Loogle!
Result
Found 63 declarations mentioning Matrix.toLin'.
- Matrix.toLin' π Mathlib.LinearAlgebra.Matrix.ToLin
{R : Type u_1} [CommSemiring R] {m : Type u_4} {n : Type u_5} [DecidableEq n] [Fintype n] : Matrix m n R ββ[R] (n β R) ββ[R] m β R - Matrix.toLin_eq_toLin' π Mathlib.LinearAlgebra.Matrix.ToLin
{R : Type u_1} [CommSemiring R] {m : Type u_3} {n : Type u_4} [Fintype n] [Finite m] [DecidableEq n] : Matrix.toLin (Pi.basisFun R n) (Pi.basisFun R m) = Matrix.toLin' - LinearMap.toMatrix'_symm π Mathlib.LinearAlgebra.Matrix.ToLin
{R : Type u_1} [CommSemiring R] {m : Type u_4} {n : Type u_5} [DecidableEq n] [Fintype n] : LinearMap.toMatrix'.symm = Matrix.toLin' - Matrix.toLin'_symm π Mathlib.LinearAlgebra.Matrix.ToLin
{R : Type u_1} [CommSemiring R] {m : Type u_4} {n : Type u_5} [DecidableEq n] [Fintype n] : Matrix.toLin'.symm = LinearMap.toMatrix' - Matrix.toLin'_apply' π Mathlib.LinearAlgebra.Matrix.ToLin
{R : Type u_1} [CommSemiring R] {m : Type u_4} {n : Type u_5} [DecidableEq n] [Fintype n] (M : Matrix m n R) : Matrix.toLin' M = M.mulVecLin - Matrix.toLin'_one π Mathlib.LinearAlgebra.Matrix.ToLin
{R : Type u_1} [CommSemiring R] {n : Type u_5} [DecidableEq n] [Fintype n] : Matrix.toLin' 1 = LinearMap.id - Matrix.toLin'_apply π Mathlib.LinearAlgebra.Matrix.ToLin
{R : Type u_1} [CommSemiring R] {m : Type u_4} {n : Type u_5} [DecidableEq n] [Fintype n] (M : Matrix m n R) (v : n β R) : (Matrix.toLin' M) v = M.mulVec v - Matrix.range_toLin' π Mathlib.LinearAlgebra.Matrix.ToLin
{R : Type u_1} [CommSemiring R] {m : Type u_4} {n : Type u_5} [DecidableEq n] [Fintype n] (M : Matrix m n R) : LinearMap.range (Matrix.toLin' M) = Submodule.span R (Set.range M.col) - Matrix.toLin'OfInv_apply π Mathlib.LinearAlgebra.Matrix.ToLin
{R : Type u_1} [CommSemiring R] {m : Type u_4} {n : Type u_5} [DecidableEq n] [Fintype n] [Fintype m] [DecidableEq m] {M : Matrix m n R} {M' : Matrix n m R} (hMM' : M * M' = 1) (hM'M : M' * M = 1) (a : m β R) (aβ : n) : (Matrix.toLin'OfInv hMM' hM'M) a aβ = (Matrix.toLin' M') a aβ - Matrix.ker_toLin'_eq_bot_iff π Mathlib.LinearAlgebra.Matrix.ToLin
{R : Type u_1} [CommSemiring R] {n : Type u_5} [DecidableEq n] [Fintype n] {M : Matrix n n R} : LinearMap.ker (Matrix.toLin' M) = β₯ β β (v : n β R), M.mulVec v = 0 β v = 0 - Matrix.toLin'OfInv_symm_apply π Mathlib.LinearAlgebra.Matrix.ToLin
{R : Type u_1} [CommSemiring R] {m : Type u_4} {n : Type u_5} [DecidableEq n] [Fintype n] [Fintype m] [DecidableEq m] {M : Matrix m n R} {M' : Matrix n m R} (hMM' : M * M' = 1) (hM'M : M' * M = 1) (a : n β R) (aβ : m) : (Matrix.toLin'OfInv hMM' hM'M).symm a aβ = (Matrix.toLin' M) a aβ - LinearMap.toMatrix'_toLin' π Mathlib.LinearAlgebra.Matrix.ToLin
