Loogle!
Result
Found 24 declarations mentioning MeasurableSpace.map.
- MeasurableSpace.map 📋 Mathlib.MeasureTheory.MeasurableSpace.Basic
{α : Type u_1} {β : Type u_2} (f : α → β) (m : MeasurableSpace α) : MeasurableSpace β - MeasurableSpace.map_id 📋 Mathlib.MeasureTheory.MeasurableSpace.Basic
{α : Type u_1} {m : MeasurableSpace α} : MeasurableSpace.map id m = m - MeasurableSpace.comap_map_le 📋 Mathlib.MeasureTheory.MeasurableSpace.Basic
{α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {f : α → β} : MeasurableSpace.comap f (MeasurableSpace.map f m) ≤ m - MeasurableSpace.le_map_comap 📋 Mathlib.MeasureTheory.MeasurableSpace.Basic
{α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {g : β → α} : m ≤ MeasurableSpace.map g (MeasurableSpace.comap g m) - MeasurableSpace.map_const 📋 Mathlib.MeasureTheory.MeasurableSpace.Basic
{α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} (b : β) : MeasurableSpace.map (fun _a => b) m = ⊤ - MeasurableSpace.monotone_map 📋 Mathlib.MeasureTheory.MeasurableSpace.Basic
{α : Type u_1} {β : Type u_2} {f : α → β} : Monotone (MeasurableSpace.map f) - Measurable.le_map 📋 Mathlib.MeasureTheory.MeasurableSpace.Basic
{α : Type u_1} {β : Type u_2} {m₁ : MeasurableSpace α} {m₂ : MeasurableSpace β} {f : α → β} : Measurable f → m₂ ≤ MeasurableSpace.map f m₁ - Measurable.of_le_map 📋 Mathlib.MeasureTheory.MeasurableSpace.Basic
{α : Type u_1} {β : Type u_2} {m₁ : MeasurableSpace α} {m₂ : MeasurableSpace β} {f : α → β} : m₂ ≤ MeasurableSpace.map f m₁ → Measurable f - MeasurableSpace.map_def 📋 Mathlib.MeasureTheory.MeasurableSpace.Basic
{α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {f : α → β} {s : Set β} : MeasurableSet s ↔ MeasurableSet (f ⁻¹' s) - measurable_iff_le_map 📋 Mathlib.MeasureTheory.MeasurableSpace.Basic
{α : Type u_1} {β : Type u_2} {m₁ : MeasurableSpace α} {m₂ : MeasurableSpace β} {f : α → β} : Measurable f ↔ m₂ ≤ MeasurableSpace.map f m₁ - MeasurableSpace.gc_comap_map 📋 Mathlib.MeasureTheory.MeasurableSpace.Basic
{α : Type u_1} {β : Type u_2} (f : α → β) : GaloisConnection (MeasurableSpace.comap f) (MeasurableSpace.map f) - MeasurableSpace.map_top 📋 Mathlib.MeasureTheory.MeasurableSpace.Basic
{α : Type u_1} {β : Type u_2} {f : α → β} : MeasurableSpace.map f ⊤ = ⊤ - MeasurableSpace.map_mono 📋 Mathlib.MeasureTheory.MeasurableSpace.Basic
{α : Type u_1} {β : Type u_2} {m₁ m₂ : MeasurableSpace α} {f : α → β} (h : m₁ ≤ m₂) : MeasurableSpace.map f m₁ ≤ MeasurableSpace.map f m₂ - MeasurableSpace.comap_le_iff_le_map 📋 Mathlib.MeasureTheory.MeasurableSpace.Basic
{α : Type u_1} {β : Type u_2} {m : MeasurableSpace α} {m' : MeasurableSpace β} {f : α → β} : MeasurableSpace.comap f m' ≤ m ↔ m' ≤ MeasurableSpace.map f m - MeasurableSpace.map_comp 📋 Mathlib.MeasureTheory.MeasurableSpace.Basic
{α : Type u_1} {β : Type u_2} {γ : Type u_3} {m : MeasurableSpace α} {f : α → β} {g : β → γ} : MeasurableSpace.map g (MeasurableSpace.map f m) = MeasurableSpace.map (g ∘ f) m - MeasurableSpace.map_iInf 📋 Mathlib.MeasureTheory.MeasurableSpace.Basic
{α : Type u_1} {β : Type u_2} {ι : Sort uι} {f : α → β} {m : ι → MeasurableSpace α} : MeasurableSpace.map f (⨅ i, m i) = ⨅ i, MeasurableSpace.map f (m i) - MeasurableSpace.map_inf 📋 Mathlib.MeasureTheory.MeasurableSpace.Basic
{α : Type u_1} {β : Type u_2} {m₁ m₂ : MeasurableSpace α} {f : α → β} : MeasurableSpace.map f (m₁ ⊓ m₂) = MeasurableSpace.map f m₁ ⊓ MeasurableSpace.map f m₂ - MeasurableEquiv.map_eq 📋 Mathlib.MeasureTheory.MeasurableSpace.Embedding
{α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] (e : α ≃ᵐ β) : MeasurableSpace.map (⇑e) inst✝ = inst✝¹ - AddOpposite.instMeasurableSpace.eq_1 📋 Mathlib.MeasureTheory.Group.Arithmetic
{α : Type u_2} [h : MeasurableSpace α] : AddOpposite.instMeasurableSpace = MeasurableSpace.map AddOpposite.op h - MulOpposite.instMeasurableSpace.eq_1 📋 Mathlib.MeasureTheory.Group.Arithmetic
{α : Type u_2} [h : MeasurableSpace α] : MulOpposite.instMeasurableSpace = MeasurableSpace.map MulOpposite.op h - Measurable.map_measurableSpace_eq 📋 Mathlib.MeasureTheory.Constructions.Polish.Basic
{X : Type u_3} {Z : Type u_5} [MeasurableSpace X] [StandardBorelSpace X] [MeasurableSpace Z] [MeasurableSpace.CountablySeparated Z] {f : X → Z} (hf : Measurable f) (hsurj : Function.Surjective f) : MeasurableSpace.map f inst✝ = inst✝¹ - Continuous.map_borel_eq 📋 Mathlib.MeasureTheory.Constructions.Polish.Basic
{X : Type u_3} {Y : Type u_4} [TopologicalSpace X] [PolishSpace X] [TopologicalSpace Y] [T0Space Y] [SecondCountableTopology Y] {f : X → Y} (hf : Continuous f) (hsurj : Function.Surjective f) : MeasurableSpace.map f (borel X) = borel Y - Continuous.map_eq_borel 📋 Mathlib.MeasureTheory.Constructions.Polish.Basic
{X : Type u_3} {Y : Type u_4} [TopologicalSpace X] [PolishSpace X] [MeasurableSpace X] [BorelSpace X] [TopologicalSpace Y] [T0Space Y] [SecondCountableTopology Y] {f : X → Y} (hf : Continuous f) (hsurj : Function.Surjective f) : MeasurableSpace.map f inst✝ = borel Y - Measurable.map_measurableSpace_eq_borel 📋 Mathlib.MeasureTheory.Constructions.Polish.Basic
{X : Type u_3} {Y : Type u_4} [MeasurableSpace X] [StandardBorelSpace X] [TopologicalSpace Y] [T0Space Y] [MeasurableSpace Y] [OpensMeasurableSpace Y] [SecondCountableTopology Y] {f : X → Y} (hf : Measurable f) (hsurj : Function.Surjective f) : MeasurableSpace.map f inst✝ = borel Y
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08