Loogle!
Result
Found 62 declarations mentioning IsUnit and Matrix.det.
- Matrix.isUnit_det_transpose 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{n : Type u'} {α : Type v} [Fintype n] [DecidableEq n] [CommRing α] (A : Matrix n n α) (h : IsUnit A.det) : IsUnit A.transpose.det - Matrix.nonsingInvUnit 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{n : Type u'} {α : Type v} [Fintype n] [DecidableEq n] [CommRing α] (A : Matrix n n α) (h : IsUnit A.det) : (Matrix n n α)ˣ - Matrix.isUnit_iff_isUnit_det 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{n : Type u'} {α : Type v} [Fintype n] [DecidableEq n] [CommRing α] (A : Matrix n n α) : IsUnit A ↔ IsUnit A.det - Matrix.isUnit_nonsing_inv_det 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{n : Type u'} {α : Type v} [Fintype n] [DecidableEq n] [CommRing α] (A : Matrix n n α) (h : IsUnit A.det) : IsUnit A⁻¹.det - Matrix.nonsing_inv_nonsing_inv 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{n : Type u'} {α : Type v} [Fintype n] [DecidableEq n] [CommRing α] (A : Matrix n n α) (h : IsUnit A.det) : A⁻¹⁻¹ = A - Matrix.isUnit_nonsing_inv_det_iff 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{n : Type u'} {α : Type v} [Fintype n] [DecidableEq n] [CommRing α] {A : Matrix n n α} : IsUnit A⁻¹.det ↔ IsUnit A.det - Matrix.inv_inj 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{n : Type u'} {α : Type v} [Fintype n] [DecidableEq n] [CommRing α] {A B : Matrix n n α} (h : A⁻¹ = B⁻¹) (h' : IsUnit A.det) : A = B - Matrix.isUnits_det_units 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{n : Type u'} {α : Type v} [Fintype n] [DecidableEq n] [CommRing α] (A : (Matrix n n α)ˣ) : IsUnit (↑A).det - Matrix.nonsing_inv_apply_not_isUnit 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{n : Type u'} {α : Type v} [Fintype n] [DecidableEq n] [CommRing α] (A : Matrix n n α) (h : ¬IsUnit A.det) : A⁻¹ = 0 - Matrix.det_nonsing_inv_mul_det 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{n : Type u'} {α : Type v} [Fintype n] [DecidableEq n] [CommRing α] (A : Matrix n n α) (h : IsUnit A.det) : A⁻¹.det * A.det = 1 - Matrix.invertibleOfIsUnitDet 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{n : Type u'} {α : Type v} [Fintype n] [DecidableEq n] [CommRing α] (A : Matrix n n α) (h : IsUnit A.det) : Invertible A - Matrix.isUnit_det_of_invertible 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{n : Type u'} {α : Type v} [Fintype n] [DecidableEq n] [CommRing α] (A : Matrix n n α) [Invertible A] : IsUnit A.det - Matrix.isUnit_det_of_left_inverse 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{n : Type u'} {α : Type v} [Fintype n] [DecidableEq n] [CommRing α] {A B : Matrix n n α} (h : B * A = 1) : IsUnit A.det - Matrix.isUnit_det_of_right_inverse 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{n : Type u'} {α : Type v} [Fintype n] [DecidableEq n] [CommRing α] {A B : Matrix n n α} (h : A * B = 1) : IsUnit A.det - Matrix.mul_nonsing_inv 