{R : Type u_1} [CommSemiring R] {m : Type u_4} {n : Type u_5} [DecidableEq n] [Fintype n] (M : Matrix m n R) : LinearMap.toMatrix' (Matrix.toLin' M) = M - Matrix.toLin'_toMatrix' π Mathlib.LinearAlgebra.Matrix.ToLin
{R : Type u_1} [CommSemiring R] {m : Type u_4} {n : Type u_5} [DecidableEq n] [Fintype n] (f : (n β R) ββ[R] m β R) : Matrix.toLin' (LinearMap.toMatrix' f) = f - Matrix.toLin'_submatrix π Mathlib.LinearAlgebra.Matrix.ToLin
{R : Type u_1} [CommSemiring R] {k : Type u_2} {l : Type u_3} {m : Type u_4} {n : Type u_5} [DecidableEq n] [Fintype n] [Fintype l] [DecidableEq l] (fβ : m β k) (eβ : n β l) (M : Matrix k l R) : Matrix.toLin' (M.submatrix fβ βeβ) = LinearMap.funLeft R R fβ ββ Matrix.toLin' M ββ LinearMap.funLeft R R βeβ.symm - Matrix.toLin'_reindex π Mathlib.LinearAlgebra.Matrix.ToLin
{R : Type u_1} [CommSemiring R] {k : Type u_2} {l : Type u_3} {m : Type u_4} {n : Type u_5} [DecidableEq n] [Fintype n] [Fintype l] [DecidableEq l] (eβ : k β m) (eβ : l β n) (M : Matrix k l R) : Matrix.toLin' ((Matrix.reindex eβ eβ) M) = β(LinearEquiv.funCongrLeft R R eβ.symm) ββ Matrix.toLin' M ββ β(LinearEquiv.funCongrLeft R R eβ) - Matrix.toLin'_mul π Mathlib.LinearAlgebra.Matrix.ToLin
{R : Type u_1} [CommSemiring R] {l : Type u_3} {m : Type u_4} {n : Type u_5} [DecidableEq n] [Fintype n] [Fintype m] [DecidableEq m] (M : Matrix l m R) (N : Matrix m n R) : Matrix.toLin' (M * N) = Matrix.toLin' M ββ Matrix.toLin' N - Matrix.toLin'_mul_apply π Mathlib.LinearAlgebra.Matrix.ToLin
{R : Type u_1} [CommSemiring R] {l : Type u_3} {m : Type u_4} {n : Type u_5} [DecidableEq n] [Fintype n] [Fintype m] [DecidableEq m] (M : Matrix l m R) (N : Matrix m n R) (x : n β R) : (Matrix.toLin' (M * N)) x = (Matrix.toLin' M) ((Matrix.toLin' N) x) - Matrix.rank_vecMulVec π Mathlib.LinearAlgebra.FreeModule.Finite.Matrix
{K m n : Type u} [CommRing K] [Fintype n] [DecidableEq n] (w : m β K) (v : n β K) : (Matrix.toLin' (Matrix.vecMulVec w v)).rank β€ 1 - Matrix.SpecialLinearGroup.toLin'_to_linearMap π Mathlib.LinearAlgebra.Matrix.SpecialLinearGroup
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (A : Matrix.SpecialLinearGroup n R) : β(Matrix.SpecialLinearGroup.toLin' A) = Matrix.toLin' βA - Matrix.SpecialLinearGroup.toLin'_symm_to_linearMap π Mathlib.LinearAlgebra.Matrix.SpecialLinearGroup
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (A : Matrix.SpecialLinearGroup n R) : β(Matrix.SpecialLinearGroup.toLin' A).symm = Matrix.toLin' βAβ»ΒΉ - Matrix.SpecialLinearGroup.toLin'_apply π Mathlib.LinearAlgebra.Matrix.SpecialLinearGroup
