply 📋 Mathlib.NumberTheory.ModularForms.EisensteinSeries.Defs
{N : ℕ} (a : Fin 2 → ZMod N) (k : ℤ) (γ : Matrix.SpecialLinearGroup (Fin 2) ℤ) : SlashAction.map ℂ k γ (eisensteinSeries a k) = eisensteinSeries (Matrix.vecMul a ↑((Matrix.SpecialLinearGroup.map (Int.castRingHom (ZMod N))) γ)) k - EisensteinSeries.vecMul_SL2_mem_gammaSet 📋 Mathlib.NumberTheory.ModularForms.EisensteinSeries.Defs
{N : ℕ} {a : Fin 2 → ZMod N} {v : Fin 2 → ℤ} (hv : v ∈ EisensteinSeries.gammaSet N a) (γ : Matrix.SpecialLinearGroup (Fin 2) ℤ) : Matrix.vecMul v ↑γ ∈ EisensteinSeries.gammaSet N (Matrix.vecMul a ↑((Matrix.SpecialLinearGroup.map (Int.castRingHom (ZMod N))) γ))
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65