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{n : Type u'} {α : Type v} [Fintype n] [DecidableEq n] [CommRing α] (A : Matrix n n α) (h : IsUnit A.det) : A * A⁻¹ = 1 - Matrix.nonsing_inv_mul 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{n : Type u'} {α : Type v} [Fintype n] [DecidableEq n] [CommRing α] (A : Matrix n n α) (h : IsUnit A.det) : A⁻¹ * A = 1 - Matrix.mul_nonsing_inv_cancel_left 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{m : Type u} {n : Type u'} {α : Type v} [Fintype n] [DecidableEq n] [CommRing α] (A : Matrix n n α) (B : Matrix n m α) (h : IsUnit A.det) : A * (A⁻¹ * B) = B - Matrix.mul_nonsing_inv_cancel_right 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{m : Type u} {n : Type u'} {α : Type v} [Fintype n] [DecidableEq n] [CommRing α] (A : Matrix n n α) (B : Matrix m n α) (h : IsUnit A.det) : B * A * A⁻¹ = B - Matrix.nonsing_inv_mul_cancel_left 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{m : Type u} {n : Type u'} {α : Type v} [Fintype n] [DecidableEq n] [CommRing α] (A : Matrix n n α) (B : Matrix n m α) (h : IsUnit A.det) : A⁻¹ * (A * B) = B - Matrix.nonsing_inv_mul_cancel_right 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{m : Type u} {n : Type u'} {α : Type v} [Fintype n] [DecidableEq n] [CommRing α] (A : Matrix n n α) (B : Matrix m n α) (h : IsUnit A.det) : B * A⁻¹ * A = B - Matrix.nonsing_inv_apply 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{n : Type u'} {α : Type v} [Fintype n] [DecidableEq n] [CommRing α] (A : Matrix n n α) (h : IsUnit A.det) : A⁻¹ = ↑h.unit⁻¹ • A.adjugate - Matrix.det_conj 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{m : Type u} {α : Type v} [CommRing α] [Fintype m] [DecidableEq m] {M : Matrix m m α} (h : IsUnit M) (N : Matrix m m α) : (M * N * M⁻¹).det = N.det - Matrix.det_conj' 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{m : Type u} {α : Type v} [CommRing α] [Fintype m] [DecidableEq m] {M : Matrix m m α} (h : IsUnit M) (N : Matrix m m α) : (M⁻¹ * N * M).det = N.det - Matrix.inv_adjugate 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{n : Type u'} {α : Type v} [Fintype n] [DecidableEq n] [CommRing α] (A : Matrix n n α) (h : IsUnit A.det) : A.adjugate⁻¹ = h.unit⁻¹ • A - Matrix.inv_smul 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{n : Type u'} {α : Type v} [Fintype n] [DecidableEq n] [CommRing α] (A : Matrix n n α) (k : α) [Invertible k] (h : IsUnit A.det) : (k • A)⁻¹ = ⅟ k • A⁻¹ - Matrix.inv_smul' 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{n : Type u'} {α : Type v} [Fintype n] [DecidableEq n] [CommRing α] (A : Matrix n n α) (k : αˣ) (h : IsUnit A.det) : (k • A)⁻¹ = k⁻¹ • A⁻¹ - Matrix.det_smul_inv_mulVec_eq_cramer 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{n : Type u'} {α : Type v} [Fintype n] [DecidableEq n] [CommRing α] (A : Matrix n n α) (b : n → α) (h : IsUnit A.det) : A.det • A⁻¹.mulVec b = A.cramer b - Matrix.det_smul_inv_vecMul_eq_cramer_transpose 📋 Mathlib.LinearAlgebra.Matrix.NonsingularInverse