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (A : Matrix.SpecialLinearGroup n R) (v : n β R) : (Matrix.SpecialLinearGroup.toLin' A) v = (Matrix.toLin' βA) v - Matrix.SpecialLinearGroup.toLin'_symm_apply π Mathlib.LinearAlgebra.Matrix.SpecialLinearGroup
{n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (A : Matrix.SpecialLinearGroup n R) (v : n β R) : (Matrix.SpecialLinearGroup.toLin' A).symm v = (Matrix.toLin' βAβ»ΒΉ) v - Matrix.toLinearEquiv'_apply π Mathlib.LinearAlgebra.Matrix.ToLinearEquiv
{n : Type u_1} [Fintype n] {R : Type u_2} [CommRing R] [DecidableEq n] (P : Matrix n n R) (h : Invertible P) : β(P.toLinearEquiv' h) = Matrix.toLin' P - Matrix.toLinearEquiv'_symm_apply π Mathlib.LinearAlgebra.Matrix.ToLinearEquiv
{n : Type u_1} [Fintype n] {R : Type u_2} [CommRing R] [DecidableEq n] (P : Matrix n n R) (h : Invertible P) : β(P.toLinearEquiv' h).symm = Matrix.toLin' β P - LinearMap.toMatrixβ'_mul π Mathlib.LinearAlgebra.Matrix.SesquilinearForm
{n : Type u_11} {m : Type u_12} {m' : Type u_14} {R : Type u_16} [CommSemiring R] [Fintype n] [Fintype m] [DecidableEq n] [DecidableEq m] [Fintype m'] [DecidableEq m'] (B : (n β R) ββ[R] (m β R) ββ[R] R) (M : Matrix m m' R) : (LinearMap.toMatrixβ' R) B * M = (LinearMap.toMatrixβ' R) (B.complβ (Matrix.toLin' M)) - LinearMap.mul_toMatrix' π Mathlib.LinearAlgebra.Matrix.SesquilinearForm
{n : Type u_11} {m : Type u_12} {n' : Type u_13} {R : Type u_16} [CommSemiring R] [Fintype n] [Fintype m] [DecidableEq n] [DecidableEq m] [Fintype n'] [DecidableEq n'] (B : (n β R) ββ[R] (m β R) ββ[R] R) (M : Matrix n' n R) : M * (LinearMap.toMatrixβ' R) B = (LinearMap.toMatrixβ' R) (B ββ Matrix.toLin' M.transpose) - Matrix.toLinearMapβ'_comp π Mathlib.LinearAlgebra.Matrix.SesquilinearForm
{n : Type u_11} {m : Type u_12} {n' : Type u_13} {m' : Type u_14} {R : Type u_16} [CommSemiring R] [Fintype n] [Fintype m] [DecidableEq n] [DecidableEq m] [Fintype n'] [Fintype m'] [DecidableEq n'] [DecidableEq m'] (M : Matrix n m R) (P : Matrix n n' R) (Q : Matrix m m' R) : ((Matrix.toLinearMapβ' R) M).complββ (Matrix.toLin' P) (Matrix.toLin' Q) = (Matrix.toLinearMapβ' R) (P.transpose * M * Q) - LinearMap.mul_toMatrixβ'_mul π Mathlib.LinearAlgebra.Matrix.SesquilinearForm
{n : Type u_11} {m : Type u_12} {n' : Type u_13} {m' : Type u_14} {R : Type u_16} [CommSemiring R] [Fintype n] [Fintype m] [DecidableEq n] [DecidableEq m] [Fintype n'] [Fintype m'] [DecidableEq n'] [DecidableEq m'] (B : (n β R) ββ[R] (m β R) ββ[R] R) (M : Matrix n' n R) (N : Matrix m m' R) : M * (LinearMap.toMatrixβ' R) B * N = (LinearMap.toMatrixβ' R) (B.complββ (Matrix.toLin' M.transpose) (Matrix.toLin' N)) - isAdjointPair_toLinearMapβ' π Mathlib.LinearAlgebra.Matrix.SesquilinearForm
