Loogle!
Result
Found 8 definitions mentioning MeasurableSet.iUnion.
- MeasurableSet.iUnion ๐ Mathlib.MeasureTheory.MeasurableSpace.Defs
{ฮฑ : Type u_1} {ฮน : Sort u_6} {m : MeasurableSpace ฮฑ} [Countable ฮน] โฆf : ฮน โ Set ฮฑโฆ (h : โ (b : ฮน), MeasurableSet (f b)) : MeasurableSet (โ b, f b) - MeasurableSpace.generateFrom_induction ๐ Mathlib.MeasureTheory.MeasurableSpace.Defs
{ฮฑ : Type u_1} (C : Set (Set ฮฑ)) (p : (s : Set ฮฑ) โ MeasurableSet s โ Prop) (hC : โ t โ C, โ (ht : MeasurableSet t), p t ht) (empty : p โ โฏ) (compl : โ (t : Set ฮฑ) (ht : MeasurableSet t), p t ht โ p tแถ โฏ) (iUnion : โ (s : โ โ Set ฮฑ) (hs : โ (n : โ), MeasurableSet (s n)), (โ (n : โ), p (s n) โฏ) โ p (โ i, s i) โฏ) (s : Set ฮฑ) (hs : MeasurableSet s) : p s hs - MeasureTheory.inducedOuterMeasure_eq ๐ Mathlib.MeasureTheory.OuterMeasure.Induced
{ฮฑ : Type u_1} [MeasurableSpace ฮฑ] {m : (s : Set ฮฑ) โ MeasurableSet s โ ENNReal} (m0 : m โ โฏ = 0) (mU : โ โฆf : โ โ Set ฮฑโฆ (hm : โ (i : โ), MeasurableSet (f i)), Pairwise (Disjoint on f) โ m (โ i, f i) โฏ = โ' (i : โ), m (f i) โฏ) {s : Set ฮฑ} (hs : MeasurableSet s) : (MeasureTheory.inducedOuterMeasure m โฏ m0) s = m s hs - MeasureTheory.inducedOuterMeasure_eq_extend ๐ Mathlib.MeasureTheory.OuterMeasure.Induced
{ฮฑ : Type u_1} [MeasurableSpace ฮฑ] {m : (s : Set ฮฑ) โ MeasurableSet s โ ENNReal} (m0 : m โ โฏ = 0) (mU : โ โฆf : โ โ Set ฮฑโฆ (hm : โ (i : โ), MeasurableSet (f i)), Pairwise (Disjoint on f) โ m (โ i, f i) โฏ = โ' (i : โ), m (f i) โฏ) {s : Set ฮฑ} (hs : MeasurableSet s) : (MeasureTheory.inducedOuterMeasure m โฏ m0) s = MeasureTheory.extend m s - MeasureTheory.extend_mono ๐ Mathlib.MeasureTheory.OuterMeasure.Induced
{ฮฑ : Type u_1} [MeasurableSpace ฮฑ] {m : (s : Set ฮฑ) โ MeasurableSet s โ ENNReal} (m0 : m โ โฏ = 0) (mU : โ โฆf : โ โ Set ฮฑโฆ (hm : โ (i : โ), MeasurableSet (f i)), Pairwise (Disjoint on f) โ m (โ i, f i) โฏ = โ' (i : โ), m (f i) โฏ) {sโ sโ : Set ฮฑ} (hโ : MeasurableSet sโ) (hs : sโ โ sโ) : MeasureTheory.extend m sโ โค MeasureTheory.extend m sโ - MeasureTheory.extend_iUnion_le_tsum_nat ๐ Mathlib.MeasureTheory.OuterMeasure.Induced
{ฮฑ : Type u_1} [MeasurableSpace ฮฑ] {m : (s : Set ฮฑ) โ MeasurableSet s โ ENNReal} (m0 : m โ โฏ = 0) (mU : โ โฆf : โ โ Set ฮฑโฆ (hm : โ (i : โ), MeasurableSet (f i)), Pairwise (Disjoint on f) โ m (โ i, f i) โฏ = โ' (i : โ), m (f i) โฏ) (s : โ โ Set ฮฑ) : MeasureTheory.extend m (โ i, s i) โค โ' (i : โ), MeasureTheory.extend m (s i) - MeasureTheory.Measure.ofMeasurable ๐ Mathlib.MeasureTheory.Measure.MeasureSpaceDef
{ฮฑ : Type u_1} [MeasurableSpace ฮฑ] (m : (s : Set ฮฑ) โ MeasurableSet s โ ENNReal) (m0 : m โ โฏ = 0) (mU : โ โฆf : โ โ Set ฮฑโฆ (h : โ (i : โ), MeasurableSet (f i)), Pairwise (Disjoint on f) โ m (โ i, f i) โฏ = โ' (i : โ), m (f i) โฏ) : MeasureTheory.Measure ฮฑ - MeasureTheory.Measure.ofMeasurable_apply ๐ Mathlib.MeasureTheory.Measure.MeasureSpaceDef
{ฮฑ : Type u_1} [MeasurableSpace ฮฑ] {m : (s : Set ฮฑ) โ MeasurableSet s โ ENNReal} {m0 : m โ โฏ = 0} {mU : โ โฆf : โ โ Set ฮฑโฆ (h : โ (i : โ), MeasurableSet (f i)), Pairwise (Disjoint on f) โ m (โ i, f i) โฏ = โ' (i : โ), m (f i) โฏ} (s : Set ฮฑ) (hs : MeasurableSet s) : (MeasureTheory.Measure.ofMeasurable m m0 mU) s = m s hs
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
woould find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 4e1aab0
serving mathlib revision b513113