{n : Type u'} {α : Type v} [Fintype n] [DecidableEq n] [CommRing α] (A : Matrix n n α) (b : n → α) (h : IsUnit A.det) : A.det • Matrix.vecMul b A⁻¹ = A.transpose.cramer b - Matrix.SpecialLinearGroup.fin_two_exists_eq_mk_of_apply_zero_one_eq_zero 📋 Mathlib.LinearAlgebra.Matrix.SpecialLinearGroup
{R : Type u_2} [Field R] (g : Matrix.SpecialLinearGroup (Fin 2) R) (hg : ↑g 1 0 = 0) : ∃ a b, ∃ (h : a ≠ 0), g = ⟨!![a, b; 0, a⁻¹], ⋯⟩ - Matrix.GeneralLinearGroup.mk'' 📋 Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup.Defs
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (A : Matrix n n R) (h : IsUnit A.det) : GL n R - Matrix.toLinearEquiv 📋 Mathlib.LinearAlgebra.Matrix.ToLinearEquiv
{n : Type u_1} [Fintype n] {R : Type u_2} {M : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] (b : Basis n R M) [DecidableEq n] (A : Matrix n n R) (hA : IsUnit A.det) : M ≃ₗ[R] M - Matrix.toLinearEquiv_apply 📋 Mathlib.LinearAlgebra.Matrix.ToLinearEquiv
{n : Type u_1} [Fintype n] {R : Type u_2} {M : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] (b : Basis n R M) [DecidableEq n] (A : Matrix n n R) (hA : IsUnit A.det) (a : M) : (Matrix.toLinearEquiv b A hA) a = ((Matrix.toLin b b) A) a - Matrix.ker_toLin_eq_bot 📋 Mathlib.LinearAlgebra.Matrix.ToLinearEquiv
{n : Type u_1} [Fintype n] {R : Type u_2} {M : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] (b : Basis n R M) [DecidableEq n] (A : Matrix n n R) (hA : IsUnit A.det) : LinearMap.ker ((Matrix.toLin b b) A) = ⊥ - Matrix.range_toLin_eq_top 📋 Mathlib.LinearAlgebra.Matrix.ToLinearEquiv
{n : Type u_1} [Fintype n] {R : Type u_2} {M : Type u_3} [CommRing R] [AddCommGroup M] [Module R M] (b : Basis n R M) [DecidableEq n] (A : Matrix n n R) (hA : IsUnit A.det) : LinearMap.range ((Matrix.toLin b b) A) = ⊤ - LinearEquiv.ofIsUnitDet 📋 Mathlib.LinearAlgebra.Determinant
{R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {M' : Type u_3} [AddCommGroup M'] [Module R M'] {ι : Type u_4} [DecidableEq ι] [Fintype ι] {f : M →ₗ[R] M'} {v : Basis ι R M} {v' : Basis ι R M'} (h : IsUnit ((LinearMap.toMatrix v v') f).det) : M ≃ₗ[R] M' - LinearEquiv.isUnit_det 📋 Mathlib.LinearAlgebra.Determinant
{R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {M' : Type u_3} [AddCommGroup M'] [Module R M'] {ι : Type u_4} [DecidableEq ι] [Fintype ι] (f : M ≃ₗ[R] M') (v : Basis ι R M) (v' : Basis ι R M') : IsUnit ((LinearMap.toMatrix v v') ↑f).det - LinearEquiv.coe_ofIsUnitDet 📋 Mathlib.LinearAlgebra.Determinant
{R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {M' : Type u_3} [AddCommGroup M'] [Module R M'] {ι : Type u_4} [DecidableEq ι] [Fintype ι] {f : M →ₗ[R] M'} {v : Basis ι R M} {v' : Basis ι R M'} (h : IsUnit ((LinearMap.toMatrix v v') f).det) : ↑(LinearEquiv.ofIsUnitDet h) = f - LinearEquiv.ofIsUnitDet_apply 📋 Mathlib.LinearAlgebra.Determinant