{R : Type u_1} {n : Type u_11} {n' : Type u_13} [CommRing R] [Fintype n] [Fintype n'] (J : Matrix n n R) (J' : Matrix n' n' R) (A : Matrix n' n R) (A' : Matrix n n' R) [DecidableEq n] [DecidableEq n'] : ((Matrix.toLinearMapβ' R) J).IsAdjointPair ((Matrix.toLinearMapβ' R) J') β(Matrix.toLin' A) β(Matrix.toLin' A') β J.IsAdjointPair J' A A' - LinearMap.det_toLin' π Mathlib.LinearAlgebra.Determinant
{R : Type u_1} [CommRing R] {ΞΉ : Type u_4} [DecidableEq ΞΉ] [Fintype ΞΉ] (f : Matrix ΞΉ ΞΉ R) : LinearMap.det (Matrix.toLin' f) = f.det - lieEquivMatrix'_symm_apply π Mathlib.Algebra.Lie.Matrix
{R : Type u} [CommRing R] {n : Type w} [DecidableEq n] [Fintype n] (A : Matrix n n R) : lieEquivMatrix'.symm A = Matrix.toLin' A - Matrix.diagonal_toLin' π Mathlib.LinearAlgebra.Matrix.Diagonal
{n : Type u_1} [Fintype n] [DecidableEq n] {R : Type v} [CommSemiring R] (w : n β R) : Matrix.toLin' (Matrix.diagonal w) = LinearMap.pi fun i => w i β’ LinearMap.proj i - Matrix.proj_diagonal π Mathlib.LinearAlgebra.Matrix.Diagonal
{n : Type u_1} [Fintype n] [DecidableEq n] {R : Type v} [CommSemiring R] (i : n) (w : n β R) : LinearMap.proj i ββ Matrix.toLin' (Matrix.diagonal w) = w i β’ LinearMap.proj i - Matrix.diagonal_comp_single π Mathlib.LinearAlgebra.Matrix.Diagonal
{n : Type u_1} [Fintype n] [DecidableEq n] {R : Type v} [CommSemiring R] (w : n β R) (i : n) : Matrix.toLin' (Matrix.diagonal w) ββ LinearMap.single R (fun x => R) i = w i β’ LinearMap.single R (fun x => R) i - LinearMap.rank_diagonal π Mathlib.LinearAlgebra.Matrix.Diagonal
{m : Type u_1} [Fintype m] {K : Type u} [Field K] [DecidableEq m] [DecidableEq K] (w : m β K) : (Matrix.toLin' (Matrix.diagonal w)).rank = β(Fintype.card { i // w i β 0 }) - Matrix.ker_diagonal_toLin' π Mathlib.LinearAlgebra.Matrix.Diagonal
{m : Type u_1} [Fintype m] {K : Type u} [Semifield K] [DecidableEq m] (w : m β K) : LinearMap.ker (Matrix.toLin' (Matrix.diagonal w)) = β¨ i β {i | w i = 0}, LinearMap.range (LinearMap.single K (fun x => K) i) - Matrix.range_diagonal π Mathlib.LinearAlgebra.Matrix.Diagonal
{m : Type u_1} [Fintype m] {K : Type u} [Semifield K] [DecidableEq m] (w : m β K) : LinearMap.range (Matrix.toLin' (Matrix.diagonal w)) = β¨ i β {i | w i β 0}, LinearMap.range (LinearMap.single K (fun x => K) i) - Matrix.piLp_equiv_toEuclideanLin π Mathlib.Analysis.InnerProductSpace.PiL2
{π : Type u_3} [RCLike π] {m : Type u_7} {n : Type u_8} [Fintype n] [DecidableEq n] (A : Matrix m n π) (x : EuclideanSpace π n) : (WithLp.equiv 2 ((i : m) β (fun x => π) i)) ((Matrix.toEuclideanLin A) x) = (Matrix.toLin' A) ((WithLp.equiv 2 (n β π)) x) - Matrix.toEuclideanLin_piLp_equiv_symm π Mathlib.Analysis.InnerProductSpace.PiL2
{π : Type u_3} [RCLike π] {m : Type u_7} {n : Type u_8} [Fintype n] [DecidableEq n] (A : Matrix m n π) (x : n β π) : (Matrix.toEuclideanLin A) ((WithLp.equiv 2 ((i : n) β (fun x => π) i)).symm x) = (WithLp.equiv 2 (m β π)).symm ((Matrix.toLin' A) x) - Real.volume_preserving_transvectionStruct π Mathlib.MeasureTheory.Measure.Lebesgue.Basic
{ΞΉ : Type u_1} [Fintype ΞΉ] [DecidableEq ΞΉ] (t : Matrix.TransvectionStruct ΞΉ β) : MeasureTheory.MeasurePreserving (β(Matrix.toLin' t.toMatrix)) MeasureTheory.volume MeasureTheory.volume - Real.smul_map_diagonal_volume_pi π Mathlib.MeasureTheory.Measure.Lebesgue.Basic
{ΞΉ : Type u_1} [Fintype ΞΉ] [DecidableEq ΞΉ] {D : ΞΉ β β} (h : (Matrix.diagonal D).det β 0) : ENNReal.ofReal |(Matrix.diagonal D).det| β’ MeasureTheory.Measure.map (β(Matrix.toLin' (Matrix.diagonal D))) MeasureTheory.volume = MeasureTheory.volume - Real.map_matrix_volume_pi_eq_smul_volume_pi π Mathlib.MeasureTheory.Measure.Lebesgue.Basic
{ΞΉ : Type u_1} [Fintype ΞΉ] [DecidableEq ΞΉ] {M : Matrix ΞΉ ΞΉ β} (hM : M.det β 0) : MeasureTheory.Measure.map (β(Matrix.toLin' M)) MeasureTheory.volume = ENNReal.ofReal |M.detβ»ΒΉ| β’ MeasureTheory.volume - Matrix.piLp_equiv_toEuclideanCLM π Mathlib.Analysis.CStarAlgebra.Matrix
{π : Type u_1} {n : Type u_3} [RCLike π] [Fintype n] [DecidableEq n] (A : Matrix n n π) (x : EuclideanSpace π n) : (WithLp.equiv 2 ((i : n) β (fun x => π) i)) ((Matrix.toEuclideanCLM A) x) = (Matrix.toLin' A) ((WithLp.equiv 2 (n β π)) x) - Matrix.toEuclideanCLM_piLp_equiv_symm π Mathlib.Analysis.CStarAlgebra.Matrix
{π : Type u_1} {n : Type u_3} [RCLike π] [Fintype n] [DecidableEq n] (A : Matrix n n π) (x : n β π) : (Matrix.toEuclideanCLM A) ((WithLp.equiv 2 ((i : n) β (fun x => π) i)).symm x) = (WithLp.equiv 2 (n β π)).symm ((Matrix.toLin' A) x) - Matrix.minpoly_toLin' π Mathlib.LinearAlgebra.Matrix.Charpoly.Minpoly
{R : Type u} [CommRing R] {n : Type v} [DecidableEq n] [Fintype n] (M : Matrix n n R) : minpoly R (Matrix.toLin' M) = minpoly R M - LinearMap.BilinForm.toMatrix'_mul π Mathlib.LinearAlgebra.Matrix.BilinearForm
{Rβ : Type u_1} [CommSemiring Rβ] {n : Type u_5} [Fintype n] [DecidableEq n] (B : LinearMap.BilinForm Rβ (n β Rβ)) (M : Matrix n n Rβ) : LinearMap.BilinForm.toMatrix' B * M = LinearMap.BilinForm.toMatrix' (B.compRight (Matrix.toLin' M)) - LinearMap.BilinForm.mul_toMatrix' π Mathlib.LinearAlgebra.Matrix.BilinearForm