{R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {M' : Type u_3} [AddCommGroup M'] [Module R M'] {ι : Type u_4} [DecidableEq ι] [Fintype ι] {f : M →ₗ[R] M'} {v : Basis ι R M} {v' : Basis ι R M'} (h : IsUnit ((LinearMap.toMatrix v v') f).det) (a : M) : (LinearEquiv.ofIsUnitDet h) a = f a - LinearEquiv.ofIsUnitDet_symm_apply 📋 Mathlib.LinearAlgebra.Determinant
{R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {M' : Type u_3} [AddCommGroup M'] [Module R M'] {ι : Type u_4} [DecidableEq ι] [Fintype ι] {f : M →ₗ[R] M'} {v : Basis ι R M} {v' : Basis ι R M'} (h : IsUnit ((LinearMap.toMatrix v v') f).det) (a : M') : (LinearEquiv.ofIsUnitDet h).symm a = ((Matrix.toLin v' v) ((LinearMap.toMatrix v v') f)⁻¹) a - Matrix.isUnit_det_J 📋 Mathlib.LinearAlgebra.SymplecticGroup
(l : Type u_1) (R : Type u_2) [DecidableEq l] [CommRing R] [Fintype l] : IsUnit (Matrix.J l R).det - SymplecticGroup.symplectic_det 📋 Mathlib.LinearAlgebra.SymplecticGroup
{l : Type u_1} {R : Type u_2} [DecidableEq l] [Fintype l] [CommRing R] {A : Matrix (l ⊕ l) (l ⊕ l) R} (hA : A ∈ Matrix.symplecticGroup l R) : IsUnit A.det - Matrix.UnitaryGroup.det_isUnit 📋 Mathlib.LinearAlgebra.UnitaryGroup
{n : Type u} [DecidableEq n] [Fintype n] {α : Type v} [CommRing α] [StarRing α] (A : ↥(Matrix.unitaryGroup n α)) : IsUnit (↑A).det - IsUnit.det_zpow 📋 Mathlib.LinearAlgebra.Matrix.ZPow
{n' : Type u_1} [DecidableEq n'] [Fintype n'] {R : Type u_2} [CommRing R] {A : Matrix n' n' R} (h : IsUnit A.det) (n : ℤ) : IsUnit (A ^ n).det - Matrix.isUnit_det_zpow_iff 📋 Mathlib.LinearAlgebra.Matrix.ZPow
{n' : Type u_1} [DecidableEq n'] [Fintype n'] {R : Type u_2} [CommRing R] {A : Matrix n' n' R} {z : ℤ} : IsUnit (A ^ z).det ↔ IsUnit A.det ∨ z = 0 - Matrix.zpow_ne_zero_of_isUnit_det 📋 Mathlib.LinearAlgebra.Matrix.ZPow
{n' : Type u_1} [DecidableEq n'] [Fintype n'] {R : Type u_2} [CommRing R] [Nonempty n'] [Nontrivial R] {A : Matrix n' n' R} (ha : IsUnit A.det) (z : ℤ) : A ^ z ≠ 0 - Matrix.inv_zpow' 📋 Mathlib.LinearAlgebra.Matrix.ZPow
{n' : Type u_1} [DecidableEq n'] [Fintype n'] {R : Type u_2} [CommRing R] {A : Matrix n' n' R} (h : IsUnit A.det) (n : ℤ) : A⁻¹ ^ n = A ^ (-n) - Matrix.zpow_neg 📋 Mathlib.LinearAlgebra.Matrix.ZPow
{n' : Type u_1} [DecidableEq n'] [Fintype n'] {R : Type u_2} [CommRing R] {A : Matrix n' n' R} (h : IsUnit A.det) (n : ℤ) : A ^ (-n) = (A ^ n)⁻¹ - Matrix.zpow_mul 📋 Mathlib.LinearAlgebra.Matrix.ZPow
{n' : Type u_1} [DecidableEq n'] [Fintype n'] {R : Type u_2} [CommRing R] (A : Matrix n' n' R) (h : IsUnit A.det) (m n : ℤ) : A ^ (m * n) = (A ^ m) ^ n - Matrix.zpow_mul' 📋 Mathlib.LinearAlgebra.Matrix.ZPow
{n' : Type u_1} [DecidableEq n'] [Fintype n'] {R : Type u_2} [CommRing R] (A : Matrix n' n' R) (h : IsUnit A.det) (m n : ℤ) : A ^ (m * n) = (A ^ n) ^ m - Matrix.zpow_add_one 📋 Mathlib.LinearAlgebra.Matrix.ZPow
{n' : Type u_1} [DecidableEq n'] [Fintype n'] {R : Type u_2} [CommRing R] {A : Matrix n' n' R} (h : IsUnit A.det) (n : ℤ) : A ^ (n + 1) = A ^ n * A - Matrix.zpow_one_add 📋 Mathlib.LinearAlgebra.Matrix.ZPow