{Rβ : Type u_1} [CommSemiring Rβ] {n : Type u_5} [Fintype n] [DecidableEq n] (B : LinearMap.BilinForm Rβ (n β Rβ)) (M : Matrix n n Rβ) : M * LinearMap.BilinForm.toMatrix' B = LinearMap.BilinForm.toMatrix' (B.compLeft (Matrix.toLin' M.transpose)) - Matrix.toBilin'_comp π Mathlib.LinearAlgebra.Matrix.BilinearForm
{Rβ : Type u_1} [CommSemiring Rβ] {n : Type u_5} {o : Type u_6} [Fintype n] [Fintype o] [DecidableEq n] [DecidableEq o] (M : Matrix n n Rβ) (P Q : Matrix n o Rβ) : (Matrix.toBilin' M).comp (Matrix.toLin' P) (Matrix.toLin' Q) = Matrix.toBilin' (P.transpose * M * Q) - LinearMap.BilinForm.mul_toMatrix'_mul π Mathlib.LinearAlgebra.Matrix.BilinearForm
{Rβ : Type u_1} [CommSemiring Rβ] {n : Type u_5} {o : Type u_6} [Fintype n] [Fintype o] [DecidableEq n] [DecidableEq o] (B : LinearMap.BilinForm Rβ (n β Rβ)) (M : Matrix o n Rβ) (N : Matrix n o Rβ) : M * LinearMap.BilinForm.toMatrix' B * N = LinearMap.BilinForm.toMatrix' (B.comp (Matrix.toLin' M.transpose) (Matrix.toLin' N)) - Matrix.PosSemidef.toLinearMapβ'_zero_iff π Mathlib.LinearAlgebra.Matrix.PosDef
{n : Type u_2} {π : Type u_4} [Fintype n] [RCLike π] [DecidableEq n] {A : Matrix n n π} (hA : A.PosSemidef) (x : n β π) : (((Matrix.toLinearMapβ' π) A) (star x)) x = 0 β (Matrix.toLin' A) x = 0 - SimpleGraph.lapMatrix_toLin'_apply_eq_zero_iff_forall_adj π Mathlib.Combinatorics.SimpleGraph.LapMatrix
{V : Type u_1} [Fintype V] (G : SimpleGraph V) [DecidableRel G.Adj] [DecidableEq V] (x : V β β) : (Matrix.toLin' (SimpleGraph.lapMatrix β G)) x = 0 β β (i j : V), G.Adj i j β x i = x j - SimpleGraph.lapMatrix_toLin'_apply_eq_zero_iff_forall_reachable π Mathlib.Combinatorics.SimpleGraph.LapMatrix
{V : Type u_1} [Fintype V] (G : SimpleGraph V) [DecidableRel G.Adj] [DecidableEq V] (x : V β β) : (Matrix.toLin' (SimpleGraph.lapMatrix β G)) x = 0 β β (i j : V), G.Reachable i j β x i = x j - SimpleGraph.lapMatrix_ker_basis_aux π Mathlib.Combinatorics.SimpleGraph.LapMatrix
{V : Type u_1} [Fintype V] (G : SimpleGraph V) [DecidableRel G.Adj] [DecidableEq V] [DecidableEq G.ConnectedComponent] (c : G.ConnectedComponent) : β₯(LinearMap.ker (Matrix.toLin' (SimpleGraph.lapMatrix β G))) - SimpleGraph.mem_ker_toLin'_lapMatrix_of_connectedComponent π Mathlib.Combinatorics.SimpleGraph.LapMatrix
{V : Type u_1} [Fintype V] [DecidableEq V] {G : SimpleGraph V} [DecidableRel G.Adj] [DecidableEq G.ConnectedComponent] (c : G.ConnectedComponent) : (fun i => if G.connectedComponentMk i = c then 1 else 0) β LinearMap.ker (Matrix.toLin' (SimpleGraph.lapMatrix β G)) - SimpleGraph.lapMatrix_ker_basis_aux.eq_1 π Mathlib.Combinatorics.SimpleGraph.LapMatrix
{V : Type u_1} [Fintype V] (G : SimpleGraph V) [DecidableRel G.Adj] [DecidableEq V] [DecidableEq G.ConnectedComponent] (c : G.ConnectedComponent) : G.lapMatrix_ker_basis_aux c = β¨fun i => if G.connectedComponentMk i = c then 1 else 0, β―β© - SimpleGraph.lapMatrix_ker_basis π Mathlib.Combinatorics.SimpleGraph.LapMatrix
{V : Type u_1} [Fintype V] (G : SimpleGraph V) [DecidableRel G.Adj] [DecidableEq V] [DecidableEq G.ConnectedComponent] : Basis G.ConnectedComponent β β₯(LinearMap.ker (Matrix.toLin' (SimpleGraph.lapMatrix β G))) - SimpleGraph.card_ConnectedComponent_eq_rank_ker_lapMatrix π Mathlib.Combinatorics.SimpleGraph.LapMatrix
{V : Type u_1} [Fintype V] (G : SimpleGraph V) [DecidableRel G.Adj] [DecidableEq V] : Fintype.card G.ConnectedComponent = Module.finrank β β₯(LinearMap.ker (Matrix.toLin' (SimpleGraph.lapMatrix β G))) - SimpleGraph.card_connectedComponent_eq_finrank_ker_toLin'_lapMatrix π Mathlib.Combinatorics.SimpleGraph.LapMatrix
{V : Type u_1} [Fintype V] (G : SimpleGraph V) [DecidableRel G.Adj] [DecidableEq V] : Fintype.card G.ConnectedComponent = Module.finrank β β₯(LinearMap.ker (Matrix.toLin' (SimpleGraph.lapMatrix β G))) - SimpleGraph.linearIndependent_lapMatrix_ker_basis_aux π Mathlib.Combinatorics.SimpleGraph.LapMatrix
{V : Type u_1} [Fintype V] (G : SimpleGraph V) [DecidableRel G.Adj] [DecidableEq V] [DecidableEq G.ConnectedComponent] : LinearIndependent β G.lapMatrix_ker_basis_aux - SimpleGraph.top_le_span_range_lapMatrix_ker_basis_aux π Mathlib.Combinatorics.SimpleGraph.LapMatrix
{V : Type u_1} [Fintype V] (G : SimpleGraph V) [DecidableRel G.Adj] [DecidableEq V] [DecidableEq G.ConnectedComponent] : β€ β€ Submodule.span β (Set.range G.lapMatrix_ker_basis_aux) - hasEigenvalue_toLin'_diagonal_iff π Mathlib.LinearAlgebra.Eigenspace.Matrix
{R : Type u_1} {n : Type u_2} [DecidableEq n] [Fintype n] [CommRing R] [Nontrivial R] [NoZeroDivisors R] (d : n β R) {ΞΌ : R} : Module.End.HasEigenvalue (Matrix.toLin' (Matrix.diagonal d)) ΞΌ β β i, d i = ΞΌ - hasEigenvector_toLin'_diagonal π Mathlib.LinearAlgebra.Eigenspace.Matrix
{R : Type u_1} {n : Type u_2} [DecidableEq n] [Fintype n] [CommRing R] [Nontrivial R] (d : n β R) (i : n) : Module.End.HasEigenvector (Matrix.toLin' (Matrix.diagonal d)) (d i) ((Pi.basisFun R n) i) - eigenvalue_mem_ball π Mathlib.LinearAlgebra.Matrix.Gershgorin
{K : Type u_1} {n : Type u_2} [NormedField K] [Fintype n] [DecidableEq n] {A : Matrix n n K} {ΞΌ : K} (hΞΌ : Module.End.HasEigenvalue (Matrix.toLin' A) ΞΌ) : β k, ΞΌ β Metric.closedBall (A k k) (β j β Finset.univ.erase k, βA k jβ)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65