{n' : Type u_1} [DecidableEq n'] [Fintype n'] {R : Type u_2} [CommRing R] {A : Matrix n' n' R} (h : IsUnit A.det) (i : ℤ) : A ^ (1 + i) = A * A ^ i - Matrix.zpow_sub 📋 Mathlib.LinearAlgebra.Matrix.ZPow
{n' : Type u_1} [DecidableEq n'] [Fintype n'] {R : Type u_2} [CommRing R] {A : Matrix n' n' R} (ha : IsUnit A.det) (z1 z2 : ℤ) : A ^ (z1 - z2) = A ^ z1 / A ^ z2 - Matrix.zpow_sub_one 📋 Mathlib.LinearAlgebra.Matrix.ZPow
{n' : Type u_1} [DecidableEq n'] [Fintype n'] {R : Type u_2} [CommRing R] {A : Matrix n' n' R} (h : IsUnit A.det) (n : ℤ) : A ^ (n - 1) = A ^ n * A⁻¹ - Matrix.zpow_add 📋 Mathlib.LinearAlgebra.Matrix.ZPow
{n' : Type u_1} [DecidableEq n'] [Fintype n'] {R : Type u_2} [CommRing R] {A : Matrix n' n' R} (ha : IsUnit A.det) (m n : ℤ) : A ^ (m + n) = A ^ m * A ^ n - Matrix.zpow_neg_mul_zpow_self 📋 Mathlib.LinearAlgebra.Matrix.ZPow
{n' : Type u_1} [DecidableEq n'] [Fintype n'] {R : Type u_2} [CommRing R] (n : ℤ) {A : Matrix n' n' R} (h : IsUnit A.det) : A ^ (-n) * A ^ n = 1 - Matrix.SemiconjBy.zpow_right 📋 Mathlib.LinearAlgebra.Matrix.ZPow
{n' : Type u_1} [DecidableEq n'] [Fintype n'] {R : Type u_2} [CommRing R] {A X Y : Matrix n' n' R} (hx : IsUnit X.det) (hy : IsUnit Y.det) (h : SemiconjBy A X Y) (m : ℤ) : SemiconjBy A (X ^ m) (Y ^ m) - Matrix.pow_sub' 📋 Mathlib.LinearAlgebra.Matrix.ZPow
{n' : Type u_1} [DecidableEq n'] [Fintype n'] {R : Type u_2} [CommRing R] (A : Matrix n' n' R) {m n : ℕ} (ha : IsUnit A.det) (h : n ≤ m) : A ^ (m - n) = A ^ m * (A ^ n)⁻¹ - Matrix.rank_mul_eq_left_of_isUnit_det 📋 Mathlib.Data.Matrix.Rank
{m : Type um} {n : Type un} {R : Type uR} [Fintype n] [CommRing R] [DecidableEq n] (A : Matrix n n R) (B : Matrix m n R) (hA : IsUnit A.det) : (B * A).rank = B.rank - Matrix.rank_mul_eq_right_of_isUnit_det 📋 Mathlib.Data.Matrix.Rank
{m : Type um} {n : Type un} {R : Type uR} [Fintype n] [CommRing R] [Fintype m] [DecidableEq m] (A : Matrix m m R) (B : Matrix m n R) (hA : IsUnit A.det) : (A * B).rank = B.rank - Matrix.det_add_mul 📋 Mathlib.LinearAlgebra.Matrix.SchurComplement
{m : Type u_2} {n : Type u_3} {α : Type u_4} [Fintype m] [Fintype n] [DecidableEq m] [DecidableEq n] [CommRing α] {A : Matrix m m α} (U : Matrix m n α) (V : Matrix n m α) (hA : IsUnit A.det) : (A + U * V).det = A.det * (1 + V * A⁻¹ * U).det - Matrix.det_add_col_mul_row 📋 Mathlib.LinearAlgebra.Matrix.SchurComplement
{m : Type u_2} {α : Type u_4} [Fintype m] [DecidableEq m] [CommRing α] {ι : Type u_5} [Unique ι] {A : Matrix m m α} (hA : IsUnit A.det) (u v : m → α) : (A + Matrix.replicateCol ι u * Matrix.replicateRow ι v).det = A.det * (1 + Matrix.replicateRow ι v * A⁻¹ * Matrix.replicateCol ι u).det - Matrix.det_add_replicateCol_mul_replicateRow 📋 Mathlib.LinearAlgebra.Matrix.SchurComplement
{m : Type u_2} {α : Type u_4} [Fintype m] [DecidableEq m] [CommRing α] {ι : Type u_5} [Unique ι] {A : Matrix m m α} (hA : IsUnit A.det) (u v : m → α) : (A + Matrix.replicateCol ι u * Matrix.replicateRow ι v).det = A.det * (1 + Matrix.replicateRow ι v * A⁻¹ * Matrix.replicateCol ι u).det
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65